首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aims of the present study were to detect the ontogeny of estrogen receptor (ERα and ERβ) and androgen receptor (AR) expressions and their co-localization with Islet-1 in the developing dorsal root ganglia (DRG) of sheep fetuses by immunohistochemistry. From the single staining results, the ERα immunoreactivity (ERα-ir), ERβ immunoreactivity (ERβ-ir) and AR immunoreactivity (AR-ir) was first detected at days 90, 120 and 90 of gestation, respectively. From days 90 to 120, ERα and AR were consistently detected in the nuclei of DRG neurons and the relative percentage (approximately 60%) of ERα-ir or AR-ir cells did not change significantly. Moreover, there was no change in ERα expression, while a dramatic loss of AR expression was observed at birth. From day 120 of gestation to birth, very few neurons (approximately 8%) showed nuclear ERβ immunoreactivity. The dual staining results showed that Islet-1 was co-localized with ERα, ERβ or AR in the nuclei of DRG neurons with various frequencies, and over 70% ERα-ir, ERβ-ir or AR-ir cells contained Islet-1. These results imply that ERs, AR and Islet-1 may be important in regulating the differentiation and functional maintenance of some phenotypes of DRG neurons after mid-gestation in the sheep fetus.  相似文献   

2.
Fetal baroreflex responsiveness increases in late gestation. An important modulator of baroreflex activity is the generation of nitric oxide in the brainstem nuclei that integrate afferent and efferent reflex activity. The present study was designed to test the hypothesis that nitric oxide synthase (NOS) isoforms are expressed in the fetal brainstem and that the expression of one or more of these enzymes is reduced in late gestation. Brainstem tissue was rapidly collected from fetal sheep of known gestational ages (80, 100, 120, 130, 145 days gestation and 1 day and 1 wk postnatal). Neuronal (nNOS), inducible (iNOS), and endothelial (eNOS) mRNA was measured using real-time PCR methodology specific for ovine NOS isoforms. The three enzymes were measured at the protein level using Western blot methodology. In tissue prepared for histology separately, the cellular pattern of immunostaining was identified in medullae from late-gestation fetal sheep. Fetal brainstem contained mRNA and protein of all three NOS isoforms, with nNOS the most abundant, followed by iNOS and eNOS, respectively. nNOS and iNOS mRNA abundances were highest at 80 days' gestation, with statistically significant decreases in abundance in more mature fetuses and postnatal animals. nNOS and eNOS protein abundance also decreased as a function of developmental age. nNOS and eNOS were expressed in neurons, iNOS was expressed in glia, and eNOS was expressed in vascular endothelial cells. We conclude that all three isoforms of NOS are constitutively expressed within the fetal brainstem, and the expression of all three forms is reduced with advancing gestation. We speculate that the reduced expression of NOS in this brain region plays a role in the increased fetal baroreflex activity in late gestation.  相似文献   

3.
In adult rats, when plasma osmolality increases, water flows across the blood-brain barrier down its concentration gradient from brain to plasma, and brain volume deceases. The brain responds to this stress by gaining osmotically active solutes, which limit water loss. This phenomenon is termed brain volume (water) regulation. We tested the hypothesis that brain volume regulation is more effective in young lambs and adult sheep than in fetuses, premature lambs, and newborn lambs. Brain water responses to acute hyperosmolality were measured in the cerebral cortex, cerebellum, and medulla of fetuses at 60 and 90% of gestation, premature ventilated lambs at 90% of gestation, newborn lambs, young lambs at 20-30 days of age, and adult sheep. After exposure of the sheep to increases in systemic osmolality with mannitol plus NaCl, brain water content and electrolytes were quantified. The ideal osmometer is a system in which impermeable solutes do not enter or leave in response to an osmotic stress. There were significant differences from an ideal osmometer in the cerebral cortex of fetuses at 90% of gestation, cerebral cortex, and cerebellum of newborn lambs, and cerebral cortex, cerebellum, and medulla of young lambs and adult sheep; however, there were no differences in the brain regions of fetuses at 60% of gestation and premature lambs, cerebellum and medulla of fetuses at 90% of gestation, and medulla of newborn lambs. We conclude that 1) brain water loss is maximal and brain volume regulation impaired in most brain regions of fetuses at 60 and 90% of gestation and premature lambs; 2) brain volume regulation develops first in the cerebral cortex of the fetuses at 90% of gestation and in the cerebral cortex and cerebellum of newborn lambs, and then it develops in the medulla of the lambs at 20-30 days of age; 3) brain water loss is limited and volume regulation present in the brain regions of young lambs and adult sheep; and 4) the ability of the brain to exhibit volume regulation develops in a region- and age-related fashion.  相似文献   

4.
There is as yet no report about the developmental changes of estrogen receptors (ERs) in the male reproductive system of the sheep fetus. In the present study, the testis, efferent ductule, and epididymis of sheep fetuses were collected at days 70, 90, and 120 of gestation and in the newborn lamb. ER alpha (ERalpha) and ER beta (ERbeta) were detected by immunohistochemistry. The results showed that ERbeta staining was negative in all of the examined tissues throughout gestation, whereas ERalpha immunoreactivity was only located in the nuclei of the efferent ductule epithelium. In addition, both ERalpha staining intensity and the number of ERalpha-positive cells were higher at day 90 of gestation, compared with that at day 70 and at birth. These results suggest that estrogen may play important roles in efferent ductule development in sheep fetuses.  相似文献   

5.
Light microscope peroxidase-antiperoxidase immunohistochemistry has been applied to the pituitary of adult and fetal sheep from 40 to 145 days of gestation. In the adult, immunoreactive ACTH cells were darkly stained and angular with cytoplasmic processes surrounding neighbouring unstained cells. In the fetus, cells which stained for ACTH were observed in the pars distalis at 40 days. From approximately 90 days, two morphologically distinct ACTH-positive cell types were clearly discernible. The predominant type was large and variably stained. These cells usually occurred in clusters and were often arranged in palisades. The other type resembled ACTH-positive cells in the adult. After 130 days the population of large cells declined and completely disappeared before term in most fetuses. The pars intermedia showed a different pattern of staining. In the fetus, ACTH-positive cells were observed in this region after 60 days gestation and by 90 days almost all the pars intermedia cells were strongly stained. By contrast, the cells in the adult pars intermedia were only lightly stained.  相似文献   

6.
We tested the hypothesis that, during acute glucose-induced hyperosmolality, the brain shrinks less than predicted on the basis of an ideal osmometer and that brain volume regulation is present in fetuses, premature and newborn lambs. Brain water responses to glucose-induced hyperosmolality were measured in the cerebral cortex, cerebellum, and medulla of fetuses at 60% of gestation, premature ventilated lambs at 90% of gestation, newborn lambs, and adult sheep. After exposure of the sheep to increases in osmolality with glucose plus NaCl, brain water and electrolytes were measured. The ideal osmometer is a system in which impermeable solutes do not enter or leave in response to an osmotic stress. In the absence of volume regulation, brain solute remains constant as osmolality changes. The osmotically active solute demonstrated direct linear correlations with plasma osmolality in the cerebral cortex of the fetuses at 60% of gestation (r = 0.72, n = 24, P = 0.0001), premature lambs (r = 0.58, n = 22, P = 0.005), newborn lambs (r = 0.57, n = 24, P = 0.004), and adult sheep (r = 0.70, n = 18, P = 0.001). Similar findings were observed in the cerebellum and medulla. Increases in the quantity of osmotically active solute over the range of plasma osmolalities indicate that volume regulation was present in the brain regions of the fetuses, premature lambs, newborn lambs, and adult sheep during glucose-induced hyperosmolality. We conclude that, during glucose-induced hyperosmolality, the brain shrinks less than predicted on the basis of an ideal osmometer and exhibits volume regulation in fetuses at 60% of gestation, premature lambs, newborn lambs, and adult sheep.  相似文献   

7.
We previously reported decreases in blood-brain barrier permeability in the ovine fetus at 80% of gestation after antenatal corticosteroids and shown that permeability is not reduced in newborn lambs after postnatal corticosteroids. We now test the hypotheses that exogenous antenatal corticosteroids decrease blood-brain barrier permeability at 60% but not 90% of gestation in ovine fetuses and that endogenous increases in plasma cortisol concentrations are associated with ontogenic decreases in barrier permeability during gestation. Chronically instrumented ovine fetuses were studied 12 h after the last of four 6-mg dexamethasone or placebo injections were given 12 h apart over 48 h to ewes. Fetuses at 80% of gestation from placebo-treated ewes studied under the same protocol were also included. Blood-brain barrier function was quantified with the blood-to-brain transfer constant (K(i)) to alpha-aminoisobutyric acid. K(i) values were lower in cerebral cortex, caudate nucleus, hippocampus, superior colliculus, thalamus, medulla, and cervical spinal cord in fetuses of dexamethasone- than placebo-treated ewes at 60% but not 90% of gestation. Regional brain K(i) values demonstrated inverse correlations with increases in gestation and plasma cortisol concentrations in most brain regions. We conclude that maternal treatment with exogenous corticosteroids was associated with decreases in blood-brain barrier permeability at 60% but not 90% of gestation and that increases in gestation and endogenous cortisol concentrations were associated with ontogenic decreases in barrier permeability during fetal development.  相似文献   

8.
Piezoelectric transducers were implanted into the parietal bones of intact (n = 4) and hypophysectomized (n = 8) fetal sheep of approximately 110-120 days gestational age (term 145-150 days). Intertransducer distance was determined by measuring the time taken for an ultrasonic pulse, generated by one transducer, to elicit a piezoelectric response in an opposing transducer. The limit of sensitivity of the timer was +/- 0.033 microsec. The ultrasonic velocity through fetal sheep brain tissue was 1549.6 +/- 2.2 m.s-1 (SEM; n = 33). This velocity remained constant throughout the entire period studied in both intact and hypophysectomized fetuses. At this velocity, the sensitivity of the measuring device was +/- 0.05mm. The ultrasonic transit time was measured daily between 0900 and 1100h until term in all fetuses. Three hypophysectomized fetuses were allowed to remain in utero until day 163 of gestation. The mean biparietal distance growth rate prior to day 135 for the intact and hypophysectomized fetuses was 0.25 +/- 0.03 and 0.27 +/- 0.025 mm/day respectively. These values were not significantly different (P greater than 0.05). A significant decrease (P less than 0.05) in growth rate was detected in both experimental groups between days 135 and 147 and was more pronounced in the sham (0.05 +/- 0.04 mm/day) than in the hypophysectomized (0.14 +/- 0.03 mm/day) group. However, the growth rate of the sham animals after day 135 was not significantly different from that of the hypophysectomized animals. In the three hypophysectomized fetuses killed at day 163 the biparietal distance growth was maintained at 0.12 +/- 0.005 mm/day. We conclude that fetal biparietal distance growth is pituitary independent from day 110 of gestation and that this technique for measuring distance is a valid and extremely accurate method for the continuous measurement of this parameter of fetal growth and may have further applications in other areas of growth research.  相似文献   

9.
The insulin-like growth factors (IGF-I and -II) are potential mediators of the effects of maternal undernutrition on fetal growth and muscle development. The effects of a 40% reduction in maternal feed intake on serum levels of the IGFs, the thyroid hormones and cortisol, were investigated for the last two trimesters (day 25 to birth). This level of undernutrition is known to cause a 35% reduction in fetal and placental weights, and a 20-25% reduction in muscle fibre number. Maternal IGF-I level was greater than non-pregnant levels on day 25 gestation, in both control and restricted dams, and declined with gestational age. The increase in IGF-I level in the 40% restricted group was approximately two-thirds that of control animals. Fetal serum IGF-I was also reduced in undernourished fetuses throughout gestation. Maternal IGF-II did not change with gestational age and was unaffected by undernutrition. Fetal IGF-II reached a peak at day 55 of gestation, this peak was greatly diminished by maternal feed restriction. Both IGF-I and IGF-II tended to be related to fetal, placental and muscle weights at day 65 of gestation. Thyroid hormone concentration declined in maternal serum and increased in fetal serum with increasing gestational age. Levels were not significantly affected by undernutrition. Both triiodothyronine (T3) and thyroxine (T4) were correlated with IGF-I in maternal serum (P < 0.05), but not in fetal serum. Cortisol levels were elevated by undernutrition in both maternal and fetal serum, and increased with gestational age. Cortisol was inversely correlated with serum IGF-I in both maternal and fetal serum. Maternal serum IGF-I may mediate the effects of undernutrition on fetal growth by affecting the growth and establishment of the feto-placental unit in mid-gestation. Fetal IGF-I may mediate the effects on muscle growth, whereas IGF-II seems to be related to hepatic glycogen deposition. Cortisol may play a role via its effect on the IGFs, but the thyroid hormones are unlikely to be important until the late gestation/early postnatal period.  相似文献   

10.
Over a 3-year period, 32 Dall's sheep (Ovis dalli dalli) embryos were transferred into 24 domestic sheep (O. aries) recipients and 4 were transferred into 2 Dall's sheep recipients. In the first year, none of the 10 O. aries recipients was diagnosed pregnant. In the following 2 years, 9 (37%) of the domestic sheep recipients were pregnant on Day 18, 8 (33%) on Day 40, 6 (25%) on Day 90 and 4 (16%) on Day 120; 1 aborted at Day 125 and another at Day 145. Pregnancies were established only in ewes that had previously been recipients of Dall's sheep embryos. The 2 remaining pregnant sheep were treated with progesterone from Day 125 until the fetuses were determined to be dead at Day 145. Both of the Dall's sheep recipients (Year 2) established pregnancies; 1 live Dall's sheep lamb was born 174 days after mating. No differences in serum progesterone, oestrone, prostaglandin F-2 alpha metabolites or cortisol concentrations could be detected during pregnancy between recipients carrying Dall's sheep embryos, recipients receiving progesterone treatment or domestic ewes carrying domestic sheep pregnancies. Six fetuses were necropsied (1 at Day 125 and 5 at Day 145-146): all fetuses were premature and had various degrees of hydranencephaly. No significant differences were found when cotyledon numbers were compared among domestic ewes carrying Dall's sheep lambs. Dall's sheep ewes lambing naturally and domestic ewes lambing naturally. These results demonstrate that the transfer of Dall's sheep embryos to domestic ewes results in the establishment but subsequent loss of pregnancy and that these losses occur throughout gestation.  相似文献   

11.
12.
围产期食物限制导致子代大鼠学习和记忆能力等的神经生物学变化,但其机制并不清楚。将成年Wistar雌性大鼠与雄性大鼠同笼,受孕后随机分为对照组 (n=9) 和食物限制组 (n=8) 。对照组母鼠在妊娠期和哺乳期自由进食和饮水,食物限制组母鼠从妊娠的第7天到子代大鼠出生后21天进行食物限制,食物限制量为对照组大鼠的50%。子代雄性大鼠成年后,通过Morris 水迷宫测试空间学习和记忆能力。之后,在海马CA1区在体记录场兴奋性突触后电位 (field excitatory postsynaptic potential,fEPSP),并采用免疫组织化学方法观察海马CA1区神经元型一氧化氮合酶 (nNOS) 阳性细胞密度的变化。结果表明,围产期食物限制降低了子代大鼠出生后第1、7、10、14和21天的体重,并减弱了成年子代大鼠的学习和记忆能力,海马CA1区fEPSP的斜率和nNOS阳性细胞的密度也明显降低。结果提示,围产期食物限制可能通过抑制NO的产生降低了海马突触可塑性,从而影响了子代大鼠的学习和记忆能力。  相似文献   

13.
Glucose, a major metabolic substrate for the mammalian fetus, probably makes significant contributions to surface active phospholipid synthesis in adult lung. We examined the developmental patterns of glycogen content, glycogen synthase activity, glycogen phosphorylase activity and glucose oxidation in fetal and newborn rat lung. These patterns were correlated with the development of phosphatidylcholine synthesis, content and the activities of enzymes involved in phosphatidylcholine synthesis. Fetal lung glycogen concentration increased until day 20 of gestation (term is 22 days) after which it declined to low levels. Activity of both glycogen synthase I and total glycogen synthase (I + D) in fetal lung increased late in gestation. Increased lung glycogen concentration preceded changes in enzyme activity. Glycogen phosphorylase a and total glycogen phosphorylase (a + b) activity in fetal lung increased during the period of prenatal glycogen depletion. The activity of the pentose phosphate pathway, as measured by the ratio of CO2 derived from oxidation of C1 and C6 of glucose, declined after birth. Fetal lung total phospholipid, phosphatidycholine and disaturated phosphatidylcholine content increased by 60, 90 and 180%, respectively, between day 19 of gestation and the first postnatal day. Incorporation of choline into phosphatidylcholine and disaturated phosphatidylcholine increased 10-fold during this time. No changes in phosphatidylcholine enzyme activities were noted during gestation, but both choline phosphate cytidylyltransferase and phosphatidate phosphatase activity increased after birth. The possible contributions of carbohydrate derived from fetal lung glycogen to phospholipid synthesis are discussed.  相似文献   

14.
Nitric oxide (NO), produced by NO synthase (NOS), serves multiple functions in the perinatal lung. In fetal baboons, neuronal (nNOS), endothelial (eNOS), and inducible NOS (iNOS) are all primarily expressed in proximal respiratory epithelium. In the present study, NOS expression and activity in proximal lung and minute ventilation of NO standard temperature and pressure (VeNO(STP)) were evaluated in a model of chronic lung disease (CLD) in baboons delivered at 125 days (d) of gestation (term = 185 d) and ventilated for 14 d, obtaining control lung samples from fetuses at 125 or 140 d of gestation. In contrast to the normal 73% increase in total NOS activity from 125 to 140 d of gestation, there was an 83% decline with CLD. This was related to marked diminutions in both nNOS and eNOS expression and enzymatic activity. nNOS accounted for the vast majority of enzymatic activity in all groups. The normal 3.3-fold maturational rise in iNOS protein expression was blunted in CLD, yet iNOS activity was elevated in CLD compared with at birth. The contribution of iNOS to total NOS activity was minimal in all groups. VeNO(STP) remained stable in the range of 0.5-1.0 nl x kg(-1) x min(-1) from birth to day 7 of life, and it then rose by 2.5-fold. Thus the baboon model of CLD is characterized by deficiency of the principal pulmonary isoforms, nNOS and eNOS, and enhanced iNOS activity over the first 2 wk of postnatal life. It is postulated that these alterations in NOS expression and activity may contribute to the pathogenesis of CLD.  相似文献   

15.
We have examined the expression of Thy-1, an abundant glycosylphosphatidylinositol (GPI)-anchored glycoprotein, in dorsal root ganglia (DRG) and associated nerve fascicles, during postnatal development and following a nerve crush. The expression levels of Thy-1 in DRG neurons, dorsal roots, and central processes in spinal cord were rather low at postnatal day 2, and gradually increased as DRG neurons matured. During early development, the expression of Thy-1 within DRG neurons was low and equally distributed between plasma membrane and cytosol. With maturation, the staining intensities of Thy-1 in both the plasma membrane and the cytosol of DRG neurons became increased. We also studied Thy-1 expression in the regeneration of mature DRG neurons following the crush injury of sciatic nerve. Two days after the crush injury, Thy-1 expression dramatically decreased in the DRG neurons on the lesion side. Between 4 and 7 days after the injury, the expression of Thy-1 gradually increased and returned to a normal level 1 week after the sciatic nerve crush. The time course of the up-regulation of Thy-1 expression during regeneration matched that of the recovery of sensory functions, such as pain withdraw reflex, placing reflex, and the score of Basso-Beattie-Bresnahan Locomotor Rating Scale. Taken together, our results suggest that Thy-1 expression is developmentally regulated and is closely associated with the functional maturation of DRG neurons during both postnatal development and nerve regeneration. Furthermore, perturbation of Thy-1 function with anti-Thy-1 antibodies promoted neurite outgrowth from primary cultured DRG neurons, again confirming the inhibitory role of Thy-1 on neurite outgrowth.  相似文献   

16.
No information is known concerning the expression of androgen receptor (AR) and its co-localization with estrogen receptor alpha (ERα) in the developing pituitary of sheep fetus. In the present study, we detected AR expression and its co-localization with ERα in the anterior pituitary of sheep fetus from day 60 of gestation to the postnatal by dual immunochemistry. The results showed that both AR immunoreactivity (AR-ir) and ERα immunoreactivity (ERα-ir) were predominantly localized in the nuclei of LH positive gonadotropes. The cell counting results showed that the percentage of the anterior pituitary cells expressing AR fluctuated from 13.51 ± 0.92 to 17.05 ± 1.83% during the examined stages, but there were no significant differences between sexes and among ages examined (P > 0.05). However, the proportion of AR-ir cells containing LH markedly increased from day 60 of gestation to the neonatal (P < 0.05). The percentage of AR-ir cells expressing ERα-ir significantly increased from day 60 of gestation to the neonatal, respectively (P < 0.05), but no significant differences were seen between genders at each stage examined. These results indicate that both AR and ERα are mainly expressed in the gonadotropes of anterior pituitary gland of sheep fetuses, whereas the functions and interaction of AR and ERα expressions in the developing pituitary gland are required to be elucidated further. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

17.
Although Islet-1 expression in the pituitary gland of early mouse embryo has been previously described, there are no reports concerning the correlation of Islet-1 expression with lineage restrictions in cell types at the later stages of pituitary development. The role of Islet-1 in chickens is also unknown. The purpose of this study was to follow, by using immunohistochemistry, the ontogeny of pituitary Islet-1 and the various cell types that contain Islet-1 throughout chick embryo development. A few Islet-1-immunopositive (Islet-1+) cells were first detected in the pituitary primordium in two out of six embryos at embryonic day 5.5 (E5.5), most of the Islet-1+ cells being ventrally located. As development progressed, many more Islet-1+ cells were observed throughout the pars distalis. The relative percentage of Islet-1+ cells amongst the total Rathke’s pouch cells was 4.4% at E6.5. This increased significantly, reaching 11.1% by E10.5, followed by no significant change until hatching. Dual immunohistochemistry showed that adrenocorticotrophs, somatotrophs and lactotrophs did not express Islet-1. The cellular types expressing Islet-1 included luteinizing-hormone-positive (LH+) gonadotrophs and thyroid-stimulating-hormone-positive (TSH+) thyrotrophs. The cells co-expressing LH and Islet-1 were initially detected at E6.5, the proportion of LH+ cells possessing Islet-1 being about 4%; this increased to 63% at E14.5, followed by no significant changes until hatching. TSH and Islet-1 co-localized cells were first observed at E10.5, with about 37% TSH+ cell expressing Islet-1; this increased to about 50% by E16.5, after which there was no evident change until hatching. These results suggest that Islet-1 is involved in determining the cell lineages, proliferation, differentiation and maintenance of hormone-secreting functions of pituitary gonadotrophs and thyrotrophs of chick embryo. J. Liu and Y. He contributed equally to this article. This work was supported by grants from Beijing Natural Science Foundation (6042013) and the Natural Science Foundation of China (30471264, 30325034).  相似文献   

18.
19.
Activities of ketone body-metabolizing enzymes in rat brain rise 3- to 5-fold during the suckling period, then fall more than 50% after weaning. Our purpose was to determine the mechanism of the developmental changes in activity of 3-oxoacid CoA-transferase in rat brain and to study its regulation by dietary modification. Purified rat brain 3-oxoacid CoA-transferase was used to generate specific antibody. Immunotitrations of the enzyme from brains of 4-, 24-, and 90-day-old rats indicated that changes in 3-oxoacid CoA-transferase activity during development are due to changes in content of the enzyme protein. Pulse-labeling studies showed that changes in enzyme specific activity reflected changes in its relative rate of synthesis, which increased 2.5-fold between the nineteenth day of gestation and the third postnatal day, remained at this high level until the twelfth postnatal day, and declined thereafter, returning by Day 38 to the level observed in utero. The enzyme is apparently degraded very slowly during early postnatal life. Fetal hyperketonemia induced by feeding pregnant rats a high-fat diet was associated with an increase in the relative rate of synthesis of 3-oxoacid CoA-transferase in brains of 19-day-old fetuses and newborn rats and with an increase in the specific activity of the enzyme at birth. To examine the role of postnatal hyperketonemia in the development of the enzyme in brains of suckling rats, neonates received intragastric cannulas and were fed, for up to 13 days, a modified milk formula low in fat. Postnatal hyperketonemia was abolished but cerebral 3-oxoacid CoA-transferase specific activity on Days 10 and 17 was not significantly affected. Thus, the physiological hyperketonemia caused by the high fat content of rat milk is not required for the normal development of 3-oxoacid CoA-transferase in rat brain.  相似文献   

20.
Spirulina maxima, provided by Sosa Texcoco Company (México City), was administered to mice of both sexes in a fertility study, at concentrations of 0, 10, 20 and 30% incorporated into the diet. Males were fed for nine weeks while females, for two weeks, and feeding continued during the mating period and gestation. On the other hand, in a peri- and postnatal study, the alga was given only to females at the same concentrations from day 15 of gestation until day 21 post-partum. Treatments were not associated with any adverse effect on reproductive performance, pregnancy rate, number of corpora lutea, resorptions or number of live or dead fetuses. There was no increase in the number of abnormal pups at caesarean section. Length of gestation, parturition status, and litter values were unaffected by treatment. However, there was a statistically significant reduction in bodyweight and survival rate on postnatal days 0–4 at the high dose group in the peri- and postnatal study. The reproductive performance of F1 generation was normal in all groups. We conclude that S. maxima is not toxic to reproduction. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号