首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Copine1 (CPNE1) has tandem C2 domains and an A domain and is known as a calcium-dependent membrane-binding protein that regulates signal transduction and membrane trafficking. We previously demonstrated that CPNE1 directly induces neuronal differentiation via Akt phosphorylation in the hippocampal progenitor cell line, HiB5. To determine which region of CPNE1 is related to HiB5 cell neurite outgrowth, we constructed several mutants. Our results show that over-expression of each C2 domain of CPNE1 increased neurite outgrowth and expression of the neuronal marker protein neurofilament (NF). Even though protein localization of the calcium binding-deficient mutant of CPNE1 was not affected by ionomycin, this mutant increased neurite outgrowth and NF expression in HiB5 cells. Furthermore, Akt phosphorylation was increased by over-expression of the calcium binding-deficient CPNE1 mutant. These results suggest that neither cellular calcium levels nor the localization of CPNE1 affect its function in neuronal differentiation. Collectively, our findings indicating that the C2 domains of CPNE1 play a calcium-independent role in regulating the neuronal differentiation of HiB5 cells.  相似文献   

2.
3.
Copines are calcium-dependent membrane-binding proteins found in many eukaryotic organisms. We are studying the function of copines using the model organism, Dictyostelium discoideum. When under starvation conditions, Dictyostelium cells aggregate into mounds that become migrating slugs, which can move toward light and heat before culminating into a fruiting body. Previously, we showed that Dictyostelium cells lacking the copine A (cpnA) gene are not able to form fruiting bodies and instead arrest at the slug stage. In this study, we compared the slug behavior of cells lacking the cpnA gene to the slug behavior of wild-type cells. The slugs formed by cpnA- cells were much larger than wild-type slugs and exhibited no phototaxis and negative thermotaxis in the same conditions that wild-type slugs exhibited positive phototaxis and thermotaxis. Mixing as little as 5% wild-type cells with cpnA- cells rescued the phototaxis and thermotaxis defects, suggesting that CpnA plays a specific role in the regulation of the production and/or release of a signaling molecule. Reducing extracellular levels of ammonia also partially rescued the phototaxis and thermotaxis defects of cpnA- slugs, suggesting that CpnA may have a specific role in regulating ammonia signaling. Expressing the lacZ gene under the cpnA promoter in wild-type cells indicated cpnA is preferentially expressed in the prestalk cells found in the anterior part of the slug, which include the cells at the tip of the slug that regulate phototaxis, thermotaxis, and the initiation of culmination into fruiting bodies. Our results suggest that CpnA plays a role in the regulation of the signaling pathways, including ammonia signaling, necessary for sensing and/or orienting toward light and heat in the prestalk cells of the Dictyostelium slug.  相似文献   

4.
5.
We have recently developed a rapid protocol involving NT2 cell aggregation and treatment with retinoic acid (RA) to produce terminally differentiated CNS neurons. As a first step to explore the functional roles of cell-cycle regulatory proteins in the process of neuronal differentiation, the expression profiles of cyclin-dependent kinases (Cdks) and their regulators were examined in NT2 cells following treatment with RA. One of the Cdks, Cdk5, has been demonstrated to affect the process of neuronal differentiation and suggested to play an important role in development of the nervous system. We found that the expression of Cdk5 was gradually increased, while its activators (p35 and p39) as well as Cdk5 kinase activity were induced in NT2 cells during the process of neuronal differentiation. Moreover, both p35 and p39 were localized along the axons and varicosity-like structures of differentiated NT2 neurons. Taken together, our results demonstrated that NT2 cells provide a good in vitro model system to examine signaling pathways involved in the regulation of Cdk5 activators and to elucidate the functional roles of Cdk5 in neuronal differentiation.  相似文献   

6.
In several neuronal systems, nerve growth factor (NGF) and platelet-derived growth factor (PDGF) act as neurogenic agents, whereas epidermal growth factor (EGF) acts as a mitogenic agent. Hippocampal stem cell lines (HiB5) immortalized by the expression of a temperature-sensitive SV40 large T antigen also respond differentially to EGF and PDGF. While EGF treatment at the permissive temperature induces proliferation, the addition of PDGF induces differentiation at the non-permissive temperature. However, the mechanism responsible for these different cellular fates has not been clearly elucidated. In order to clarify possible critical signaling events leading to these distinct cellular outcomes, we examined whether either EGF or PDGF differentially induces the activation of phospholipases, such as phospholipase A(2) (PLA(2)), C (PLC), or D (PLD). Although EGF stimulation did not induce phospholipases, PDGF caused a rapid and transient activation of PLC and PLD, but not PLA(2). When the activation of PLC or PLD was blocked, the neurite outgrowth induced by PDGF was significantly inhibited. Although the activation of PLD occurred faster than PLC, blocking of PLD activity by transient expression of lipase-inactive mutants did not inhibit the induction of PLC activity by PDGF. These results suggest that the differential activation of phospholipases may play an important role in signal transduction by mitogenic EGF and neurotrophic PDGF in HiB5 neuronal hippocampal stem cells. In particular, the activation of phospholipase C and D may contribute to neuronal differentiation by neurogenic PDGF in the HiB5 cells.  相似文献   

7.
Highly conserved microRNA-9 (miR-9) has a critical role in various cellular processes including neurogenesis. However, its regulation by neurotropins that are known to mediate neurogenesis remains poorly defined. In this study, we identify platelet-derived growth factor-BB (PDGF-BB)-mediated upregulation of miR-9, which in turn downregulates its target gene monocyte chemotactic protein-induced protein 1 (MCPIP1), as a key player in modulating proliferation, neuronal differentiation as well as migration of neuronal progenitor cells (NPCs). Results indicate that miR-9-mediated NPC proliferation and neuronal differentiation involves signaling via the nuclear factor-kappa B (NF-κB) and cAMP response element-binding protein (CREB) pathways, and that NPC migration involves CREB but not the NF-κB signaling. These findings thus suggest that miR-9-mediated downregulation of MCPIP1 acts as a molecular switch regulation of neurogenesis.  相似文献   

8.
Covalent modifications of histone tails have fundamental roles in chromatin structure and function. Tri‐methyl modification on lysine 27 of histone H3 (H3K27me3) usually correlates with gene repression that plays important roles in cell lineage commitment and development. Mash1 is a basic helix‐loop‐helix regulatory protein that plays a critical role in neurogenesis, where it expresses as an early marker. In this study, we have shown a decreased H3K27me3 accompanying with an increased demethylase of H3K27me3 (Jmjd3) at the promoter of Mash1 can elicit a dramatically efficient expression of Mash1 in RA‐treated P19 cells. Over‐expression of Jmjd3 in P19 cells also significantly enhances the RA‐induced expression and promoter activity of Mash1. By contrast, the mRNA expression and promoter activity of Mash1 are significantly reduced, when Jmjd3 siRNA or dominant negative mutant of Jmjd3 is introduced into the P19 cells. Chromatin immunoprecipitation assays show that Jmjd3 is efficiently recruited to a proximal upstream region of Mash1 promoter that is overlapped with the specific binding site of Hes1 in RA‐induced cells. Moreover, the association between Jmjd3 and Hes1 is shown in a co‐Immunoprecipitation assay. It is thus likely that Jmjd3 is recruited to the Mash1 promoter via Hes1. Our results suggest that the demethylase activity of Jmjd3 and its mediator Hes1 for Mash1 promoter binding are both required for Jmjd3 enhanced efficient expression of Mash1 gene in the early stage of RA‐induced neuronal differentiation of P19 cells. J. Cell. Biochem. 110: 1457–1463, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

9.
Neuronal differentiation from expanded human ventral mesencephalic neural precursor cells (NPCs) is very limited. Astrocytes are known to secrete neurotrophic factors, and so in order to enhance neuronal survival from NPCs, we tested the effect of regional astrocyte-conditioned medium (ACM) from the rat cortex, hippocampus and midbrain on this process. Human NPC's were expanded in FGF-2 before differentiation for 1 or 4 weeks in ACM. The results show that ACM from the hippocampus and midbrain increase the number of neurons from expanded human NPCs, an effect that was not observed with cortical ACM. In addition, both hippocampal and midbrain ACM increased the number and length of phosphorylated neurofilaments. MALDI-TOF analysis used to determine differences in media revealed that although all three regional ACMs had cystatin C, α-2 macroglobulin, extracellular matrix glycoprotein and vimentin, only hippocampal and midbrain ACM also contained clusterin, which when immunodepleted from midbrain ACM eliminated the observed effects on neuronal differentiation. Furthermore, clusterin is a highly glycosylated protein that has no effect on cell proliferation but decreases apoptotic nuclei and causes a sustained increase in phosphorylated extracellular signal-regulated kinase, implicating its role in cell survival and differentiation. These findings further reveal differential effects of regional astrocytes on NPC behavior and identify clusterin as an important mediator of NPC-derived neuronal survival and differentiation.  相似文献   

10.
Hippocampus is one of the most vulnerable tissues to glucocorticoid (GC). In the present study, we demonstrate that dexamethasone (DEX), a synthetic GC, induces apoptotic cell death in hippocampal progenitor HiB5 cells without any additional insult. Interestingly, expression of 27-kDa heat shock protein (HSP27) was markedly induced by DEX in time- and dose-dependent manners. This induction was dependent on the production of reactive oxygen species (ROS), suggesting that DEX-evoked oxidative damage to HiB5 cells is responsible for the HSP27 induction. To evaluate a possible role of HSP27, we generated two mutant HiB5 cell lines, in which expression of HSP27 was inhibited or enhanced by the over-expression of HSP27 cDNA with antisense or sense orientation (AS-HSP27 and S-HSP27, respectively). DEX-induced apoptotic cell population was significantly increased in AS-HSP27 HiB5 cells and evidently decreased in S-HSP27 cells. These results indicate that HSP27 protects hippocampal progenitor cells from GC-induced apoptotic cell death.  相似文献   

11.
12.
The methylcytosine dioxygenases TET proteins (TET1, TET2, and TET3) play important regulatory roles in neural function. In this study, we investigated the role of TET proteins in neuronal differentiation using Neuro2a cells as a model. We observed that knockdown of TET1, TET2 or TET3 promoted neuronal differentiation of Neuro2a cells, and their overexpression inhibited VPA (valproic acid)-induced neuronal differentiation, suggesting all three TET proteins negatively regulate neuronal differentiation of Neuro2a cells. Interestingly, the inducing activity of TET protein is independent of its enzymatic activity. Our previous studies have demonstrated that srGAP3 can negatively regulate neuronal differentiation of Neuro2a cells. Furthermore, we revealed that TET1 could positively regulate srGAP3 expression independent of its catalytic activity, and srGAP3 is required for TET-mediated neuronal differentiation of Neuro2a cells. The results presented here may facilitate better understanding of the role of TET proteins in neuronal differentiation, and provide a possible therapy target for neuroblastoma.  相似文献   

13.
Induced pluripotent stem cell (iPSC)-based technologies offer an unprecedented opportunity to perform high-throughput screening of novel drugs for neurological and neurodegenerative diseases. Such screenings require a robust and scalable method for generating large numbers of mature, differentiated neuronal cells. Currently available methods based on differentiation of embryoid bodies (EBs) or directed differentiation of adherent culture systems are either expensive or are not scalable. We developed a protocol for large-scale generation of neuronal stem cells (NSCs)/early neural progenitor cells (eNPCs) and their differentiation into neurons. Our scalable protocol allows robust and cost-effective generation of NSCs/eNPCs from iPSCs. Following culture in neurobasal medium supplemented with B27 and BDNF, NSCs/eNPCs differentiate predominantly into vesicular glutamate transporter 1 (VGLUT1) positive neurons. Targeted mass spectrometry analysis demonstrates that iPSC-derived neurons express ligand-gated channels and other synaptic proteins and whole-cell patch-clamp experiments indicate that these channels are functional. The robust and cost-effective differentiation protocol described here for large-scale generation of NSCs/eNPCs and their differentiation into neurons paves the way for automated high-throughput screening of drugs for neurological and neurodegenerative diseases.  相似文献   

14.
Amniotic fluid is known to yield a number of cell types which are multipotent, ethically derived, genetically stable, easily grown, expanded and possess favourable immunogenicity, which has resulted in an increasing interest for use in various neuronal disorders such as Parkinson's disease. The neuronal potential of cells derived from the adherent fraction of amniotic fluid, routinely taken by amniocentesis, are least explored. The aim of the present study was to investigate the capacity of these cells for neuronal and dopaminergic differentiation using in vitro differentiation protocols with canonical inductive factors not previously tested. To do this, samples derived from multiple donors were grown under four conditions: standard serum‐containing media, NB (neurobasal) media designed specifically for propagation and maintenance of neuronal cells, NB media with addition of retinoic acid and BDNF (brain‐derived neurotrophic factor) for NI (neuronal induction), and NB media with addition of FGF8 (fibroblast growth factor‐8) and Shh (sonic hedgehog) after NI. Our results showed the presence of multiple neuronal markers after growth in serum‐containing medium [TUJ1, MAP2, NF‐M, TH (tyrosine hydroxylase)], which was significantly up‐regulated after serum withdrawal in NB medium alone with induction of NeuN (neuronal nuclei) and NSE (neuron‐specific enolase). NI and DA.I (dopaminergic induction) was accompanied by further increases in expression and a distinct transition to a sustained neuronal morphology. Western blot analysis confirmed increasing TH expression and NURR1, expressed in base serum‐containing media, found to be down‐regulated after induction. In conclusion, these cells possess a highly favourable base neuronal and dopaminergic prepotential, which may easily be accentuated by standard induction protocols.  相似文献   

15.
Neuronal differentiation of embryonic neural progenitor cells is regulated by both intrinsic and extrinsic signals. Since dynamic changes in cell shape typify neuronal differentiation, cell adhesion molecules could be relevant to this process. Although it has been reported that fibronectin-integrin interactions are important for the proliferation of neural progenitor cells, little is known about the contribution of integrins to neuronal differentiation. In order to address this shortfall, we examined integrin expression on cortical progenitor cells by using immunohistochemistry and FACS analysis of cells in which GFP expression was driven by regulatory (promoter) regions of the nestin gene (nestin-GFP(+)). We here report that high levels of nestin promoter activity correlated with high expression levels of alpha(5)beta(1) integrin (alpha(5)beta(1)(high) cells). FACS analysis of nestin-GFP(+) cortical cells revealed an additional subpopulation with reduced expression of alpha(5)beta(1) integrin (alpha(5)beta(1)(low) cells). The size of the alpha(5)beta(1)(low) subpopulation increased during cortical development. To investigate the correlation between integrin and neuronal differentiation, nestin-GFP(+) cortical progenitor cells were sorted into alpha(5)beta(1)(high) or alpha(5)beta(1)(low) populations, and each potential to differentiate was analyzed. We show that the nestin-GFP(+) alpha(5)beta(1)(high) population corresponded to broadly multipotential neural progenitor cells, whereas nestin-GFP(+) alpha(5)beta(1)(low) cells appeared to be committed to a neuronal fate. These findings suggest that alpha(5)beta(1) expression on cortical progenitor cells is developmentally regulated and its downregulation is involved in the process of neuronal differentiation.  相似文献   

16.
Embryonic stem (ES) cells represent an ideal source for cell engraftment in the damaged central nervous system (CNS). Understanding key signals that control ES cell differentiation may improve cell type-specific differentiation that is suitable for transplantation therapy. We tested the hypothesis that extracellular signal-regulated kinase (ERK) 1/2 phosphorylation is an early signaling event required for the neuronal differentiation of ES cells. Cultured mouse ES cells were treated with an all-trans-retinoic-acid (RA) protocol to generate neurally induced progenitor cells. Western blot analysis showed a dramatic increase in ERK 1/2 phosphorylation (p-ERK 1/2) 1-5 days after RA induction, which was attenuated in the presence of the p-ERK 1/2-specific inhibitor UO126. Phospho-ERK 1/2 inhibition significantly reduced the number of NeuN-positive cells and the expression of associated cytoskeletal proteins. In differentiating ES cells, there was increased nuclear translocation of STAT3 and decreased protein expression levels of GDNF, BDNF and NGF. STAT3 translocation was attenuated by UO126. Finally, caspase-3 activation was observed in the presence of UO126, suggesting that the ERK pathway also contributes to the survival of differentiating ES cells. These data indicate that ERK 1/2 phosphorylation is a key event required for early neuronal differentiation and survival of ES cells.  相似文献   

17.
Neural epidermal growth factor-like protein-like 2 (NELL2) is a secreted glycoprotein that is predominantly expressed in the nervous system, but little is known about the intracellular movement and secretion mechanism of this protein. By monitoring the localization and movements of enhanced green fluorescent protein (EGFP)-labeled NELL2 in living cultured hippocampal neuroprogenitor HiB5 cells, we determined the subcellular localization of NELL2 and its intracellular movement and secretion mechanism. Cterminal EGFP-fused NELL2 showed a typical expression pattern of secreted proteins, especially with respect to its localization in the endoplasmic reticulum, Golgi apparatus, and punctate structures. Vesicles containing NELL2 exhibited bidirectional movement in HiB5 cells. The majority of the vesicles (70.1%) moved in an anterograde direction with an average velocity of 0.454 μm/s, whereas some vesicles (28.7%) showed retrograde movement with an average velocity of 0.302 μm/s. The movement patterns of NELL2 vesicles were dependent upon the presence of microtubules in HiB5 cells. Anterograde movement of NELL2 did not lead to a detectable accumulation of NELL2 in the peripheral region of the cell, indicating that it was secreted into the culture medium. We also showed that the N-terminal 29 amino acids of NELL2 were important for secretion of this protein. Taken together, these results strongly suggest that the N-terminal region of NELL2 determines both the pattern of its intracellular expression and transport of NELL2 vesicles by high-velocity movement. Therefore, NELL2 may affect the cellular activity of cells in a paracrine or autocrine manner.  相似文献   

18.
The importance of flow shear stress (SS) on the differentiation of endothelial progenitor cells (EPCs) has been demonstrated in various studies. Cholesterol retention and microRNA regulation have been also proposed as relevant factors involved in this process, though evidence regarding their regulatory roles in the differentiation of EPCs is currently lacking. In the present study on high shear stress (HSS)-induced differentiation of EPCs, we investigated the importance of ATP-binding cassette transporter 1 (ABCA1), an important regulator in cholesterol efflux, and miR-25-5p, a potential regulator of endothelial reconstruction. We first revealed an inverse correlation between miR-25-5p and ABCA1 expression levels in EPCs under HSS treatment; their direct interaction was subsequently validated by a dual-luciferase reporter assay. Further studies using flow cytometry and quantitative polymerase chain reaction demonstrated that both miR-25-5p overexpression and ABCA1 inhibition led to elevated levels of specific markers of endothelial cells, with concomitant downregulation of smooth muscle cell markers. Finally, knockdown of ABCA1 in EPCs significantly promoted tube formation, which confirmed our conjecture. Our current results suggest that miR-25-5p might regulate the differentiation of EPCs partially through targeting ABCA1, and such a mechanism might account for HSS-induced differentiation of EPCs.  相似文献   

19.
We performed mRNA expression profiling of mouse primary hippocampal neurones undergoing differentiation in vitro. We show that 2314 genes significantly changed expression during neuronal differentiation. The temporal resolution of our experiment (six time points) permits us to distinguish between gene expression patterns characteristic for the axonal and for the dendritic stages of neurite outgrowth. Cluster analysis reveals that, in the process of in vitro neuronal differentiation, a high level of expression of genes involved in the synthesis of DNA and proteins precedes the up regulation of genes involved in protein transport, energy generation and synaptic functions. We report in detail changes in gene expression for genes involved in the synaptic vesicle cycle. Data for other genes can be accessed at our website. We directly compare expression of 475 genes in the differentiating neurones and the developing mouse hippocampus. We demonstrate that the program of gene expression is accelerated in vitro as compared to the situation in vivo. When this factor is accounted for, the gene expression profiles in vitro and in vivo become very similar (median gene-wise correlation 0.787). Apparently once the cells have taken a neuronal fate, the further program of gene expression is largely independent of histological or anatomical context. Our results also demonstrate that a comparison across the two experimental platforms (cDNA microarrays and oligonucleotide chips) and across different biological paradigms is feasible.  相似文献   

20.
Neurogenin1 is an important bHLH protein that plays crucial role in neurogenesis. We first show that the expression of ngn1 increases drastically in RA induced neuronal differentiation. During which, a three successive stages of the epigenetic changes surrounding the ngn1 gene are found correlated with a repression to activation of the gene in P19 cells. Recruiting of a repressive histone code H3K27me3 on the ngn1 gene is the dominant change in first repression stage, which is followed by the binding of the active codes of H3K9ac, H3K14ac, and the H3K4me3 in the second and third stages of RA treatment. Additionally, BRM but not BRG1 is specifically recruited to ngn1 gene at the third stage and is positively involved in the RA induced ngn1 expression. We propose that histone modifiers and chromatin remodelers are pivotal in the activation of the ngn1 gene in RA induced differentiation of P19 cells. J. Cell. Biochem. 107: 264–271, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号