首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Spatial and temporal isolation and environmental variability are important factors explaining variation in plant species composition. The effect of fragmentation and disturbance on woody plant species composition was studied using data from 32 remnant church forest patches in northern Ethiopia. The church forests are remnants of dry Afromontane forest, embedded in a matrix of intensively used crop and grazing lands. We used canonical correspondence analysis and partial canonical correspondence analysis to analyze the effects of fragmented and isolated forest-patch identity, environmental and spatial variables on woody plant species composition in different growth stages. The dominance of late successional species was higher at the adult growth stage than seedlings and saplings growth stages. In the adult stages, late successional species like Olea europaea subsp. cuspidate had high frequency of occurrence. Forest patch identity was more important in explaining woody plant assemblages than environmental and spatial variables. For all growth stages combined, environmental variables explained more of the explained total fraction of variation in species composition than spatial variables. Topographic variables best explained variations in species composition for saplings, adults and all growth stages combined, whereas the management regime was most important for seedlings species composition. Our results show that in a matrix of cultivated and grazing land, fragmented and isolated forest patches differ in woody plant species assemblages. Some species are widely distributed and occurred in many patches while other occurred only in one or a few forest patches. Thus, our results indicate that remnant forest patches are important for preserving rare plant species and therefore management practices should focus on minimizing disturbance to the church forests and if possible increase church forest patch size.  相似文献   

2.
Human‐induced alteration of habitat is a major threat to biodiversity worldwide, especially in areas of high biological diversity and endemism. Polylepis (Rosaceae) forest, a unique forest habitat in the high Andes of South America, presently occurs as small and isolated patches in grassland dominated landscapes. We examine how the avian community is likely influenced by patch characteristics (i.e., area, plant species composition) and connectivity in a landscape composed of patches of Polylepis forest surrounded by páramo grasslands in Cajas National Park in the Andes of southern Ecuador. We used generalized linear mixed models and an information‐theoretic approach to identify the most important variables probably influencing birds inhabiting 26 forest patches. Our results indicated that species richness was associated with area of a patch and floristic composition, particularly the presence of Gynoxys (Asteraceae). However, connectivity of patches probably influenced the abundance of forest and generalists species. Elsewhere, it has been proposed that effective management plans for birds using Polylepis should promote the conservation of mature Polylepis patches. Our results not only suggest this but also show that there are additional factors, such as the presence of Gynoxys plants, which will probably play a role in conservation of birds. More generally, these findings show that while easily measured attributes of the patch and landscape may provide some insights into what influences patch use by birds, knowledge of other factors, such as plant species composition, is essential for better understanding the distribution of birds in fragmented landscapes.  相似文献   

3.
HUW LLOYD 《Ibis》2008,150(4):735-745
Habitat restoration strategies for fragmented high Andean forest landscapes must consider the influence of within‐patch habitat quality on bird abundance. I examined vegetation and bird abundance at three locations within a highly fragmented Polylepis forest landscape in the Cordillera Vilcanota, southern Peru. Across the landscape, there was significant variation in the vegetation structure of Polylepis forest patches of different size categories, especially in terms of tree girth, tree height, tree density, and canopy vegetation structure. Principal Component Analysis extracted five factors of habitat quality, which together accounted for 74.2% of the variability within 15 habitat variables. Polylepis bird species differed in their responses to habitat quality but, overall, variation in Polylepis bird abundance was not fully captured by the range of habitat quality variables. Tall, dense vegetation cover was clearly important for 11 conservation‐important species, a high density of large trees was important for 10 species and primary forest ground cover was important for eight species. Habitat quality exhibited no significant influence on the abundance of only one species –Asthenes urubambensis. The abundance of seven species was associated with lower elevation forest, but only one species was associated with higher elevation forest. Management of habitat quality in large and medium remnant forest patches throughout the Cordillera Vilcanota, particularly in the 3800–4200 m elevation range, will be a cornerstone in ensuring the persistence of the majority of conservation‐important bird species populations.  相似文献   

4.
Residual patches of forest remaining after natural or anthropogenic disturbance may facilitate regeneration of fragmented forest. However, residual patch function remains unclear, especially after natural wildfire. We investigate the role of residual boreal forest patches as refugia for bryophytes and ask the question, do they house bryophyte communities similar to those encountered in undisturbed forests? Bryophytes were sampled in three habitat types in black spruce boreal forests illustrating a gradient of disturbance severity: undisturbed forests, residual patches and burned matrices. Temporal, disturbance severity, spatial and structural variables of habitats were also recorded. Bryophyte community composition differed among habitat types with residual patches characterized by higher species richness, the loss of forest specialists and the addition of disturbance-prone species. The bryophyte community found in residual patches is at the interface between the communities of undisturbed forests and burned matrices. As residual patches did not conserve all species, particularly forest specialists, they were not refugia. However, we identify temporal, spatial and structural characteristics that can maintain bryophyte communities most similar to undisturbed forests and enhance residual patch “refugia potential”. Residual patches enhance bryophyte diversity of the landscape housing species that cannot survive in the burned matrix. As conclusion we discuss the use of retention patches in harvested stands, together with the preservation of undisturbed stands that house singular bryophyte communities and especially sensitive forest specialists.  相似文献   

5.
Successful forest expansion into grassland can be limited by seed dispersal and adverse conditions for tree seedlings in the grassland environment. In the high‐elevation Andes, human‐induced fragmentation has exacerbated the patchy distribution of Polylepis forests, threatening their unique biological communities and spurring restoration interest. Studies of Polylepis forest extent in Peru suggest that forest borders have remained stable over the past century despite decreasing anthropogenic disturbance, suggesting that tree seedling recruitment is being limited in the open grassland habitat. We studied natural seedling dispersion patterns of Polylepis sericea and Polylepis weberbaueri (Rosaceae) at forest–grassland edges across a range of environmental conditions to examine seedling recruitment and colonization of grasslands in Huascaran National Park (Peru). Using data from 2367 seedlings found in 48 forest–grassland edge plots (15 m × 15 m) at forest patches between 3900–4500 masl, we employed generalized mixed modelling to identify the significant associations of seedling densities with environmental covariates. In addition, we compared these associations to patterns of adult presence on the landscape. Seedling densities were associated with a combination of variables varying within (distance to forest edge) and among (elevation and dry season solar irradiation) plots across the landscape. For both species, seedling densities decreased with increasing distance away from the forest in a manner consistent with short‐distance seed dispersal by wind. Our results suggest that such short‐distance dispersal may slow forest expansion, but that there also appear to be substantial post‐dispersal limitations to seedling establishment in the grassland. Polylepis sericea densities decreased with elevation, while P. weberbaueri increased with elevation and decreased with solar irradiation. Associations of adult presence with elevation and solar irradiation mirrored those of seedling densities. Management of areas with forest patches dominated by these species should consider these differences in their environmental tolerances, particularly during species selection and zonation for reforestation.  相似文献   

6.
Successional dynamics in Mediterranean forests have been modulated by anthropogenic disturbances during thousands of years, especially in areas densely populated since ancient times. Our objective is to determine whether pine tree cover (early-successional species) and oak tree cover (late-successional species), used as a surrogate of successional stage of peri-urban fragmented forests in the Vallès lowlands (Catalonia, NE, Spain), are primarily determined by (1) climate and topography; (2) anthropogenic disturbances; (3) patch structure; or (4) patch dynamics from 1956 to 1993. Quercus spp. and Pinus spp. tree cover were separately recorded on 252 randomly selected plots of 100 m2, within forest patches ranging in size from 0.25 to 218 ha. Multiple linear regressions indicated that forest patch history is the most important variable determining oak and pine tree cover: new forest patches showed higher pine and lower oak tree cover than recently split patches (i.e. those that became fragmented from large forest areas after 1956). Patches already existing as such in 1956 (pre-existent patches) showed higher pine cover than recently split patches. Oak cover increased and pine cover decreased with increasing forest connectivity of the patch. Finally, highly frequented forests were related to high cover of pines. Climatic and topographic variables were not significant. We conclude that pine and oak cover in these peri-urban forests are mainly determined by recent patch dynamics, but also by the spatial pattern of patches. However, human-induced disturbance can modulate this as there is some evidence for pine being associated with a high human frequentation.  相似文献   

7.
Mountain forests deserve special attention from ecologists and conservation biologists given the ecosystem services they provide to society, and their threat under global change. In the subalpine region of the Andes, Polylepis woodlands occur as arboreal islands in a matrix of grassland and scrub. Due to overgrazing and burning, however, these woodland patches are believed to cover only 11% of their potential area in Bolivia, core area for Polylepis. We reviewed the knowledge on the species diversity for the Bolivian Polylepis woodland remnants, assessed the conservation status of the occurring species, determined their trophic niche, and related species richness with climatic variables and elevation. Based in 31 publications, we found 780 identified species occurring in Polylepis woodlands: 425 plants, 266 birds, 46 mammals, 35 butterflies and 8 reptiles. Ten of the 13 Bolivian Polylepis species, as well as 7 other plant species, 14 bird species and 4 mammal species were categorized as threatened or near threatened according to IUCN criteria. In general, plant species richness increased with increased precipitation and length of the growth season, while it decreased with increasing elevation. There was a positive relationship between bird species richness, precipitation and length of the growth season. The highest bird endemism in Polylepis woodland remnants occurred at intermediate elevations, temperatures and precipitation. Mammal species richness decreased with increasing maximum temperature. Finally, we discuss the most important knowledge gaps regarding biodiversity in Bolivian Polylepis woodland remnants.  相似文献   

8.
Mast seeding, the synchronized interannual variation in seed production of trees, is a well‐known bottom‐up driver for population densities of granivorous forest rodents. Such demographic effects also affect habitat preferences of the animals: After large seed production events, reduced habitat selectivity can lead to spillover from forest patches into adjacent alpine meadows or clear‐cuts, as has been reported for human‐impacted forests. In unmanaged, primeval forests, however, gaps created by natural disturbances are typical elements, yet it is unclear whether the same spillover dynamics occur under natural conditions. To determine whether annual variation in seed production drives spillover effects in naturally formed gaps, we used 14 years of small mammal trapping data combined with seed trap data to estimate population densities of Apodemus spp. mice and bank voles (Myodes glareolus) on 5 forest sites with differing disturbance history. The study sites, located in a forest dominated by European beech (Fagus sylvatica), Norway spruce (Picea abies), and silver fir (Abies alba), consisted of two primeval forest sites with small canopy gaps, two sites with larger gaps (after an avalanche event and a windthrow event), and a managed forest stand with closed canopy as a control. Hierarchical Bayesian N‐mixture models revealed a strong influence of seed rain on small rodent abundance, which were site‐specific for M. glareolus but not for Apodemus spp. Following years of moderate or low seed crop, M. glareolus avoided open habitat patches but colonized those habitats in large numbers after full mast events, suggesting that spillover events also occur in unmanaged forests, but not in all small rodents. The species‐ and site‐specific characteristics of local density responding to food availability have potentially long‐lasting effects on forest gap regeneration dynamics and should be addressed in future studies.  相似文献   

9.
Monodominant forests are characterized by the strong influence of a single species on the structure and diversity of the community. In the tropics, monodominant forests are rare exceptions within the generally highly diverse tropical forest biome. Some studies have shown that tree monodominance may be a transient state caused by successional and demographic variation among species over time. Working in a Brosimum rubescens Taub. (Moraceae) monodominant forest at the southern edge of Amazonia, we tested the hypotheses that local-scale variation in intra- and interspecific spatial patterns of dominant tree species is affected by i) demographic rates of recruitment and mortality following severe droughts, ii) local variation in edaphic properties, and iii) occupation of species in the vertical layer of the forest. We quantified intra- and interspecific spatial patterns and edaphic associations of the five most abundant species using aggregation and association distance indices, and examined changes over time. We found some support for all hypotheses. Thus, intra- and interspecific spatial patterns of most species varied over time, principally after severe drought, emphasizing species-level variability and their interactions in sensitivity to this disturbance, even as B. rubescens monodominance was maintained. While positive and negative spatial associations with edaphic properties provide evidence of habitat specialization, the absence of negative spatial associations of B. rubescens with edaphic properties indicates that this species experiences little environmental restriction, and this may be one of the factors that explain its monodominance. Spatial repulsion and attraction between species in the same and in different vertical layers, respectively, indicates niche overlap and differentiation, while changes over time indicate that the relationships between species are dynamic and affected by drought disturbance.  相似文献   

10.
Aims Riparian forests in the Brazilian Cerrado, also known as gallery forests, are very heterogeneous in structure, species composition and ecological features due to strong and abrupt variations of soil, hydrological and topographic properties. However, what are the variables driving forest carbon stock and productivity, mortality and recruitment in disturbed gallery forests?Methods We used 36 permanent plots data from a gallery forest in the Brazilian Cerrado. We investigated how tree community dynamics vary in a gallery forest on two contrasting disturbance levels—logged and non-logged—across a topographic gradient intrinsically related to differences in moisture conditions, edge effects, as well as soil fertility and texture.Important findings Soil variables were reduced into principal components and we used structural equation modelling to disentangle covarying variables. We also included carbon stocks as a determinant variable of dynamics rates. Logged forest had 50% higher productivity than non-logged forest and streamside forest had aboveground carbon stocks 70% higher than the forest edge. Both logging and natural disturbance drove variation in the carbon stocks which contributed to shaping productivity and recruitment rates. Distance from the river also drove mortality and carbon stock rates. Areas with high-carbon stocks favoured higher competition and lessened productivity and recruitment rates. Although soil fertility and texture are considered crucial components shaping forest dynamics, there was no clear influence of those variables on the present forest, probably because the strong effects of soil moisture, forest edge and disturbance disrupted the correlation between soil and forest dynamics.  相似文献   

11.
The distribution of crustose Caliciales has been surveyed in 100 spruce forest patches in Sør-Trøndelag, central Norway. Relationships between occurrence of the species and a number of site and stand variables were analysed by detrended correspondence analysis (DCA) and direct gradient analysis. Species diversity was significantly higher in old forests and in forests at higher altitudes compared to young forests and forests at lower altitudes. Old trees and snags are considered to be the most important structural components in old forests promoting species diversity of the Caliciales. Threatened or vulnerable species, such asChaenotheca gracillima, Cybebe gracilenta, Sclerophora coniophaeaandS. peronellawere confined to forest on rich soils showing no correlation with forest stand age.Chaenotheca brachypodaandC. trichialiswere found to be the most typical old forest species among the Caliciales. Humidiphilous species are considered to be less affected by forestry in a humid climate. A change in forestry practice towards methods imitating the natural dynamic processes is considered necessary to maintain species diversity of the Caliciales in boreal forests.  相似文献   

12.
Intact tropical rainforests on continents and continental islands are considered to be relatively resistant to invasions by introduced plant species, but fragmentation and degradation may render them susceptible, especially to species from predominantly shade-tolerant families with centres of diversity in the tropics, such as palms. We investigated the seedling establishment patterns of the most common exotic palm species in Singapore’s secondary forest patches, the Macarthur palm (Ptychosperma macarthurii), in relation to landscape-level planting intensity, abiotic conditions, and recipient community composition. We first used conditional inference forests to narrow down the set of possible explanatory variables, followed by fitting generalised linear models with the forest patch and individual plots as random intercepts, to account for the nesting of plots within patches and overdispersion, respectively. The number of cultivated adults in the vicinity was not an important variable. Instead, leaf litter was the most important predictor of seedling density. Thick leaf litter in the disturbed and younger secondary forest matrix that surrounds old growth forest patches may therefore serve as a buffer against invasions, especially by small-seeded exotics. However, if adults of exotic species are allowed to establish unchecked, for example along forest trails that lead into the interior of the forested landscape, the seed rain may eventually reach old growth forest where leaf litter is typically thin. Further studies are required to determine if second-generation adults within invaded habitats contribute disproportionately more to propagule pressure than first-generation cultivated plants outside the invaded habitat.  相似文献   

13.
不同强度火干扰下盘古林场天然落叶松林的空间结构   总被引:4,自引:0,他引:4  
倪宝龙  刘兆刚 《生态学报》2013,33(16):4975-4984
基于2011年7月大兴安岭外业调查数据以林隙为主要研究对象,选取景观生态学中斑块类型指数分析样地内林隙状况,并结合林木分布状态,分析不同强度林火干扰对天然落叶松林空间结构的影响。结果表明:在受中度林火干扰的林分内,只保留了少量的落叶松中径木、大径木,先锋树种在林分内呈现聚集分布;在未受林火干扰的林分和受林火轻微干扰的林分内,天然落叶松均呈现显著聚集分布;由于受到不同强度的林火干扰,林下区域与林隙区域出现不同程度的相互转化,林分空间结构发生了改变。林分按照所受林火干扰强度的递减,在同一时间不同空间上表现出了森林循环过程中所经历的林隙阶段状态、建立阶段状态、成熟阶段状态。  相似文献   

14.
In the Andean highlands, Polylepis woodlands are a rare and unique ecosystem of the treeline. Although human activities have caused the loss of extensive forested areas and decreased woodland regeneration, few systematic and quantitative assessments have been carried out in Polylepis forests. This study compares differences in habitat characteristics, population structure, and reproductive output in populations of Polylepis tomentella subject to different levels of human disturbance in the south‐central Andes of Bolivia. We selected P. tomentella because the species still covers large extensions in the form of fragmented forest patches. Results show that human activities affected all the studied populations. Moderately disturbed populations exhibited a lower percentage of farmed area (0.6%) and browsed plants (4%) than strongly disturbed populations (5% and 12%, respectively). All populations exhibited similar proportion of plants with logging scars. Potassium content and canopy closure were 1.5 and 2.5 higher, respectively, in strongly disturbed populations. The density of saplings and seedlings were 75 percent and 80 percent lower in strongly disturbed populations than in moderately disturbed population, even though reproductive individuals produced twice more flowers and fruits. Our results suggest that fruit production does not limit regeneration of P. tomentella and post‐dispersal mechanisms may decrease seed germination and increase seedling mortality. Overall, strongly disturbed populations will be less likely to regenerate, leading to population decline. Conservation programs should facilitate forest recovery by promoting seedling establishment, reducing overharvesting and over‐browsing, and protecting remaining adult plants.  相似文献   

15.
Abstract

We have assessed the fire proneness of the main forest types in Portugal classified according to the main species, using three different approaches: the use of resource selection ratios applied to burned patches, the proportion of randomly located plots that were burned and the proportion of burned National Forest Inventory plots. The results allowed ranking fire proneness according to the following decreasing order: maritime pine forests, eucalyptus forests, unspecified broadleaf forests, unspecified conifer forests, cork oak forests, chestnut forests, holm oak forests and stone pine forests. In order to understand the obtained results we have assessed the structure of the different forest types using the percent cover of seven vegetation layers (C1–C7), a Tree Dominance Index, a Height Index and a Cover Index (IC). Structural variables and stand composition were used to predict fire probability according to binary logistic modelling. Only four structural variables and stand composition provided significant results, the latter being the most important variable for explaining fire probability. These models were used to predict fire probability for different stand types as a function of IC.  相似文献   

16.
The amphibian communities in Africa's tropical forests are of global conservation importance, but disturbances derived from anthropological activities threaten to dismantle this irreplaceable diversity. We explored the impacts of forest degradation on the amphibian community in Mabira Central Forest Reserve, Uganda. We sampled amphibians from March to July of 2015 in plots that were positioned along a gradient of forest degradation. We conducted visual encounter surveys across three categories of forest degradation with six 300-m transects in each (four surveys per transect). From 216 h of surveyor effort, we detected 3563 individual frogs representing 30 species from eight families and 13 genera. Hyperoliidae was the most diverse family represented by 13 species in four genera. Hyperolius had the highest number of species (nine) followed by four genera each represented by three species (Phrynobatrachus, Pytchadena, Leptopelis, and Sclerophrys). Comparisons among plots along a gradient of forest degradation revealed differences in species richness, composition, and frequency of encounters. The regenerating and degraded forest plots were similar in species composition to each other and were dominated by mostly widespread, open-canopy species. Several forest-dependent species were recorded in both the regenerating and mature forest plots but were absent from the degraded plots. In the regenerating and mature forests, species presence was significantly associated with high canopy cover, high relative humidity, and dense leaf litter, whereas the microhabitat variables of high grass cover and high temperature were most influential in the degraded forests. Our study provides important data on an Afrotropical amphibian community and suggests that forest degradation has dramatically altered the habitat to the detriment of forest specialist species.  相似文献   

17.
Scattered patches of Polylepis forest that occur within the 3,000–4,500 m altitudinal belt of the Andean Cordillera from Venezuela to Argentina have been hypothesized to be remnants of once continuous forests whose range became fragmented through anthropogenic activities that probably preceded the Spanish conquest. Allozyme variation of Polylepis pauta from 12 forest populations in three adjacent watersheds in Northeastern Ecuador was investigated to assess whether observed patterns of gene diversity were consistent with a more continuous historical range of the species and to evaluate the populations’ potential for restoration. Genetic diversity and polymorphism in P. pauta populations were higher than mean values for most wind pollinated and dispersed temperate and tropical tree species with regional distributions. Genetic differentiation among watersheds was lower than among populations within each watershed. Isolation by distance was not evident and several populations from different watersheds were more genetically similar than populations from the same watershed. Larger forest patches with broader altitudinal ranges had more alleles. Forest patches on steeper slopes and at higher elevations supported populations with less genetic diversity; this might have resulted from the predominance of vegetative reproduction in these landslide prone areas. The amount of genetic diversity maintained by P. pauta, coupled with low genetic differentiation among populations within and among watersheds, is consistent with a more continuous historical range of the species in Northeastern Ecuador and point to the Oyacachi basin as having the highest levels of genetic diversity.  相似文献   

18.
Ecological integrity of managed forests includes the ability of an ecosystem to support a community of organisms with a similar species composition and functional organization as found in nearby natural systems. We developed an indicator system for ecological integrity based on simulated natural disturbance and indicator species to test if forest condition and habitat in managed forests are similar to that found or expected in natural systems. We then applied the method in an area of the boreal forest (Ontario, Canada) where the objective of Ontario's strategic forest management planning approach is, in part, to conserve ecological integrity through the emulation of the natural disturbance process. Forest condition controls the supply of habitat to support the diversity of native organisms, and historically in boreal forests the natural disturbance process drove forest condition. We selected indicators of forest condition (landscape pattern and compositional mosaic) and habitat function (occupancy rates for a broad range of forest birds), and applied our assessment system to test whether indicators of forest condition and habitat function reflect outcomes expected if natural disturbance processes were successfully emulated. We collected occupancy data in natural and managed forest disturbance types using autonomous acoustic recorders, applied occupancy/detection modeling to estimate corrected occupancy rates (ψ), and then tested for differences in ψ between disturbance types. Some indicators of forest condition were within the range expected under natural disturbance, but we found relatively less old conifer, more young deciduous and greater edge density in managed forests relative to forests of natural disturbance origin. Most species (11 of 14) occurred with equal ψ in habitat originating from the two disturbance types. Brown creeper (Certhia americana), bay-breasted warbler (Mniotilta varia) and red-eyed vireo (Vireo olivaceus) differed between disturbance types. Brown creeper uses older conifer and occurred at lower rates in managed forest, while red-eyed vireo uses a range of deciduous forest ages, and occurred at higher rates in managed forest. Differences in quantity and/or quality of specific habitat types likely explain the responses. The results suggest what directional changes in the forest pattern and compositional mosaic would improve ecological similarity with natural systems, but also indicate what further research is required. We believe this approach to assessing ecological integrity can be adapted to study the effectiveness of conservation management strategies in other systems, and will contribute to adaptive management approaches and evidence-based policy development.  相似文献   

19.
Natural disturbance regimes are changing substantially in forests around the globe. However, large‐scale disturbance change is modulated by a considerable spatiotemporal variation within biomes. This variation remains incompletely understood particularly in the temperate forests of Europe, for which consistent large‐scale disturbance information is lacking. Here, our aim was to quantify the spatiotemporal patterns of forest disturbances across temperate forest landscapes in Europe using remote sensing data and determine their underlying drivers. Specifically, we tested two hypotheses: (1) Topography determines the spatial patterns of disturbance, and (2) climatic extremes synchronize natural disturbances across the biome. We used novel Landsat‐based maps of forest disturbances 1986–2016 in combination with landscape analysis to compare spatial disturbance patterns across five unmanaged forest landscapes with varying topographic complexity. Furthermore, we analyzed annual estimates of disturbances for synchronies and tested the influence of climatic extremes on temporal disturbance patterns. Spatial variation in disturbance patterns was substantial across temperate forest landscapes. With increasing topographic complexity, natural disturbance patches were smaller, more complex in shape, more dispersed, and affected a smaller portion of the landscape. Temporal disturbance patterns, however, were strongly synchronized across all landscapes, with three distinct waves of high disturbance activity between 1986 and 2016. All three waves followed years of pronounced drought and high peak wind speeds. Natural disturbances in temperate forest landscapes of Europe are thus spatially diverse but temporally synchronized. We conclude that the ecological effect of natural disturbances (i.e., whether they are homogenizing a landscape or increasing its heterogeneity) is strongly determined by the topographic template. Furthermore, as the strong biome‐wide synchronization of disturbances was closely linked to climatic extremes, large‐scale disturbance episodes are likely in Europe's temperate forests under climate changes.  相似文献   

20.

Key message

Outplanted Polylepis australis seedling growth, survival and mycorrhizal response were not influenced by inoculation with soil from different vegetation types. Seedling inoculation would not be essential for reforestation practices.

Abstract

Polylepis forests are one of the most endangered high mountain ecosystems of South America and reforestation with native Polylepis species has been recommended. To determine whether native soil inoculation could help in reforestation success, a field trial was set up to evaluate the response of outplanted P. australis seedlings to the inoculation with soils from three vegetation types (a grassland, a mature forest and a degraded forest) and a sterile soil, used as control. We evaluated seedlings performance: growth and survival for 18 months, root/shoot ratio, phosphorous content and arbuscular mycorrhizal fungal (AMF) colonization. To interpret performance patterns we evaluated the colonization potential of the three inoculum soils and the changes of the AMF community composition of the seedlings rhizosphere in relation to inoculation treatment and season. Our main results showed no significant differences in seedlings survival and growth between treatments. The colonization potential of grassland and degraded forest soils was ~25 times greater than mature forest soil and specific spore density of some morphospecies varied with season. However, AMF spore community of seedlings rhizosphere became homogenized after outplanting and was similar between treatments after 12 months. Therefore, we conclude that soil inoculation is not essential for outplanted P. australis survival and increase in height, and thus all the tested soils could be used as inocula, including grassland soils which in practice are the easiest to collect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号