首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
ArfGAP1 promotes GTP hydrolysis in Arf1, a small G protein that interacts with lipid membranes and drives the assembly of the COPI coat in a GTP-dependent manner. The activity of ArfGAP1 increases with membrane curvature, suggesting a negative feedback loop in which COPI-induced membrane deformation determines the timing and location of GTP hydrolysis within a coated bud. Here we show that a central sequence of about 40 amino acids in ArfGAP1 acts as a lipid-packing sensor. This ALPS motif (ArfGAP1 Lipid Packing Sensor) is also found in the yeast homologue Gcs1p and is necessary for coupling ArfGAP1 activity with membrane curvature. The ALPS motif binds avidly to small liposomes and shows the same hypersensitivity on liposome radius as full-length ArfGAP1. Site-directed mutagenesis, limited proteolysis and circular dichroism experiments suggest that the ALPS motif, which is unstructured in solution, inserts bulky hydrophobic residues between loosely packed lipids and forms an amphipathic helix on highly curved membranes. This helix differs from classical amphipathic helices by the abundance of serine and threonine residues on its polar face.  相似文献   

2.
ArfGAP1, which promotes GTP hydrolysis on the small G protein Arf1 on Golgi membranes, interacts preferentially with positively curved membranes through its amphipathic lipid packing sensor (ALPS) motifs. This should influence the distribution of Arf1‐GTP when flat and curved regions coexist on a continuous membrane, notably during COPI vesicle budding. To test this, we pulled tubes from giant vesicles using molecular motors or optical tweezers. Arf1‐GTP distributed on the giant vesicles and on the tubes, whereas ArfGAP1 bound exclusively to the tubes. Decreasing the tube radius revealed a threshold of R≈35 nm for the binding of ArfGAP1 ALPS motifs. Mixing catalytic amounts of ArfGAP1 with Arf1‐GTP induced a smooth Arf1 gradient along the tube. This reflects that Arf1 molecules leaving the tube on GTP hydrolysis are replaced by new Arf1‐GTP molecules diffusing from the giant vesicle. The characteristic length of the gradient is two orders of magnitude larger than a COPI bud, suggesting that Arf1‐GTP diffusion can readily compensate for the localized loss of Arf1 during budding and contribute to the stability of the coat until fission.  相似文献   

3.
From yeast to mammals, two types of GTPase-activating proteins, ArfGAP1 and ArfGAP2/3, control guanosine triphosphate (GTP) hydrolysis on the small G protein ADP-ribosylation factor (Arf) 1 at the Golgi apparatus. Although functionally interchangeable, they display little similarity outside the catalytic GTPase-activating protein (GAP) domain, suggesting differential regulation. ArfGAP1 is controlled by membrane curvature through its amphipathic lipid packing sensor motifs, whereas Golgi targeting of ArfGAP2 depends on coatomer, the building block of the COPI coat. Using a reporter fusion approach and in vitro assays, we identified several functional elements in ArfGAP2/3. We show that the Golgi localization of ArfGAP3 depends on both a central basic stretch and a carboxy-amphipathic motif. The basic stretch interacts directly with coatomer, which we found essential for the catalytic activity of ArfGAP3 on Arf1-GTP, whereas the carboxy-amphipathic motif interacts directly with lipid membranes but has minor role in the regulation of ArfGAP3 activity. Our findings indicate that the two types of ArfGAP proteins that reside at the Golgi use a different combination of protein–protein and protein–lipid interactions to promote GTP hydrolysis in Arf1-GTP.  相似文献   

4.
The formation of coat protein complex I (COPI)–coated vesicles is regulated by the small guanosine triphosphatase (GTPase) adenosine diphosphate ribosylation factor 1 (Arf1), which in its GTP-bound form recruits coatomer to the Golgi membrane. Arf GTPase-activating protein (GAP) catalyzed GTP hydrolysis in Arf1 triggers uncoating and is required for uptake of cargo molecules into vesicles. Three mammalian ArfGAPs are involved in COPI vesicle trafficking; however, their individual functions remain obscure. ArfGAP1 binds to membranes depending on their curvature. In this study, we show that ArfGAP2 and ArfGAP3 do not bind directly to membranes but are recruited via interactions with coatomer. In the presence of coatomer, ArfGAP2 and ArfGAP3 activities are comparable with or even higher than ArfGAP1 activity. Although previously speculated, our results now demonstrate a function for coatomer in ArfGAP-catalyzed GTP hydrolysis by Arf1. We suggest that ArfGAP2 and ArfGAP3 are coat protein–dependent ArfGAPs, whereas ArfGAP1 has a more general function.  相似文献   

5.
Secretory protein trafficking relies on the COPI coat, which by assembling into a lattice on Golgi membranes concentrates cargo at specific sites and deforms the membranes at these sites into coated buds and carriers. The GTPase-activating protein (GAP) responsible for catalyzing Arf1 GTP hydrolysis is an important part of this system, but the mechanism whereby ArfGAP is recruited to the coat, its stability within the coat, and its role in maintenance of the coat are unclear. Here, we use FRAP to monitor the membrane turnover of GFP-tagged versions of ArfGAP1, Arf1, and coatomer in living cells. ArfGAP1 underwent fast cytosol/Golgi exchange with approximately 40% of the exchange dependent on engagement of ArfGAP1 with coatomer and Arf1, and affected by secretory cargo load. Permanent activation of Arf1 resulted in ArfGAP1 being trapped on the Golgi in a coatomer-dependent manner. These data suggest that ArfGAP1, coatomer and Arf1 play interdependent roles in the assembly-disassembly cycle of the COPI coat in vivo.  相似文献   

6.
Arfaptin2 contains a Bin/Amphiphysin/Rvs (BAR) domain and directly interacts with proteins of the Arf/Arl family in their active GTP-bound state. It has been proposed that BAR domains are able to sense membrane curvature and to induce membrane tubulation. We report here that active Arf1 is required for the recruitment of Arfaptin2 to artificial liposomes mimicking the Golgi apparatus lipid composition. The Arf1-dependent recruitment of Arfaptin2 increases with membrane curvature, while the recruitment of Arf1 itself is not sensitive to curvature. At high protein concentrations, the binding of Arfaptin2 induces membrane tubulation. Finally, membrane-bound Arfaptin2 is released from the liposome when ArfGAP1 catalyzes the hydrolysis of GTP to GDP in Arf1. These results show that both Arf1 activation and high membrane curvature are required for efficient recruitment of Arfaptin2 to membranes.  相似文献   

7.
ADP-ribosylation factor (Arf) and related small GTPases play crucial roles in membrane traffic within the exo- and endocytic pathways. Arf proteins in their GTP-bound state are associated with curved membrane buds and tubules, frequently together with effector coat proteins to which they bind. Here we report that Arf1 is found on membrane tubules originating from the Golgi complex where it colocalizes with COPI and GGA1 vesicle coat proteins. Arf1 also induces tubulation of liposomes in vitro. Mutations within the amino-terminal amphipathic helix (NTH) of Arf1 affect the number of Arf1-positive tubules in vivo and its property to tubulate liposomes. Moreover, hydrophilic substitutions within the hydrophobic part of its NTH impair Arf1-catalyzed budding of COPI vesicles in vitro. Our data indicate that GTP-controlled local induction of high curvature membranes is an important property of Arf1 that might be shared by a subgroup of Arf/Arl family GTPases.  相似文献   

8.
Golgi-derived coat protein I (COPI) vesicles mediate transport in the early secretory pathway. The minimal machinery required for COPI vesicle formation from Golgi membranes in vitro consists of (i) the hetero-heptameric protein complex coatomer, (ii) the small guanosine triphosphatase ADP-ribosylation factor 1 (Arf1) and (iii) transmembrane proteins that function as coat receptors, such as p24 proteins. Various and opposing reports exist on a role of ArfGAP1 in COPI vesicle biogenesis. In this study, we show that, in contrast to data in the literature, ArfGAP1 is not required for COPI vesicle formation. To investigate roles of ArfGAP1 in vesicle formation, we titrated the enzyme into a defined reconstitution assay to form and purify COPI vesicles. We find that catalytic amounts of Arf1GAP1 significantly reduce the yield of purified COPI vesicles and that Arf1 rather than ArfGAP1 constitutes a stoichiometric component of the COPI coat. Combining the controversial reports with the results presented in this study, we suggest a novel role for ArfGAP1 in membrane trafficking.  相似文献   

9.
Arf family GTP-binding proteins function in the regulation of membrane-trafficking events and in the maintenance of organelle structure. They act at membrane surfaces to modify lipid composition and to recruit coat proteins for the generation of transport vesicles. Arfs associate with membranes through insertion of an N-terminal myristoyl moiety in conjunction with an adjacent amphipathic alpha-helix, which embeds in the lipid bilayer when Arf1 is GTP-bound. In this issue of the Biochemical Journal, Lundmark et al. report that myristoylated Arfs in the presence of GTP bind to and cause tubulation of liposomes, and that GTP exchange on to Arfs is more efficient in the presence of liposomes of smaller diameter (increased curvature). These findings suggest that Arf protein activation and membrane interaction may initiate membrane curvature that will be enhanced further by coat proteins during vesicle formation.  相似文献   

10.
The Arf1 GTPase-activating protein ArfGAP1 regulates vesicular traffic through the COPI system. This protein consists of N-terminal catalytic domain, lipid packing sensors (the ALPS motifs) in the central region, and a carboxy part of unknown function. The carboxy part contains several diaromatic sequences that are reminiscent of motifs known to interact with clathrin adaptors. In pull-down experiments using GST-fused peptides from rat ArfGAP1, a peptide containing a 329WETF sequence interacted strongly with clathrin adaptors AP1 and AP2, whereas a major coatomer-binding determinant was identified within the extreme carboxy terminal peptide (405AADEGWDNQNW). Mutagenesis and peptide competition experiments revealed that this determinant is required for coatomer binding to full-length ArfGAP1, and that interaction is mediated through the δ-subunit of the coatomer adaptor-like subcomplex. Evidence for a role of the carboxy motif in ArfGAP1-coatomer interaction in vivo is provided by means of a reporter fusion assay. Our findings point to mechanistic differences between ArfGAP1 and the other ArfGAPs known to function in the COPI system.  相似文献   

11.
COPI vesicles serve for transport of proteins and membrane lipids in the early secretory pathway. Their coat protein (coatomer) is a heptameric complex that is recruited to the Golgi by the small GTPase Arf1. Although recruited en bloc, coatomer can be viewed as a stable assembly of an adaptin‐like tetrameric subcomplex (CM4) and a trimeric ‘cage’ subcomplex (CM3). Following recruitment, coatomer stimulates ArfGAP‐dependent GTP hydrolysis on Arf1. Here, we employed recombinant coatomer subcomplexes to study the role of coatomer components in the regulation of ArfGAP2, an ArfGAP whose activity is strictly coatomer‐dependent. Within CM4, we define a novel hydrophobic pocket for ArfGAP2 interaction on the appendage domain of γ1‐COP. The CM4 subcomplex (but not CM3) is recruited to membranes through Arf1 and can subsequently recruit ArfGAP2. Neither CM3 nor CM4 in itself is effective in stimulating ArfGAP2 activity, but stimulation is regained when both subcomplexes are present. Our findings point to a distinct role of each of the two coatomer subcomplexes in the regulation of ArfGAP2‐dependent GTP hydrolysis on Arf1, where the CM4 subcomplex functions in GAP recruitment, while, similarly to the COPII system, the cage‐like CM3 subcomplex stimulates the catalytic reaction.  相似文献   

12.
The Golgi-associated protein ArfGAP1 has an unusual membrane-adsorbing amphipathic alpha-helix: its polar face is weakly charged, containing mainly serine and threonine residues. We show that this feature explains the specificity of ArfGAP1 for curved versus flat lipid membranes. We built an algorithm to identify other potential amphipathic alpha-helices rich in serine and threonine residues in protein databases. Among the identified sequences, we show that three act as membrane curvature sensors. In the golgin GMAP-210, the sensor may serve to trap small vesicles at the end of a long coiled coil. In Osh4p/Kes1p, which transports sterol between membranes, the sensor controls access to the sterol-binding pocket. In the nucleoporin Nup133, the sensor corresponds to an exposed loop of a beta-propeller structure. Ser/Thr-rich amphipathic helices thus define a general motif used by proteins of various functions for sensing membrane curvature.  相似文献   

13.
The Arf1-directed GTPase-activating protein ArfGAP1 is a Golgi-localized protein that controls the dynamics of the COPI coat of carriers that mediate transport in the endoplasmic reticulum-Golgi shuttle. Previously the interaction of ArfGAP1 with the Golgi was allocated to a portion of the non-catalytic, carboxyl part of the protein, but the mechanism of this interaction has not been established. In this study we identify a short stretch in the non-catalytic part of ArfGAP1 (residues 204-214) in which several hydrophobic residues contribute to Golgi localization. Even single alanine replacement of two of these residues (Leu-207 and Trp-211) strongly diminished Golgi localization. Mutations in the hydrophobic residues also diminished the in vitro activity of ArfGAP1 on Arf1 bound to Golgi membranes. The stretch containing the hydrophobic residues was recently shown to mediate the binding of ArfGAP1 to loosely packed lipids of highly curved liposomes (Bigay, J., Casella, J. F., Drin, G., Mesmin, B., and Antonny, B. (2005) EMBO J. 24, 2244-2253). Whereas short fragments containing the hydrophobic stretch were not Golgi-localized, a proximal 10-residue in-frame insertion that is present in new ArfGAP1 isoforms that we identified in brain and heart tissues could confer Golgi localization on these fragments. This localization was abrogated by alanine replacement of residues Phe-240 or Trp-241 of the insertion sequence but not by their replacement with leucines. Our findings indicate that ArfGAP1 interacts with the Golgi through multiple hydrophobic motifs and that alternative modes of interaction may exist in tissue-specific ArfGAP1 isoforms.  相似文献   

14.
Membrane curvature is involved in numerous biological pathways like vesicle trafficking, endocytosis or nuclear pore complex assembly. In addition to its topological role, membrane curvature is sensed by specific proteins, enabling the coordination of biological processes in space and time. Amongst membrane curvature sensors are the ALPS (Amphipathic Lipid Packing Sensors). ALPS motifs are short peptides with peculiar amphipathic properties. They are found in proteins targeted to distinct curved membranes, mostly in the early secretory pathway. For instance, the ALPS motif of the golgin GMAP210 binds trafficking vesicles, while the ALPS motif of Nup133 targets nuclear pores. It is not clear if, besides curvature sensitivity, ALPS motifs also provide target specificity, or if other domains in the surrounding protein backbone are involved. To elucidate this aspect, we studied the subcellular localization of ALPS motifs outside their natural protein context. The ALPS motifs of GMAP210 or Nup133 were grafted on artificial fluorescent probes. Importantly, ALPS motifs are held in different positions and these contrasting architectures were mimicked by the fluorescent probes. The resulting chimeras recapitulated the original proteins localization, indicating that ALPS motifs are sufficient to specifically localize proteins. Modulating the electrostatic or hydrophobic content of Nup133 ALPS motif modified its avidity for cellular membranes but did not change its organelle targeting properties. In contrast, the structure of the backbone surrounding the helix strongly influenced targeting. In particular, introducing an artificial coiled-coil between ALPS and the fluorescent protein increased membrane curvature sensitivity. This coiled-coil domain also provided membrane curvature sensitivity to the amphipathic helix of Sar1. The degree of curvature sensitivity within the coiled-coil context remains correlated to the natural curvature sensitivity of the helices. This suggests that the chemistry of ALPS motifs is a key parameter for membrane curvature sensitivity, which can be further modulated by the surrounding protein backbone.  相似文献   

15.
The ArfGAPs are a family of proteins containing an ArfGAP catalytic domain that induces the hydrolysis of GTP bound to the small guanine nucleotide binding-protein ADP-ribosylation factor (Arf). Functional models for Arfs, which are regulators of membrane traffic, are based on the idea that guanine nucleotide-binding proteins function as switches: Arf with GTP bound is active and binds to effector proteins; the conversion of GTP to GDP inactivates Arf. The cellular activities of ArfGAPs have been examined primarily as regulatory proteins that inactivate Arf; however, Arf function in membrane traffic does not strictly adhere to the concept of a simple switch, adding complexity to models explaining the role of ArfGAPs. Here, we review the literature addressing the function Arf and ArfGAP1 in COPI mediated transport, focusing on two critical and integrated functions of membrane traffic, cargo sorting and vesicle coat polymerization. We briefly discuss other ArfGAPs that may have similar function in Arf-dependent membrane traffic outside the ER-Golgi.  相似文献   

16.
The interaction of the Arf1-directed GTPase-activating protein ArfGAP1 with the Golgi apparatus depends on motifs in its noncatalytic part that are unstructured in solution but are capable of folding into amphipathic helices in vitro upon interaction with poorly packed lipids. In previous studies a few hydrophobic residues that are critical for lipid binding and Golgi localization were identified, but the precise topology of the amphipathic motifs has not been determined. Here we present a detailed analysis of the Golgi targeting and in vitro folding features of the region encompassing the amphipathic motifs (residues 199-294). Point mutation analysis revealed that most hydrophobic residues within this region contribute to Golgi localization, whereas analysis by proline replacements and alanine insertions revealed that Golgi interaction depends on folding into two amphipathic helices with a short interrupting sequence. Analysis of splice isoforms containing 10-residue in-frame insertions within their first amphipathic motifs revealed that the insertion causes a truncation of the amphipathic helix that does not extend beyond the insertion sequence. Lastly, a lysine replacement mutant recently reported to bind to negatively charged liposomes in a curvature-independent manner showed normal cellular distribution, suggesting that Golgi targeting of Arf-GAP1 may involve factors other than sensing lipid packing.  相似文献   

17.
The subcellular localization of Arf family proteins is generally thought to be determined by their corresponding guanine nucleotide exchange factors. By promoting GTP binding, guanine nucleotide exchange factors induce conformational changes of Arf proteins exposing their N-terminal amphipathic helices, which then insert into the membranes to stabilize the membrane association process. Here, we found that the N-terminal amphipathic motifs of the Golgi-localized Arf family protein, Arfrp1, and the endosome- and plasma membrane–localized Arf family protein, Arl14, play critical roles in spatial determination. Exchanging the amphipathic helix motifs between these two Arf proteins causes the switch of their localizations. Moreover, the amphipathic helices of Arfrp1 and Arl14 are sufficient for cytosolic proteins to be localized into a specific cellular compartment. The spatial determination mediated by the Arfrp1 helix requires its binding partner Sys1. In addition, the residues that are required for the acetylation of the Arfrp1 helix and the myristoylation of the Arl14 helix are important for the specific subcellular localization. Interestingly, Arfrp1 and Arl14 are recruited to their specific cellular compartments independent of GTP binding. Our results demonstrate that the amphipathic motifs of Arfrp1 and Arl14 are sufficient for determining specific subcellular localizations in a GTP-independent manner, suggesting that the membrane association and activation of some Arf proteins are uncoupled.  相似文献   

18.
Lee MC  Orci L  Hamamoto S  Futai E  Ravazzola M  Schekman R 《Cell》2005,122(4):605-617
Secretory proteins traffic from the ER to the Golgi via COPII-coated transport vesicles. The five core COPII proteins (Sar1p, Sec23/24p, and Sec13/31p) act in concert to capture cargo proteins and sculpt the ER membrane into vesicles of defined geometry. The molecular details of how the coat proteins deform the lipid bilayer into vesicles are not known. Here we show that the small GTPase Sar1p directly initiates membrane curvature during vesicle biogenesis. Upon GTP binding by Sar1p, membrane insertion of the N-terminal amphipathic alpha helix deforms synthetic liposomes into narrow tubules. Replacement of bulky hydrophobic residues in the alpha helix with alanine yields Sar1p mutants that are unable to generate highly curved membranes and are defective in vesicle formation from native ER membranes despite normal recruitment of coat and cargo proteins. Thus, the initiation of vesicle budding by Sar1p couples the generation of membrane curvature with coat-protein assembly and cargo capture.  相似文献   

19.
Arf (ADP‐ribosylation factor) family small G proteins are crucial regulators of intracellular transport. The active GTP‐bound form of Arf interacts with a set of proteins—effectors—which mediate the downstream signalling events of Arf activation. A well‐studied class of Arf1 effectors comprises the coat complexes, such as the cis‐Golgi‐localized COPI (coat protein complex I) coat, and trans‐Golgi network‐endosomal clathrin coats. At least five different coats require Arf1‐GTP to localize to organelle membranes. How a single Arf protein recruits different coat complexes to distinct membrane sites raises the question of how specificity is achieved. Here, we propose a molecular mechanism of this specificity for the COPI coat by showing a direct and specific interaction between a COPI subunit and a cis‐Golgi localized subfamily of Arf guanine nucleotide exchange factors (GEFs) that takes place independently of Arf1 activation. In this way, a specific output on Arf1 activation can be programmed before the exchange reaction by the GEF itself.  相似文献   

20.
Membrane curvature sensors have diverse structures and chemistries, suggesting that they might have the intrinsic capacity to discriminate between different types of vesicles in cells. In this paper, we compare the in vitro and in vivo membrane-binding properties of two curvature sensors that form very different amphipathic helices: the amphipathic lipid-packing sensor (ALPS) motif of a Golgi vesicle tether and the synaptic vesicle protein α-synuclein, a causative agent of Parkinson's disease. We demonstrate the mechanism by which α-synuclein senses membrane curvature. Unlike ALPS motifs, α-synuclein has a poorly developed hydrophobic face, and this feature explains its dual sensitivity to negatively charged lipids and to membrane curvature. When expressed in yeast cells, these two curvature sensors were targeted to different classes of vesicles, those of the early secretory pathway for ALPS motifs and to negatively charged endocytic/post-Golgi vesicles in the case of α-synuclein. Through structures with complementary chemistries, α-synuclein and ALPS motifs target distinct vesicles in cells by direct interaction with different lipid environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号