首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In this paper, a surface plasmon polarition filter based on a side-coupled crossbeam square-ring resonator is presented and the transmission characteristics of the filter are analyzed by using the finite difference time domain method. The simulation results indicate that the proposed resonator supports multiple resonant modes, and these resonant modes can be adjusted all together by varying the length and refractive index of the outer square ring or partially adjusted by changing the width and refractive index of the crossbeam. By adding two coupled waveguides to the structure, we further demonstrate that a multiple wavelength download filter can be achieved via different coupled waveguides. The proposed structure has potential applications in plasmonic integrated circuits.  相似文献   

2.
Based on a metal-dielectric-metal (MDM) plasmonic waveguide side coupled with a single cavity, we rebuild such resonator system by cascading double side-coupled cavities to obtain flat-top reflection response over a frequency bandwidth. The increased coherent scattering path provides an additional freedom to engineer the complex interference between the cavity modes and the waveguide mode. By decomposing the compound cavity modes into two decoupled resonances, we analyze the conditions to realize flat-top reflection response. The physics behind the flat-top reflection characteristics is found to be originated from the interference interaction between the two cavities through examining the cavity excitations and the reflected power response. Temporal coupled-mode theory and finite difference time domain method are utilized as theoretical and numerical tools which convince each other.  相似文献   

3.
The two coplanar graphene strips coupling system supported on substrates is proposed and constructed on a monolayer graphene by spatially varying gate voltages. It is investigated numerically by using the finite-difference time-domain method. Simulation results reveal that despite of no traditional ring, disk, and rectangular geometry resonators used usually in metallic plasmonic filters, this structure based on the edge mode propagation exhibits an original, ultra-narrowband band-stop filtering effect in the mid-infrared region. This filtering effect results from the novel side-coupled resonator formed by the parallel graphene strips. The transmission spectrum is tuned and modified not only by engineering the locations of gate voltages without re-fabricating structures but also via changing substrates. Simulation results are consistent with the theoretical analysis. Our studies hence support the fabrication of ultra-compact planar plasmonic devices in nano-integrated circuits.  相似文献   

4.

In this paper, a wavelength demultiplexing structure based on multi-teeth-shaped metal-insulator-metal (MIM) plasmonic waveguide is designed and numerically studied using the finite-difference time-domain (FDTD) method. Investigating the characteristics of a multi-teeth-shaped plasmonic waveguide structure reveals that with the design of the structure, it was possible to create a mode inside the bandgap of the filter. Based on the created mode inside the bandgap of the filter, the demultiplexer structure has been proposed and investigated. By changing the geometric parameters of the structure, the transmission wavelength of the demultiplexer channel can be adjusted. The proposed demultiplexer can be used in integrated optical circuits.

  相似文献   

5.
Liu  Qiong  Liu  Mingwei  Zhan  Shiping  Wu  Lingxi  Xie  Suxia  Chen  Zhaohui  Zhang  Yichen 《Plasmonics (Norwell, Mass.)》2019,14(4):1005-1011

In this paper, a graphene strip is introduced into a metal-insulator-metal (MIM)-integrated square cavity hybrid structure; the transmission spectra are theoretically investigated by the finite different time domain (FDTD) methods. An asymmetric Fano resonance dip that has high figure of merit (FOM) value appears in the transmission band. According to the multimode interference coupled mode theory (MICMT) analytical method, the Fano resonance originates from the coherent coupling between TM10 cavity magnetic mode and graphene plasmonic resonance electric mode. The center wavelength, full width at half maximum (FWHM), and FOM value of the Fano resonance can be tuned dynamically by altering the Fermi level of the graphene. Through breaking the symmetry of the hybrid structure or introducing double graphene strips with different Fermi level into hybrid structure, double Fano resonance are realized. This study can provide some theoretical basis and design reference for designing ultrahigh sensitivity plasmonic sensor.

  相似文献   

6.
We investigated the plasmonic modes in a two-dimensional quasicrystalline array of metal nanoparticles. The polarization of the modes is in the array plane. A simplified eigen-decomposition method is presented with the help of rotational symmetry. Two kinds of anti-phase ring modes with radial and tangential polarizations are of highest spatial localizations among all of plasmonic modes. For the leaky characteristic of the anti-phase ring modes, the highest fidelity mode in the quasicrystalline array is found to be tangential polarized mode, whereas normal-to-plane polarized mode in the circular ring. The leaky characteristics and spatial localizations of other plasmonic modes are also studied, for example, collective vortex mode that may be a candidate to form negative responses in plasmonic device and collective radial mode that may be used to generate light sources with radial polarizations.  相似文献   

7.
We consider a model utilizing the concept of impedance matching, which can be applied to design the coupled cascaded plasmonic cavity waveguide with desired properties. We use a transfer matrix method to obtain its transmission and dispersion diagrams. Base on this method, we demonstrate that a band-pass metal–dielectric–metal plasmonic filter with quasi-flat group velocity and tunable bandwidth can be achieved.  相似文献   

8.
We propose a modulating plasmonic structure device which is composed of a single layer graphene above the silicon Bragg grating with the silica spacer layer. This graphene-based plasmonic modulation provides a broad stop-band with high tunability in the mid-infrared region of the transmission spectra achieved by altering the geometrical parameters of the silicon grating and the gate voltage. By engineering, a phase discontinuity into the graphene-based Bragg grating, we can selectively open a transmission window in the previous stop-band spectra. These proposed graphene-based structures are easy to fabricate and operate, which have potential applications as ultra-compact high-sensitivity sensors.  相似文献   

9.
We propose a plasmonic wavelength-launched Fresnel zone plate structure for subwavelength focusing. The plasmonic structure consists of a central circular groove surrounded by 12 transparent and opaque zones. All the zones with widths smaller than one half of the incident wavelength are used to enhance the field of evanescent waves in the transmission. Based on the finite-difference time-domain analysis, a focus spot with a full-width at half-maximum of 270 nm (= 0.4λ in ) can be achieved, accompanied by a largely reduced depolarization effect. The sharp waistline indicates that the surface waves are largely converged in the region of focus.  相似文献   

10.
Deng  Qilin  Shao  Hongyan  He  Wenjie  Cheng  Kaixiang  Hu  Jinlei  Sun  Bolong  Wang  Ximing  Liu  Guilin  Wang  Jicheng 《Plasmonics (Norwell, Mass.)》2019,14(4):993-998
Plasmonics - A novel designing method of tunable plasmonic multi-channel demultiplexers is proposed by combining two kinds of graphene ring coupling systems, i.e., middle-coupling structure and...  相似文献   

11.
We propose a novel plasmonic metal structure composed of a silver film perforated with a two-dimensional square array of two-level cylindrical holes on a silica substrate. The transmission properties of this structure are theoretically calculated by the finite-difference time-domain (FDTD) method. Double-enhanced transmission peaks are achieved in the visible and infrared regions, which mainly originate from the excitation of localized surface plasmon resonances (LSPRs), the hybridization of plasmon modes, and the optical cavity mode formed in the holes. The enhanced transmission behaviors can be effectively tailored by changing the geometrical parameters and dielectric materials filled in the holes. These findings indicate that our proposed structure has potential applications in highly integrated optoelectronic devices.  相似文献   

12.
A plasmonic refractive index sensor based on electromagnetically induced transparency (EIT) composed of a metal-insulator-metal (MIM) waveguide with stub resonators and a ring resonator is presented. The transmission properties and the refractive index sensitivity are numerically studied with the finite element method (FEM). The results revealed an EIT-like transmission spectrum with an asymmetric line profile and a refractive index sensitivity of 1057 nm/RIU are obtained. The coupled mode theory (CMT) based on transmission line theory is adopted to illustrate the EIT-like phenomenon. Multiple EIT-like peaks are observed in the transmission spectrum of the derived structures based on the MIM waveguide with stub resonator coupled ring resonator. To analyze the multiple EIT-like modes of the derived structures, the H z field distribution is calculated. In addition, the effect of the structural parameters on the EIT-like effect is also studied. These results provide a new method for the dynamic control of light in the nanoscale.  相似文献   

13.

This paper reports the excitation of surface plasmon polaritons (SPPs) and associated plasmonic band gap (PBG) while using TM plane wave interacting with 1D metallic grating on higher refractive index GaP substrate. A simple method is introduced to estimate the PBG which is crucial for many plasmonic devices. The PBG is estimated by measuring the transmission spectra obtained through the plasmonic grating structures when slit width is varied while periodicity and the thickness of the gold (Au) film remained fixed. The PBG is observed for the grating devices whose slit width is less than one third of the periodicity which is caused by the presence of a higher plasmonic mode. The PBG is absent for the grating device whose slit width is slightly less than half and greater than one third of the periodicity. Such grating devices support only a fundamental plasmonic mode because the profile/shape of the slit in the grating device is more like a sinusoidal nature. Furthermore, such grating offers intermediate scattering to the incident light and the SPP as well which in turn couple more incident energy to the SPPs. Far-field modelling results also support the results obtained through experiment.

  相似文献   

14.
The key challenge of the plasmonic waveguide is to achieve simultaneously both the long propagation length and high confinement. The hybrid dielectric-loaded plasmonic waveguide consists of a SiO2 stripe sandwiched between a Si-nanowire and a silver film and thus promises as a best candidate to overcome this challenge. We propose to exploit this unique property of this structure to design different high-efficient silicon-based plasmonic components including waveguide, power splitter, and wavelength-selective ring resonator. As a result, the proposed power splitter with a waveguide cross section (λ 2/60) and a strong mode confinement area (~λ 2/240) features a low power transmission loss (<0.4 dB) at the optimal arm length of 4 μm with respect to different separation distances of output arms. Moreover, we also demonstrate that a plasmonic ring resonator with a compact ring radius of 2 μm may achieve high optical performance such as high-extinction ratio of 30 dB, large free spectral range of 67 nm, and small bandwidth of 0.6 nm. These superior performances make them promising building blocks for integrated nanophotonic circuits.  相似文献   

15.
Polarization-dependent light transmission property is investigated in two-dimensional plasmonic ladder-like structure in the Near-infrared (NIR) regime of 900 to 1600 nm. The plasmonic ladder-like structures are fabricated using cost-effective laser interference lithography. Optical transmission studies reveal that in the stated NIR regime, the structure has nearly 30 % absolute transmission with respect to air when the long axis is aligned parallel to the polarization axis of the incident excitation and has negligible transmission at the crossed polarization state. The findings have potential implications in designing large area flat NIR polarizers.  相似文献   

16.
Wang  Jicheng  Niu  Yuying  Liu  Dongdong  Hu  Zheng-Da  Sang  Tian  Gao  Shumei 《Plasmonics (Norwell, Mass.)》2018,13(2):609-616

We propose a plasmonic structure based on the metal-insulator-metal waveguide with the side-coupled isosceles trapezoid cavities. Both of the structures based on the side-coupled trapezoid cavities separated or connected with waveguides can realize the plasmon-induced transparency (PIT). By adjusting the structure parameters, the off-to-on PIT response can be tunably achieved. The coupled mode theory (CMT) method is used to study the PIT phenomenon and explain the transmission characteristics. This work may provide a potential way for designing highly integrated photonic devices.

  相似文献   

17.
We numerically study the extraordinary optical transmission of a plasmonic structure that combines a circular nanoantenna and a vertical annular nanoslit etched into a gold film under radially polarized illumination. The nanoantenna collects the incident field and localizes it in a horizontal Fabry-Pérot cavity over the gold film. The vertical nanoslit positioned at the maximal field in the horizontal cavity couples the localized field and facilitates its transmission to the free space. Due to the symmetry matching between the structure and the illumination polarization, surface plasmons can be excited effectively and enhance the transmission. Through optimizing the structure parameters, the transmission efficiency can be greatly enhanced by 225 times for a resonant annular nanoslit and 251 times for a non-resonant annular nanoslit. This axisymmetric extraordinary optical transmission setup may be fabricated on the facet of an optical fiber for optical sensing applications.  相似文献   

18.
We present detailed experimental and numerical studies of plasmonic properties of gold nanoring (NR) arrays with different slab thicknesses from 15 to 125 nm. The hybrid plasmon resonances for the bonding and antibonding modes in gold NRs exhibit a high slab thickness dependence behavior in optical properties. For the thinner slab thickness below 50 nm, both hybrid modes show large spectral tunabilities by varying the slab thickness. Furthermore, for such hollow NR structure, the enhancements of electric field intensities at the inner and outer ring surfaces when reducing the slab thickness are investigated. We observe a significant transition of field distributions for the antibonding mode. All these features can be understood by surface charge distributions from our simulations. The results of this study offer a potential strategy to design a composite plasmonic nanostructure with large field enhancement for numerous applications.  相似文献   

19.
We propose a compact plasmonic structure comprising a metal-dielectric-metal (MDM) waveguide coupled with a side cavity and groove resonators. The proposed system is investigated by the finite element method. Simulation results show that the side-coupled cavity supports a local discrete state and the groove provides a continuous spectrum, the interaction between them, gives rise to the Fano resonance. The asymmetrical line shape and the resonant wavelength can be easily tuned by changing the geometrical parameters of the structure. Moreover, we can extend this plasmonic structure by the double side-coupled cavities to gain the multiple Fano resonances. The proposed structure can serve as an excellent plasmonic sensor with a sensitivity of ~1900 nm/RIU and a figure of merit of about ~3.8?×?104, which can find wide applications for nanosensors.  相似文献   

20.
A high performance plasmonic sensor based on a metal-insulator-metal (MIM) waveguide coupled with a double-cavity structure consisting of a side-coupled rectangular cavity and a disk cavity is proposed. The transmission characteristics of the rectangular cavity and disk cavity are analyzed theoretically and the improvements of performance for the double-cavity structure compared with a single cavity are studied. The influence of structural parameters on the transmission spectra and sensing performance are investigated in detail. A sensitivity of 1136 nm/RIU with a high figure of merit of 51,275 can be achieved at the resonant wavelength of 1148.5 nm. Due to the high performance and easy fabrication, the proposed structure may be applied in integrated optical circuits and on-chip nanosensors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号