首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To investigate the influence of skeletal muscle fiber composition on the mechanical performance of human skeletal muscle under dynamic conditions, 34 physical education students with differing muscle fiber composition (M. vastus lateralis) were used as subjects to perform maximal vertical jumps on the force-platform. Two kinds of jumps were performed: one from a static starting position (SJ), the other with a preliminary counter-movement (CMJ). The calculated mechanical parameters included height of rise of center of gravity (h), average force (F), net impulse (NI) and average mechanical power (W). It was observed that the percentage of fast twitch fibers was significantly related (p less than 0.05--0.01) to these variables in SJ condition and also to h and NI of the positive work phase in CMJ. It is concluded that skeletal muscle fiber composition also determines performance in a multijoint movement. The result is explainable through the differences in the mechanical characteristics of the motor units and their respective muscle fibers.  相似文献   

2.
3.
Standardized measurements of dynamic strength of the kneee extensor muscles were performed in 25 healthy male subjects (17-37 yr) by means of isokinetic contractions, i.e., knee extensions with constant angular velocities. Overall variation between double determinations of maximal torque throughout the 90 degrees arc of motion (0 degrees = fully extended leg) averaged 10% for the different constant velocities chosen. At any given angle of the knee the torque produced was higher for isometric than for dynamic contractions. Dynamic torque decreased gradually with increased speed of shortening. Peak dynamic torque was reached at knee angles in the range: 55-66 degrees, with a displacement toward smaller knee angles with higher angular velocities. Correlations were demonstrated between peak torque produced at the highest speed of muscle shortening and percent as well as relative area of fast twitch fibers in the contracting muscle. In addition muscles with a high percentage of fast twitch fibers had the highest maximal contraction speeds. These observations on intact human skeletal muscle are consistent with earlier findings in animal skeletal muscle preparations.  相似文献   

4.
5.
A role for neuromuscular activity in the maintenance of skeletal muscle properties has been well established. However, the role of activity-independent factors is more difficult to evaluate. We have used the spinal cord isolation model to study the effects of chronic inactivity on the mechanical properties of the hindlimb musculature in cats and rats. This model maintains the connectivity between the motoneurons and the muscle fibers they innervate, but the muscle unit is electrically "silent". Consequently, the measured muscle properties are activity-independent and thus the advantage of using this model is that it provides a baseline level (zero activity) from which regulatory factors that affect muscle cell homeostasis can be defined. In the present paper, we will present a brief review of our findings using the spinal cord isolation model related to muscle mechanical and fiber type properties.  相似文献   

6.
  • 1.1. The prothoracic and mesothoracic extensor tibiae muscles of the locust respond to activity in the “slow” extensor tibiae motoneuron (SETi) with very slow contractions and a low fusion frequency, while their phasic contractions are more rapid than those of the metathoracic extensor tibiae muscle.
  • 2.2. SETi activity can induce a memory or “catch” effect in which a high tension is maintained by a lower frequency than is needed to develop it. “Catch” tension is reduced by phasic contractions of the muscle or by activity in the inhibitory axon.
  • 3.3. A bundle of tonic fibres isolated from the metathoracic extensor tibiae muscle exhibits co-ordinated rhythmic contractions similar to those recorded from intact muscles.
  • 4.4. Depolarizations of the tonic fibres coincide with the contractions and are sometimes accompanied by bursts of EPSPs and IPSPs.
  • 5.5. The tonic fibres are electrically-coupled.
  相似文献   

7.
8.
In small mammals, muscles with shorter twitch contraction times and a predominance of fast-twitch, type II fibers exhibit greater posttetanic twitch force potentiation than muscles with longer twitch contraction times and a predominance of slow-twitch, type I fibers. In humans, the correlation between potentiation and fiber-type distribution has not been found consistently. In the present study, postactivation potentiation (PAP) was induced in the knee extensors of 20 young men by a 10-s maximum voluntary isometric contraction (MVC). Maximal twitch contractions of the knee extensors were evoked before and after the MVC. A negative correlation (r = -0. 73, P < 0.001) was found between PAP and pre-MVC twitch time to peak torque (TPT). The four men with the highest (HPAP, 104 +/- 11%) and lowest (LPAP, 43 +/- 7%) PAP values (P < 0.0001) underwent needle biopsies of vastus lateralis. HPAP had a greater percentage of type II fibers (72 +/- 9 vs. 39 +/- 7%, P < 0.001) and shorter pre-MVC twitch TPT (61 +/- 12 vs. 86 +/- 7 ms, P < 0.05) than LPAP. These data indicate that, similar to the muscles of small mammals, human muscles with shorter twitch contraction times and a higher percentage of type II fibers exhibit greater PAP.  相似文献   

9.
10.
Four selected leg muscles (gastrocnemius, soleus, vastus lateralis and intermedius) from thirty-two humans were autopsied within 25 hr of death and examined histochemically.The results of histochemical myofibrillar adenosine triphosphatase activity demonstrated that the soleus and vastus intermedius muscles have a higher proportion of slow twitch fibres (70%, 47%) than their synergists, gastrocnemius and vastus lateralis, respectively.The gastrocnemius contains about 50% slow twitch fibres and the vastus lateralis about 32%. Similar proportions of slow and fast twitch fibres have been reported for these hindlimb muscles in other mammals. Human muscles, however, differ from other mammalian muscles in that the proportion of slow and fast twitch fibres were similar in the superficial and deep regions of the muscles examined. Fast twitch oxidative glycolytic fibres in sedentary humans were observed less frequently, and they are less prominent in terms ofoxidative enzymatic activity when compared to similar fibres of several laboratory mammals studied previously.  相似文献   

11.
To understand better how the central nervous system (CNS) distributes a joint moment among muscles, moment distribution among the three heads of the triceps and the anconeus muscles during isometric elbow extension was quantified in vivo and noninvasively. Electrical stimulation was used to activate an individual muscle selectively at various contraction levels, and the relationship between the peak M-wave amplitude and peak elbow extension moment was established across various contraction levels for each muscle. The relationship was then used to calibrate the corresponding EMG signal and determine moment distribution among the muscles during voluntary isometric elbow extension. Results showed that moment distribution among muscles was not proportional to the muscles' physiological cross-sectional areas (PCSA) and the CNS favored uniarticular muscles for the isometric task performed: the uniarticular lateral and medial heads of the triceps were dominant (contributing approximately 70-90% of the total elbow extension moment) and the anconeus contributed significantly, especially at the lower levels of elbow extension moment (up to approximately 15% of the extension moment). In contrast, the two-joint long head of the triceps contributed significantly less than the uniarticular heads of the triceps. While the absolute contributions of all the muscles increased with the total elbow extension moment, the relative contributions of the muscles may increase or decrease with the elbow extension moment. Cross-validation using fresh data (not used in determining the moment distribution) showed close match between the measured and predicted elbow extension moment except for trials in which fatigue became significant.  相似文献   

12.
Summary We used the histochemical stain for ATPase to compare the fiber-type composition of rat internal and external intercostal muscles from thoracic (T) segments 2–5, 8, and 11. At each level, type II fibers were more numerous than type I fibers, type II B fibers were more numerous than II A fibers, and type I fibers were more numerous in external than in internal intercostals. However, fiber type composition varied from segment to segment. For example, the proportion of type II A fibers increased in a rostrocaudal gradient in internal but not external intercostals, and type I fibers were more prevalent at rostral and caudal than at intermediate levels in both internal and external intercostals. These results provide a basis for interpreting previous physiological and molecular studies which have compared intercostal muscles from different segmental levels.  相似文献   

13.
Isometric twitch properties have been compared in two pairs of opposing human limb muscles; these were the brachial biceps and triceps, and the anterior tibial and plantarflexor muscles. All four muscles were examined in each of 24 healthy subjects (16 men and 8 women). The brachial triceps had the shortest contraction and half-relaxation times and the greatest twitch potentiation, while the plantarflexors had the most prolonged twitches and least potentiation; the anterior tibial and brachial biceps muscles had similar characteristics. Susceptibility to fatigue was less in the plantarflexors than in the other three muscles. When muscles were assessed without reference to their anatomical sites, a significant relationship was noted between contraction time and potentiation, but not between either of these features and fatiguability. There was no evidence that muscles were uniformly 'faster' or 'slower' in some subjects than in others.  相似文献   

14.
The fiber architecture of adult human sartorius and gracilis muscles was examined using a combination of fiber microdissections and histological methods. Intact fibers were dissected from fascicles of muscle strips that were digested in nitric acid. All of these fibers terminate intrafascicularly by tapering to a fine strand at one or both ends. They measure 4–20 cm after correction for shrinkage. Systematic dissections of 1 cm long blocks sampled at intervals along the muscle length suggest that tapered fiber endings occur at all locations along the muscle but are most common centrally; here they accounted for up to 14% of dissected fibers in each block. Transverse sections of muscle confirm that fiber profiles with small diameters occur at all levels of the muscle but are especially common in sections more than 5 cm from its origin or insertion. The architectural arrangement demonstrated here suggests that long human muscles, like muscles in other species, are composed of relatively short, in-series fibers. This has many implications for the neural activation and force-developing behavior of these muscles that must be considered when paralyzed muscles are reanimated using electrical stimulation. Further, it may predispose long muscles to certain types of neuromuscular damage and dysfunction. © 1993 Wiley-Liss, Inc.  相似文献   

15.
16.
Variability of fiber type distributions within human muscles   总被引:4,自引:0,他引:4  
  相似文献   

17.
The purpose of this experiment was to examine the effects of concurrent endurance and explosive strength training on electromyography (EMG) and force production of leg extensors, sport-specific rapid force production, aerobic capacity, and work economy in cross-country skiers. Nineteen male cross-country skiers were assigned to an experimental group (E, n = 8) or a control group (C, n = 11). The E group trained for 8 weeks with the same total training volume as C, but 27% of endurance training in E was replaced by explosive strength training. The skiers were measured at pre- and post training for concentric and isometric force-time parameters of leg extensors and EMG activity from the vastus lateralis (VL) and medialis (VM) muscles. Sport-specific rapid force production was measured by performing a 30-m double poling test with the maximal velocity (V(30DP)) and sport-specific endurance economy by constant velocity 2-km double poling test (CVDP) and performance (V(2K)) by 2-km maximal double poling test with roller skis on an indoor track. Maximal oxygen uptake (Vo(2)max) was determined during the maximal treadmill walking test with the poles. The early absolute forces (0-100 ms) in the force-time curve in isometric action increased in E by 18 +/- 22% (p < 0.05), with concomitant increases in the average integrated EMG (IEMG) (0-100 ms) of VL by 21 +/- 21% (p < 0.05). These individual changes in the average IEMG of VL correlated with the changes in early force (r = 0.86, p < 0.01) in E. V(30DP) increased in E (1.4 +/- 1.6%) (p < 0.05) but not in C. The V(2K) increased in C by 2.9 +/- 2.8% (p < 0.01) but not significantly in E (5.5 +/- 5.8%, p < 0.1). However, the steady-state oxygen consumption in CVDP decreased in E by 7 +/- 6% (p < 0.05). No significant changes occurred in Vo(2)max either in E or in C. The present concurrent explosive strength and endurance training in endurance athletes produced improvements in explosive force associated with increased rapid activation of trained leg muscles. The training also led to more economical sport-specific performance. The improvements in neuromuscular characteristics and economy were obtained without a decrease in maximal aerobic capacity, although endurance training was reduced by about 20%.  相似文献   

18.
We used the histochemical stain for ATPase to compare the fiber-type composition of rat internal and external intercostal muscles from thoracic (T) segments 2-5, 8, and 11. At each level, type II fibers were more numerous than type I fibers, type II B fibers were more numerous than II A fibers, and type I fibers were more numerous in external than in internal intercostals. However, fiber type composition varied from segment to segment. For example, the proportion of type II A fibers increased in a rostrocaudal gradient in internal but not external intercostals, and type I fibers were more prevalent at rostral and caudal than at intermediate levels in both internal and external intercostals. These results provide a basis for interpreting previous physiological and molecular studies which have compared intercostal muscles from different segmental levels.  相似文献   

19.
A set-up for percutaneous electrical stimulation of the forearm extensor muscles and measurement of wrist extension force is described. The frequency-force relationship and pulse duration-force relationship are described together with an experimental protocol showing that brief electrical test stimulations do not produce fatigue. In another set of experiments carried out a few weeks later, the subjects performed handgrip contractions: protocol A at 25% of maximal voluntary contraction (MVC) continuously until exhaustion, protocol B at 25% MVC intermittent (contraction + relaxation = 10 + 2 s) until exhaustion, and protocol C at 25% MVC intermittent until half the time to exhaustion. In all experiments, brief electrical stimulations were used to test the degree of fatigue during and up to 24 h after the experiments. There were marked changes in the force during stimulation at 20 and 100 Hz and these changes did not correlate with the increase in intramuscular temperature. Low frequency fatigue persisted for at least 24 h after protocol A and 1 h after protocols B and C. The significance of this is discussed and it is suggested that low frequency fatigue could be used as a sensitive indicator of muscle dysfunction after low and medium intensity exercise.  相似文献   

20.
We developed a powered ankle-foot orthosis that uses artificial pneumatic muscles to produce active plantar flexor torque. The purpose of this study was to quantify the mechanical performance of the orthosis during human walking. Three subjects walked at a range of speeds wearing ankle-foot orthoses with either one or two artificial muscles working in parallel. The orthosis produced similar total peak plantar flexor torque and network across speeds independent of the number of muscles used. The orthosis generated approximately 57% of the peak ankle plantar flexor torque during stance and performed approximately 70% of the positive plantar flexor work done during normal walking. Artificial muscle bandwidth and force-length properties were the two primary factors limiting torque production. The lack of peak force and work differences between single and double muscle conditions can be explained by force-length properties. Subjects altered their ankle kinematics between conditions resulting in changes in artificial muscle length. In the double muscle condition greater plantar flexion yielded shorter artificial muscles lengths and decreased muscle forces. This finding emphasizes the importance of human testing in the design and development of robotic exoskeleton devices for assisting human movement. The results of this study outline the mechanical performance limitations of an ankle-foot orthosis powered by artificial pneumatic muscles. This orthosis could be valuable for gait rehabilitation and for studies investigating neuromechanical control of human walking.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号