首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Theory predicts that dispersal throughout metapopulations has a variety of consequences for the abundance and distribution of species. Immigration is predicted to increase abundance and habitat patch occupancy, but gene flow can have both positive and negative demographic consequences. Here, we address the eco‐evolutionary effects of dispersal in a wild metapopulation of the stick insect Timema cristinae, which exhibits variable degrees of local adaptation throughout a heterogeneous habitat patch network of two host‐plant species. To disentangle the ecological and evolutionary contributions of dispersal to habitat patch occupancy and abundance, we contrasted the effects of connectivity to populations inhabiting conspecific host plants and those inhabiting the alternate host plant. Both types of connectivity should increase patch occupancy and abundance through increased immigration and sharing of beneficial alleles through gene flow. However, connectivity to populations inhabiting the alternate host‐plant species may uniquely cause maladaptive gene flow that counters the positive demographic effects of immigration. Supporting these predictions, we find the relationship between patch occupancy and alternate‐host connectivity to be significantly smaller in slope than the relationship between patch occupancy and conspecific‐host connectivity. Our findings illustrate the ecological and evolutionary roles of dispersal in driving the distribution and abundance of species.  相似文献   

2.
While there is agreement that both habitat quality and habitat network characteristics (such as patch size and isolation) contribute to the occupancy of patches by any given species, the relative importance of these factors is under debate. This issue is of fundamental ecological importance, and moreover of special concern for conservation biologists aiming at preserving endangered species. Against this background we investigated patch occupancy in the violet copper Lycaena helle, one of the rarest butterfly species in Central Europe, in the Westerwald area (Rhineland-Palatinate, Western Germany). Occupied (n = 102) differed from vacant (n = 128) patches in altitude, size, connectivity, availability of wind shelter, in the abundance of the larval host-plant, in the abundance of a grass species indicating favorable habitat conditions and in the abundance of nitrophilous plants. Overall, patch occupancy was primarily determined by patch size, connectivity and the abundance of the larval host plant, while all other parameters of habitat quality were of subordinate importance. Therefore, our findings suggest that even for extremely sedentary species such as L. helle habitat networks are decisive and—next to the preservation of habitat quality—need to be an integral part of any conservation management for this species.  相似文献   

3.
Understanding the environmental factors that affect the distribution and abundance of rare and threatened species can help identify priority sites for conservation action such as habitat management. The moth Cucullia lychnitis is identified in UK legislation as a priority species for conservation. Its conspicuous larvae feed on a patchily distributed host plant Verbascum nigrum, but are entirely absent from some host plant patches within the species’ range. Environmental variability among patches was investigated to understand factors affecting (i) patch occupancy by C. lychnitis and (ii) abundance of C. lychnitis, where present. Occupancy of individual V. nigrum plants within occupied patches was also investigated. The likelihood of patch occupancy increased with patch size, and decreased with patch isolation. Abundance of C. lychnitis was negatively correlated with patch isolation and with abundance of the weevil Cionus nigritarsis, which exploits the same host plant and may be a competitor. Within occupied patches, larvae of C. lychnitis were significantly more likely to be found on taller plants with more flower spikes; such plants are typical of established rather than newly-created patches. These results may help to guide efforts to conserve C. lychnitis, highlighting the importance of habitat connectivity and indicating potential management actions to promote features positively associated with larval incidence and abundance.  相似文献   

4.
Because spatial connectivity is critical to dispersal success and persistence of species in highly fragmented landscapes, the way that we envision and measure connectivity is consequential for biodiversity conservation. Connectivity metrics used for predictive modeling of spatial turnover and patch occupancy for metapopulations, such as with Incidence Function Models (IFM), incorporate distances to and sizes of possible source populations. Here, our focus is on whether habitat quality of source patches also is considered in these connectivity metrics. We propose that effective areas (weighted by habitat quality) of source patches should be better surrogates for population size and dispersal potential compared to unadjusted patch areas. Our review of a representative sample of the literature revealed that only 12.5% of studies incorporated habitat quality of source patches into IFM-type connectivity metrics. Quality of source patches generally was not taken into account in studies even if habitat quality of focal patches was included in analyses. We provide an empirical example for a metapopulation of a rare wetland species, the round-tailed muskrat (Neofiber alleni), demonstrating that a connectivity metric based on effective areas of source patches better predicts patch colonization and occupancy than a metric that used simple patch areas. The ongoing integration of landscape ecology and metapopulation dynamics could be hastened by incorporating habitat quality of source patches into spatial connectivity metrics applied to species conservation in fragmented landscapes.  相似文献   

5.
Fragmentation of wildlife habitat by road development is a major threat to biodiversity. Hence, conservation and enhancement of habitat connectivity in roaded landscapes are crucial for effectively maintaining long-term persistence of ecological processes, such as gene flow and migration. Using multivariate statistical techniques combined with graph theoretical methods, we investigated the influence of road-crossing habitat connectivity and road-related features on roadkill abundance of forest mammals in protected areas of South Korea. Because species have different dispersal abilities and thus connectivity would differ between them, we explored three different groups of road-killed mammals, categorized as small, intermediate, and large ones. We found that in all three mammal groups, roadkills are increased on roads that intersect high-connectivity routes. Furthermore, the effect of habitat connectivity on roadkill abundance was scale-dependent. The roadkill abundances of small, intermediate, and large mammals were related with connectivity measured at scales ranging between 100 and 300 m, between 5 and 7 km, and between 10 and 25 km, respectively. Our finding with regard to scale-dependency highlights the importance of maintaining movement and connectivity across roads at multiple scales based on the dispersal potential of different species when planning conservation strategies for forest mammalian roadkill mitigation.  相似文献   

6.
Species distribution patterns have been explained by Hutchinson's niche theory, metapopulation theory and source-sink theory. Empirical verification of this framework, however, remains surprisingly scant. In this paper, we test the hypothesis that landscape characteristics (patch size and connectivity), aerial dispersal ability and niche breadth interact in explaining distribution patterns of 29 spider species inhabiting fragmented grey dunes. Distribution patterns only depended on aerial dispersal potential, and the interaction between patch connectivity and area. Niche breadth, measured as the degree of habitat specialisation in the total coastal dune system, did not contribute to the observed distribution patterns. Additional variation in patch occupancy frequency was strongly species-dependent and was determined by different responses to the degree of patch connectivity for ballooning dispersal. Results from this study suggest that dispersal ability largely affects our perception of a species "fundamental niche", and that source-sink and metapopulation dynamics may have a major impact on the distribution of species. From a conservation point of view, specialised (and hence intrinsically rare) species can be predicted to become rarer if fragmentation increases and connectivity decreases. This study is, to our knowledge, one of the few linking species distribution (and not patch occupancy, species diversity or richness) to landscape ecological (patch connectivity and area) and auto-ecological (niche breadth, dispersal potential) features.  相似文献   

7.
Marginal populations are usually small, fragmented, and vulnerable to extinction, which makes them particularly interesting from a conservation point of view. They are also the starting point of range shifts that result from climate change, through a process involving colonization of newly suitable sites at the cool margin of species distributions. Hence, understanding the processes that drive demography and distribution at high‐latitude populations is essential to forecast the response of species to global changes. We investigated the relative importance of solar irradiance (as a proxy for microclimate), habitat quality, and connectivity on occupancy, abundance, and population stability at the northern range margin of the Oberthür's grizzled skipper butterfly Pyrgus armoricanus. For this purpose, butterfly abundance was surveyed in a habitat network consisting of 50 habitat patches over 12 years. We found that occupancy and abundance (average and variability) were mostly influenced by the density of host plants and the spatial isolation of patches, while solar irradiance and grazing frequency had only an effect on patch occupancy. Knowing that the distribution of host plants extends further north, we hypothesize that the actual variable limiting the northern distribution of P. armoricanus might be its dispersal capacity that prevents it from reaching more northern habitat patches. The persistence of this metapopulation in the face of global changes will thus be fundamentally linked to the maintenance of an efficient network of habitats.  相似文献   

8.
Population abundance estimates using predictive models are important for describing habitat use and responses to population-level impacts, evaluating conservation status of a species, and for establishing monitoring programs. The golden-cheeked warbler (Setophaga chrysoparia) is a neotropical migratory bird that was listed as federally endangered in 1990 because of threats related to loss and fragmentation of its woodland habitat. Since listing, abundance estimates for the species have mainly relied on localized population studies on public lands and qualitative-based methods. Our goal was to estimate breeding population size of male warblers using a predictive model based on metrics for patches of woodland habitat throughout the species' breeding range. We first conducted occupancy surveys to determine range-wide distribution. We then conducted standard point-count surveys on a subset of the initial sampling locations to estimate density of males. Mean observed patch-specific density was 0.23 males/ha (95% CI = 0.197–0.252, n = 301). We modeled the relationship between patch-specific density of males and woodland patch characteristics (size and landscape composition) and predicted patch occupancy. The probability of patch occupancy, derived from a model that used patch size and landscape composition as predictor variables while addressing effects of spatial relatedness, best predicted patch-specific density. We predicted patch-specific densities as a function of occupancy probability and estimated abundance of male warblers across 63,616 woodland patches accounting for 1.678 million ha of potential warbler habitat. Using a Monte Carlo simulation, our approach yielded a range-wide male warbler population estimate of 263,339 (95% CI: 223,927–302,620). Our results provide the first abundance estimate using habitat and count data from a sampling design focused on range-wide inference. Managers can use the resulting model as a tool to support conservation planning and guide recovery efforts. © 2012 The Wildlife Society.  相似文献   

9.
As large nature reserves occupy only a fraction of the earth’s land surface, conservation biologists are critically examining the role of private lands, habitat fragments, and plantations for conservation. This study in a biodiversity hotspot and endemic bird area, the Western Ghats mountains of India, examined the effects of habitat structure, floristics, and adjacent habitats on bird communities in shade-coffee and cardamom plantations and tropical rainforest fragments. Habitat and birds were sampled in 13 sites: six fragments (three relatively isolated and three with canopy connectivity with adjoining shade-coffee plantations and forests), six plantations differing in canopy tree species composition (five coffee and one cardamom), and one undisturbed primary rainforest control site in the Anamalai hills. Around 3300 detections of 6000 individual birds belonging to 106 species were obtained. The coffee plantations were poorer than rainforest in rainforest bird species, particularly endemic species, but the rustic cardamom plantation with diverse, native rainforest shade trees, had bird species richness and abundance comparable to primary rainforest. Plantations and fragments that adjoined habitats providing greater tree canopy connectivity supported more rainforest and fewer open-forest bird species and individuals than sites that lacked such connectivity. These effects were mediated by strong positive effects of vegetation structure, particularly woody plant variables, cane, and bamboo, on bird community structure. Bird community composition was however positively correlated only to floristic (tree species) composition of sites. The maintenance or restoration of habitat structure and (shade) tree species composition in shade-coffee and cardamom plantations and rainforest fragments can aid in rainforest bird conservation in the regional landscape.  相似文献   

10.
Plebejus argyrognomon is one of the grassland‐dwelling butterflies undergoing rapid decline in recent decades. Grassland habitats for butterflies are generally threatened by fragmentation and invasive species, hence are among the most vulnerable ecosystems. We studied the seasonal abundance of P. argyrognomon at habitat patches along the banks of the Kinugawa River in eastern Japan, to identify environmental factors suitable for population persistence of this species, including habitat patch connectivity. Results showed that the patch's host plant cover had a positive effect on abundance in all three seasons, while the shading of the host plants by surrounding non‐host plants and nearby forested area showed negative effects. Additionally, habitat patch connectivity and nectar richness could be considered as positive factors in autumn and summer, respectively. Analysis of habitat connectivity also showed that the Kinugawa River did not appear to act as a dispersal barrier for P. argyrognomon. Our findings emphasize the importance of understanding environmental factors that may vary among seasons, and such understanding could contribute to habitat management of multivoltine butterflies in fragmented landscapes.  相似文献   

11.
We investigated whether signals of known dispersal processes and habitat patch turnover could be detected in a snapshot of the distribution of the tansy leaf beetle Chrysolina graminis among patches of its host plant tansy Tanacetum vulgare . Beetle occupancy in 1305 patches was analysed using autologistic generalised additive models (GAMs). These model spatial autocorrelation with an autocovariate calculated as the distance-weighted rate of occupancy among neighbouring patches. The autocovariate that best explained beetle occupancy was one which represented the active search for patches during beetle dispersal, included a distance weight that closely matched a previously fitted dispersal kernel and had neighbourhood sizes encompassing ∼95% of known dispersal distances. Autocovariates distinguishing between neighbours on the same and opposite riverbanks outperformed those that did not, revealing the river as a barrier to dispersal. Differentiating between up and downstream autocorrelation did not improve model fit, as is consistent with the beetle's lack of directional bias in dispersal. Habitat connectivity (the extent to which it was surrounded by other patches) did not appear to affect beetle occupancy in the field, while positive effects were found for distributions simulated from the GAM. We argue that this reflects a non-equilibrium distribution driven by slow responses to high rates of habitat patch turnover due to limited dispersal ability. Our findings suggest that presence/absence snapshots can reveal patterns of dispersal and be used to test whether species' ranges are at equilibrium. Such information is important for effective conservation so the possibility of inferring these patterns from distribution data is an appealing one.  相似文献   

12.
The relative importance of niche requirements and dispersal limitation in controlling the landscape‐scale distribution of plants is still contentious. Local occurrence and abundance of alpine plants are commonly thought to be driven by abiotic site conditions due to pronounced environmental gradients over short distances. However, explicit tests of the additional role of dispersal‐related processes for alpine plant distribution patterns are lacking. Here, we combine niche‐based species distribution models with variables describing patch size and connectivity to evaluate if, besides abiotic limitations, spatial habitat configuration affects the occurrence and abundance of six plant species inhabiting patchy snowbed mosaics of the northeastern Calcareous Alps in Austria. Moreover, we assess if eventual effects of spatial patch configuration are more clearly detectable when calculating connectivity based on parameterized mechanistic dispersal kernels for both wind and animal vectors instead of using nearest neighbour metrics. We show that patch size and connectivity are significantly correlated to the occurrence of all and to the abundance of four out of six study species, although the relative importance of these variables, as compared to niche constraints, varies among species. In addition, connectivity measures derived from parameterized dispersal kernels were more closely related to occupancy, and in particular to abundance patterns than a simple nearest neighbour metric. The fitted kernels also suggest that dispersal by alpine chamois plays an important role for inter‐patch seed exchange. We conclude that, despite evident abiotic limitations, recurrent local extinctions and delayed re‐colonizations indeed play a role for the distribution of our study species, and that alpine plants may hence be less in equilibrium with their abiotic environment than commonly thought. Moreover, the relatively high long‐distance dispersal probabilities of animal kernels indicate that the ability of alpine plants to adapt their ranges to a rapidly warming climate may, among other factors, depend on the availability of dispersal services by large mammals.  相似文献   

13.
Habitat restoration is critical to the conservation of rare species. However, restoration efforts often proceed without knowledge of their effects on these species. We investigated the reproductive response of federally endangered Fender’s blue butterfly (Plebejus icarioides fenderi) to prairie restoration in Willamette Valley, Oregon, USA. In 2009 and 2010, we quantified availability of larval host plant, Kincaid’s lupine (Lupinus oreganus), and butterfly oviposition in three restored areas (1–10 years old) and adjacent intact habitat. Oviposition measures in restored areas reached or exceeded intact habitat (0.1 eggs/leaf of host plant and 12 % of time ovipositing) within five years post-restoration. However, none of the restorations provided an equivalent host plant density to intact areas (55 leaves/m2). The different response time of host plants and butterflies to restoration highlights the importance of monitoring both vegetation and oviposition over an ecologically relevant timescale (at least 10 years). For imperiled species, quantifying reproductive response to restoration is critical for adaptive management and successful conservation of the species which restoration efforts are intended to benefit.  相似文献   

14.
To appropriately predict the patch occupancy of animals, it is often essential to consider not only the habitat structure but also shifts in the habitat requirements of animals with changes in life stage. In addition, asymmetric dispersal among different types of habitat patches is likely to accompany use of multiple habitat types due to differences in the ease with which migrants can find the habitats, to changes in the dispersal ability of animals according to their life stage, or to both factors. However, few studies have explicitly elucidated the contribution of these processes to patch connectivity and to predictions of patterns of patch occupancy. In the present study, we evaluated the effects of multi-type habitat use on patch connectivity of the damselfly Indolestes peregrinus. After emergence, adults of this species move from their native ponds to woodlands for hibernation and return to aquatic habitats for oviposition in the next spring. We recorded the occurrence of I. peregrinus at newly created artificial ponds and attempted to explain patch occupancy using a series of Bayesian statistical models, which incorporate (1) local environment only, (2) both local environment and single-type habitat use connectivity, and (3) both local environment and multi-type habitat use connectivity. In addition, we considered two situations in the third model: symmetric or asymmetric dispersal. Comparing the performance of the candidate models revealed that the best model was the third model assuming asymmetric dispersal and it explained 18.8% of the deviance. The result suggests that multi-type habitat use is important for determining patch connectivity of I. peregrinus, and that there is asymmetry in the connectivity from pond to woodland patches and vice versa for the damselfly. Both multi-type habitat use and asymmetric dispersal processes are likely to apply to many other taxa and landscapes.  相似文献   

15.
1. Local extinctions in habitat patches and asymmetric dispersal between patches are key processes structuring animal populations in heterogeneous environments. Effective landscape conservation requires an understanding of how habitat loss and fragmentation influence demographic processes within populations and movement between populations. 2. We used patch occupancy surveys and molecular data for a rainforest bird, the logrunner (Orthonyx temminckii), to determine (i) the effects of landscape change and patch structure on local extinction; (ii) the asymmetry of emigration and immigration rates; (iii) the relative influence of local and between-population landscapes on asymmetric emigration and immigration; and (iv) the relative contributions of habitat loss and habitat fragmentation to asymmetric emigration and immigration. 3. Whether or not a patch was occupied by logrunners was primarily determined by the isolation of that patch. After controlling for patch isolation, patch occupancy declined in landscapes experiencing high levels of rainforest loss over the last 100 years. Habitat loss and fragmentation over the last century was more important than the current pattern of patch isolation alone, which suggested that immigration from neighbouring patches was unable to prevent local extinction in highly modified landscapes. 4. We discovered that dispersal between logrunner populations is highly asymmetric. Emigration rates were 39% lower when local landscapes were fragmented, but emigration was not limited by the structure of the between-population landscapes. In contrast, immigration was 37% greater when local landscapes were fragmented and was lower when the between-population landscapes were fragmented. Rainforest fragmentation influenced asymmetric dispersal to a greater extent than did rainforest loss, and a 60% reduction in mean patch area was capable of switching a population from being a net exporter to a net importer of dispersing logrunners. 5. The synergistic effects of landscape change on species occurrence and asymmetric dispersal have important implications for conservation. Conservation measures that maintain large patch sizes in the landscape may promote asymmetric dispersal from intact to fragmented landscapes and allow rainforest bird populations to persist in fragmented and degraded landscapes. These sink populations could form the kernel of source populations given sufficient habitat restoration. However, the success of this rescue effect will depend on the quality of the between-population landscapes.  相似文献   

16.
One response to biodiversity decline is the definition of ecological networks that extend beyond protected areas and promote connectivity in human-dominated landscapes. In farmland, landscape ecological research has focused more on wooded than open habitat networks. In our study, we assessed the influence of permanent grassland connectivity, described by grassland amount and spatial configuration, on grassland biodiversity. We selected permanent grasslands in livestock farming areas of north-western France, which were sampled for plants, carabids and birds. At two spatial scales we tested the effects of amount and configuration of grasslands, wooded habitats and crops on richness and abundance of total assemblages and species ecological groups. Grassland connectivity had no significant effects on total richness or abundance of any taxonomic group, regardless of habitat affinity or dispersal ability. The amount of wooded habitat and length of wooded edges at the 200 m scale positively influenced forest and generalist animal groups as well as grassland plant species, in particular animal-dispersed species. However, for animal groups such as open habitat carabids or farmland bird specialists, the same wooded habitats negatively influenced richness and abundance at the 500 m scale. The scale and direction of biodiversity responses to landscape context were therefore similar among taxonomic groups, but opposite for habitat affinity groups. We conclude that while grassland connectivity is unlikely to contribute positively to biodiversity, increasing or maintaining wooded elements near grasslands would be a worthwhile conservation goal. However, the requirements of open farmland animal species groups must be considered, for which such action may be deleterious.  相似文献   

17.
Connectivity losses lead to a reduction of the amount of habitat resources that can be reached and used by species, and hence to a decline in the ranges and abundance of multiple taxa. Despite the recognized important role of small habitat patches for many species inhabiting fragmented landscapes, their potential contribution as stepping stones for maintaining overall landscape connectivity has received less attention. Using connectivity metrics based on a graph-theoretic approach we (i) quantified the connectivity of grassland patches in a sector of the Pampa region in Argentina, using a range of dispersal distances (from 100 to 10,000 m) representative of the scale of dispersal of different species; (ii) identified the most relevant patches for maintaining overall connectivity; and (iii) studied the importance of small patches (defined for different area thresholds of 5, 20, and 50 ha) as connectivity providers in the landscape. Although grassland patches were in general poorly connected at all distances, some of them were critical for overall connectivity and were found to play different crucial roles in the patch network. The location of small patches in the grassland network allowed them to function as stepping stones, yielding significant connectivity gains for species that move large distances (>5000 m) for the three area thresholds considered. Thus, under the spatial pattern of the studied landscape, species that move long distances would benefit from stepping stones, while less mobile organisms would benefit from, and mostly rely on the largest patches. We recommend that future management activities should (i) aim at preserving the grassland patches with the highest potential as stepping stones to promote landscape-level connectivity; and (ii) pay more attention to the conservation of key small patches, particularly given that usually they are those more vulnerable to land clearing for agriculture.  相似文献   

18.
Recent studies on the determinants of distribution and abundance of animals at landscape level have emphasized the usefulness of the metapopulation approach, in which patch area and habitat connectivity have often proved to explain satisfactorily existing patch occupancy patterns. A different approach is needed to study the common situation in which suitable habitat is difficult to determine or does not occur in well‐defined habitat patches. We applied a landscape ecological approach to study the determinants of distribution and abundance of the threatened clouded apollo Parnassius mnemosyne butterfly within an area of 6 km2 of agricultural landscape in south‐western Finland. The relative role of 24 environmental variables potentially affecting the distribution and abundance of the butterfly was studied using a spatial grid system with 2408 grid squares of 0.25 ha, of which 349 were occupied by the clouded apollo. Both the probability of butterfly presence and abundance in a 0.25 ha square increased with the presence of the larval host plant Corydalis solida the cover of semi‐natural grassland, the amount of solar radiation and spalial autocorrelation in butterfly occurrence. Additionally, butterfly abundance increased with overall mean patch size and decreased with maximum slope angle and wind speed. Two advantages of the employment of a spatial grid system included the avoidance of a subjective definition of suitable habitat patches and an evaluation of the relative significance of different components of habitat quality at the same time with habitat availability and connectivity. The large variation in habitat quality was influenced by the abundance of the larval host plant and adult nectar sources but also by climatological. topographical and structural factors. The application of a spatial grid system as used here has potential for a wide use in studies on landscape‐level distribution and abundance patterns in species with complex habitat requirements and habitat availability patterns.  相似文献   

19.
Patch occupancy of two hemipterans sharing a common host plant   总被引:5,自引:0,他引:5  
Aim Two hemipteran species were chosen as a study system for the comparative analysis of patch occupancy and spatial population structure of insects sharing a common host plant. This study tested whether (1) the incidence in the host plant patches differed between the two species, and (2) the two species exhibited a different spatial population structure, i.e. were they affected differentially by isolation and area of the host plant patches. Location The porphyry landscape north of Halle (Saale) in Germany comprising 506 patches of the host plant Brachypodium pinnatum. Methods The host plant patches were surveyed for the two hemipterans. To assess the influence of patch quality on species occurrence the patches were characterized by mean cover abundance of B. pinnatum, type of subsoil, slope, exposure, and shading. The spatial configuration of the patches was considered by patch area and isolation. The influence of the habitat factors and the spatial configuration on the occupancy of the two species was analysed by logistic regression. Results Adarrus multinotatus was found in 441 patches, while Neophilaenus albipennis was found in only 90 patches. While A. multinotatus showed virtually no relationship to the habitat factors, the occupancy of N. albipennis was influenced by subsoil type, cover abundance, and shading. The effects of area and isolation on occupancy of the patches also differed between the two species. The occupancy of N. albipennis was determined largely by area and isolation, whereas in A. multinotatus no considerable effect of spatial configuration was found. Main conclusions The study revealed a marked difference between the two hemipteran species in respect of spatial population structure. Adarrus multinotatus built up a ‘patchy population’, whereas N. albipennis showed a ‘metapopulation’ structure within the same set of patches in the same landscape. Spatial population structure was found to be not only a function of spatial configuration of habitat patches, but population structure differed between the habitat generalist A. multinotatus and the habitat specialist N. albipennis.  相似文献   

20.
Connectivity of habitat patches is crucial for wildlife dispersal and survival, and identifying patches with high importance for maintaining connectivity can aid effective wildlife management. Knowledge of the habitat distribution of the Tibetan antelope in the Altun Mountain National Nature Reserve, which is essential for connectivity analysis, remains limited. We analyzed potential habitat distribution and priority patches using GIS-based habitat suitability modeling with three weighting factors and evaluated the connectivity of habitat patches under four dispersal distance scenarios. Patches with high habitat suitability covered 25.39 % of the total area, and these patches were selected for connectivity analysis as resource patches. Connectivity analysis indicated that, although the overall probability of connectivity (PC) showed an upward trend with increasing dispersal distance, the importance of each patch varied considerably under different dispersal distance scenarios. Transfer analysis of patch numbers between different importance levels revealed that the number of patches becoming less important was higher than the number of patches becoming more important when dispersal distance increased. In addition, nine patches covering 38.49 % of the suitable habitat area were identified as priority patches, in particular the patches near the Kardun and the Karchuka inspection stations. We also found that the habitat distribution of the Tibetan antelope obtained from the suitability model matched the population distribution determined by a field survey. Correlation analysis between patch area and the percentage of PC index value loss (dPC) revealed that the larger patches in this region were more likely to be important for maintaining connectivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号