首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transgenic chilli pepper (Capsicum annuum L.) plants tolerant to salinity stress were produced by introducing the wheat Na+/H+ antiporter gene (TaNHX2) via Agrobacterium-mediated transformation. Cotyledonary explants were infected with Agrobacterium tumefaciens strain LBA4404 harboring a binary vector pBin438 that contains a wheat antiporter (TaNHX2) gene driven by the double CaMV 35S promoter and NPT II gene as a selectable marker. PCR and semiquantitative RT-PCR analysis confirmed that the TaNHX2 gene had been integrated and expressed in the T1 generation of transgenic pepper plants as compared to the non-transformed plants. Southern blot analysis further verified the integration and presence of TaNHX2 gene in the genome of chilli pepper plants. Biochemical assays of these transgenic plants revealed enhanced levels of proline, chlorophyll, superoxide dismutase, ascorbate peroxidase, relative water content, and reduced levels of hydrogen peroxide (H2O2), malondialdehyde compared to wild-type plants under salt stress conditions. The present investigation clearly showed that overexpression of the TaNHX2 gene enhanced salt stress tolerance in transgenic chilli pepper plants.  相似文献   

2.
The subcellular localization of a wheat NHX antiporter, TaNHX2, was studied in Arabidopsis protoplasts, and its function was evaluated using Saccharomyces cerevisiae as a heterologous expression system. Fluorescence patterns of TaNHX2-GFP fusion protein in Arabidopsis cells indicated that TaNHX2 localized at endomembranes. TaNHX2 has significant sequence homology to NHX sodium exchangers from Arabidopsis, is abundant in roots and leaves and is induced by salt or dehydration treatments. Western blot analysis showed that TaNHX2 could be expressed in transgenic yeast cells. Expressed TaNHX2 protein suppressed the salt sensitivity of a yeast mutant strain by increasing its K+ content when exposed to salt stress. TaNHX2 also increased the tolerance of the strain to potassium stress. However, the expression of TaNHX2 did not affect the sodium concentration in transgenic cells. Western blot analysis for tonoplast proteins indicated that the TaNHX2 protein localized at the tonoplast of transgenic yeast cells. The tonoplast vesicles from transgenic yeast cells displayed enhanced K+/H+ exchange activity but very little Na+/H+ exchange compared with controls transformed with the empty vector; Na+/H+ exchange was not detected with concentrations of less than 37.5 mM Na+ in the reaction medium. Our data suggest that TaNHX2 is a endomembrane-bound protein and may primarily function as a K+/H+ antiporter, which is involved in cellular pH regulation and potassium nutrition under normal conditions. Under saline conditions, the protein mediates resistance to salt stress through the intracellular compartmentalization of potassium to regulate cellular pH and K+ homeostasis.  相似文献   

3.
A GSK3/shaggy-like kinase (AtGSK1) has been implicated in the regulation of drought and salt tolerance. We transferred AtGSK1 from Arabidopsis thaliana to a hybrid poplar (Populus alba × P. tremula var. grandulosa) to determine the effect of the transgene expression in the transgenic trees. The results from northern blot and RT-PCR analyses showed that the expression level varied among the transgenic lines. During their culture on tissue culture media, the transgenic poplars formed vigorous growing roots even in the presence of 125 mM NaCl and callus in the presence of 150 mM NaCl. When the transgenic poplars were growing in pots and provided with NaCl solution, they stayed much healthier than did nontransgenic poplars, showing higher rates of photosynthetic rates, stomatal conductance, and evaporation rates under the stress. Whereas the total level of leaf Na+ level increased dramatically in transgenic poplars under severe saline conditions (150 mM NaCl), that of leaf K+ decreased in the same plants under the same conditions. Total root Na+ level increased in nontransgenic poplars under severe saline conditions. In contrast, total root K+ level decreased in the same plants under the same conditions. The chloride content and relative electrical conductivity of the transgenic poplars after salt stress treatment were lower than those of nontransgenic poplars. The transgenic poplars were also tolerant to up to 20 % PEG remaining significantly healthy when compared with nontransgenic poplars with necrosis and chlorosis symptoms. Another dramatic feature of the transgenic poplars was wilting tolerance for prolonged drought treatment up to 2 weeks. The results provide evidence that the expression of AtGSK1 gene conferred drought and salt tolerance in the transgenic poplars.  相似文献   

4.
The glyoxalase system plays an important role in various physiological processes in plants, including salt stress tolerance. We report the effects of overexpressing glyoxalase I and glyoxalase II genes in transgenic tomato (Solanum lycopersicum Mill.) cv. Ailsa Craig. Stable expression of both transgenes was detected in the transformed tomato plants under salt stress. The transgenic lines overexpressing GlyI and GlyII under a high NaCl concentration (800 mM) showed reduced lipid peroxidation and the production of H2O2 in leaf tissues. A greater decrease in the chlorophyll a+b content in wild-type (WT) compared with transgenic lines was also observed. These results suggest that the over expression of two genes, GlyI and GlyII, may enhance salt stress tolerance by decreasing oxidative stress in transformed tomato plants. This work will help our understanding of the putative role of the glyoxalase system in the tolerance to abiotic stress in tomato plants.  相似文献   

5.
To determine the effects of vermicompost leachate (VCL) on resistance to salt stress in plants, young tomato seedlings (Solanum lycopersicum, cv. Ailsa Craig) were exposed to salinity (150 mM NaCl addition to nutrient solution) for 7 days after or during 6 mL L??1 VCL application. Salt stress significantly decreased leaf fresh and dry weights, reduced leaf water content, significantly increased root and leaf Na+ concentrations, and decreased K+ concentrations. Salt stress decreased stomatal conductance (gs), net photosynthesis (A), instantaneous transpiration (E), maximal efficiency of PSII photochemistry in the dark-adapted state (Fv/Fm), photochemical quenching (qP), and actual PSII photochemical efficiency (ΦPSII). VCL applied during salt stress increased leaf fresh weight and gs, but did not reduce leaf osmotic potential, despite increased proline content in salt-treated plants. VCL reduced Na+ concentrations in leaves (by 21.4%), but increased them in roots (by 16.9%). VCL pre-treatment followed by salt stress was more efficient than VCL concomitant to salt stress, since VCL pre-treatment provided the greatest osmotic adjustment recorded, with maintenance of net photosynthesis and K+/Na+ ratios following salt stress. VCL pre-treatment also led to the highest proline content in leaves (50 µmol g??1 FW) and the highest sugar content in roots (9.2 µmol g??1 FW). Fluorescence-related parameters confirmed that VCL pre-treatment of salt-stressed plants showed higher PSII stability and efficiency compared to plants under concomitant VCL and salt stress. Therefore, VCL represents an efficient protective agent for improvement of salt-stress resistance in tomato.  相似文献   

6.
我国部分地区土地盐碱化的日益严重,对作物的生长和生态环境产生了显著影响,因此通过植物基因工程手段培育耐盐碱的转基因作物品种对改善作物的生存能力和生态环境,提高作物产量具有重要的意义。采用农杆菌介导法将来自小麦(Triticum aestivum Linn)的Na+ /H+逆向转运蛋白的基因(vacuolar Na+/H+ exchanger or antiporter,简称NHX、NHE或NHA),对普那菊苣(Cichorium intybus L.cv.Puna)植株进行了遗传转化。经抗生素筛选以及针对TaNHX2基因的PCR检测和Southern杂交分析,证明获得了28株转TaNHX2基因的普那菊苣植株。用不同浓度NaCl溶液对普那菊苣野生型和T0代种子、愈伤组织和幼苗生长情况胁迫的研究,结果表明:转TaNHX2基因普那菊苣植株表现出一定的抗性,比野生型明显提高。在300 mmol/L NaCl胁迫下转基因植株种子的出芽率、外植体出愈率和分化率是野生型植株的2-4倍,而500 mmol/L NaCl浓度为野生型和转基因外植体能否生长的临界点。在此临界值下野生型外植体或不能形成愈伤组织、或幼苗不能正常生根、或已生根幼苗不能正常成长,而转基因外植体可以继续形成愈伤组织并正常生根生长。同时对500 mmol/L NaCl胁迫下野生型和转基因普那菊苣幼苗其体内丙二醛含量(MDA)、过氧化氢酶(POD)和超氧化物歧化酶(SOD)活性进行测定,结果表明 转基因植株比野生型植株的MDA含量降低了1-3倍,POD活性提高了1-3倍,SOD活性提高了2-3倍,分析发现普那菊苣的耐盐性与其体内的丙二醛含量(MDA)、过氧化氢酶(POD)和超氧化物歧化酶(SOD)活性密切相关。  相似文献   

7.
We previously analyzed the transgenic lines of tomato cv Rio Grande over-expressing the yeast HAL I and HAL II genes for their response to salt stress under in vitro conditions. In this study, six homozygous tomato lines harbouring the yeast HAL I or HAL II genes with highest expression level were selected for exploring their physiological responses against different salt stresses in the field. These transgenic plants showed significant growth and improved water content in comparison with control under 100 and 150 mM salt stress conditions. The HAL I and HAL II lines showed better Ca2+ content than their control counterparts. Furthermore, the transgenic lines exhibited lower values of relative electrical conductivity and improved resistance against the fungal pathogens Fusarium oxysporum and Alternaria solani when tested by detached leaf and agar tube dilution assays. Physiological analyses carried out in this study suggest an involvement of multiple mechanisms in transgenic tomato plants harbouring yeast genes to confer biotic and abiotic tolerance under stress conditions.  相似文献   

8.
Overexpression of NHX genes has been previously shown to improve salt tolerance of transgenic plants. In this study, transgenic rice plants overexpressing AtNHX5 showed not only high salt tolerance, but also high drought tolerance. Measurements of ion levels indicated that Na+ and K+ contents were all higher in AtNHX5 overexpressing shoots than in wild type (WT) shoots in high saline conditions. After exposure to water deficiency and salt stress, the WT plants all died, while the AtNHX5 overexpressing rice plants had a higher survival rate, dry weight, leaf water content, and leaf chlorophyll contents, accumulated more proline, and had less membrane damage than the WT plants. In addition, seeds of both transgenic and WT plants germinated on 1/2 MS medium supplemented with 250 mM mannitol, but overexpression of AtNHX5 improved the shoot growth of the seedlings. Taken together, the results indicate that AtNHX5 gene could enhance the tolerance of rice plants to multiple environmental stresses by promoting the accumulation of more effective osmolytes (ions or proline) to counter the osmotic stress caused by abiotic factors.  相似文献   

9.
Salt and saline-alkali are major environmental factors limiting the growth and productivity of alfalfa, the most economically important forage legume worldwide. In this study, alfalfa plants transgenic for both ScNHX1 (encoding vacuolar membrane Na+/H+ antiporter from Suaeda corniculata) and ScVP (encoding vacuolar H+-PPase from S. corniculata) were produced by cross-pollination. Transgenic alfalfa plants coexpressing ScVP/ScNHX1 showed enhanced salt and saline-alkali tolerance to 300 or 200 mM NaCl with 100 mM NaHCO3 treatments, compared with wild-type plants. In addition, ScVP/ScNHX1-coexpressing alfalfa plants accumulated more Na+ in leaves and roots than wild-type plants and showed increased tolerance to higher salt and saline-alkali stress. Using the fluorescent carboxy-SNARF probe, the intracellular pH was visualized in the transgenic and wild-type plants under salt and saline-alkali stress. The results showed that the overnight treatment caused a massive change in pH in ScVP/ScNHX1-coexpressing alfalfa plants and they showed that there was significantly higher vacuolar alkalization under salt stress compared with wild-type plants. However, saline-alkali treatment enhanced vacuolar acidification more in the wild-type plants than in transgenic plants. Taken together, our results indicate that coexpression of multiple, effective genes in transgenic plants can enhance resistance to salt and saline-alkali stress.  相似文献   

10.
Abiotic stresses such as salinity and drought have adverse effects on plants. In the present study, a Na+/H+ antiporter gene homologue (LfNHX1) has been cloned from a local halophyte grass (Leptochloa fusca). The LfNHX1 cDNA contains an open reading frame of 1,623 bp that encodes a polypeptide chain of 540 amino acid residues. LfNHX1 protein sequence showed high similarity with NHX1 homologs reported from other halophyte plants. Amino acid and nucleotide sequence similarity, protein topology modeling and the presence of conserved functional domains in the LfNHX1 protein sequence classified it as a vacuolar NHX1 homolog. The overexpression of LfNHX1 gene under CaMV35S promoter conferred salt and drought tolerance in tobacco plants. Under drought stress, transgenic plants showed higher relative water contents, photosynthetic rate, stomatal conductance and membrane stability index as compared to wild type plants. More negative value of leaf osmotic potential was also observed in transgenic plants when compared with wild type control plants. Transgenic plants showed better germination and root growth at 2 mg L?1 Basta herbicide and three levels (100, 200 and 250 mM) of sodium chloride. These results showed that LfNHX1 is a potential candidate gene for enhancing drought and salt tolerance in crops.  相似文献   

11.
Zeaxanthin (Z) has a role in the dissipation of excess excitation energy by participating in non‐photochemical quenching (NPQ) and is essential in protecting the chloroplast from photooxidative damage. To investigate the physiological effects and functional mechanism of constitutive accumulation of Z in the tomato at salt stress‐induced photoinhibition and photooxidation, antisense‐mediated suppression of zeaxanthin epoxidase transgenic plants and the wild‐type (WT) tomato were used. The ratio of Z/(V + A + Z) and (Z + 0.5A)/(V + A + Z) in antisense transgenic plants were maintained at a higher level than in WT plants under salt stress, but the value of NPQ in WT and transgenic plants was not significantly different under salt stress. However, the maximal photochemical efficiency of PSII (Fv/Fm) and the net photosynthetic rate (Pn) in transgenic plants decreased more slowly under salt stress. Furthermore, transgenic plants showed lower level of hydrogen peroxide (H2O2), superoxide anion radical (O2??) and ion leakage, lower malondialdehyde content. Compared with WT, the content of D1 protein decreased slightly in transgenic plants under salt stress. Our results suggested that the constitutive accumulation of Z in transgenic tomatoes can alleviate salt stress‐induced photoinhibition because of the antioxidant role of Z in the scavenging quenching of singlet oxygen and/or free radicals in the lipid phase of the membrane.  相似文献   

12.
Glycine betaine (GB) is a compatible solute that accumulates rapidly to enhance heat tolerance in many plants grown under heat stress. In this study, a BADH gene (betaine aldehyde dehydrogenase) from spinach was introduced into tomato (Lycopersicon esculentum cv. ‘Moneymaker’) via Agrobacterium-mediated transformation. Transgenic tomato lines expressing BADH exhibited higher capabilities for GB accumulation. Chlorophyll fluorescence analysis of wild type (WT) and transgenic plants exposed to heat treatment (42 °C) showed that transgenic plants exhibited higher photosynthetic capacities than WT plants. This finding suggests that GB accumulation increases tolerance to heat-enhanced photoinhibition. This increased tolerance was associated with an improvement in D1 protein content, which accelerated the repair of photosystem II (PSII) following heat-enhanced photoinhibition. Significant accumulations of hydrogen peroxide (H2O2) and superoxide radical (O2 ?) were observed in WT plants under heat stress. However, these accumulations were much less for the transgenic plants. An important finding reported herein is that exogenous GB cannot directly reduce the content of reactive oxygen species (ROS). In accordance with a lower relative electrolyte conductivity and malondialdehyde content, the activities of antioxidant enzymes were higher in transgenic lines than in WT plants, indicating that the degree of membrane injury in the transgenic plants was lower compared to the WT plants. These results suggest that GB accumulation in vivo cannot directly eliminate ROS. Rather, higher antioxidant enzyme activities must be maintained to lessen the accumulation of ROS in transgenic plants and to decrease the degree of membrane injury.  相似文献   

13.
14.
A hydroponic experiment was conducted to elucidate the difference in growth and cell ultrastructure between Tibetan wild and cultivated barley genotypes under moderate (150 mM NaCl) and high (300 mM NaCl) salt stress. The growth of three barley genotypes was reduced significantly under salt stress, but the wild barley XZ16 (tolerant) was less affected relative to cultivated barley Yerong (moderate tolerant) and Gairdner (sensitive). Meanwhile, XZ16 had lower Na+ and higher K+ concentrations in leaves than other two genotypes. In terms of photosynthetic and chlorophyll fluorescence parameters, salt stress reduced maximal photochemical efficiency (F v/F m), net photosynthetic rate (Pn), stomatal conductance (Gs), and intracellular CO2 concentration (Ci). XZ16 showed relatively smaller reduction in comparison with the two cultivated barley genotypes. The observation of transmission electron microscopy found that fundamental cell ultrastructure changes happened in both leaves and roots of all barley genotypes under salt NaCl stress, with chloroplasts being most changed. Moreover, obvious difference could be detected among the three genotypes in the damage of cell ultrastructure under salt stress, with XZ16 and Gairdner being least and most affected, respectively. It may be concluded that high salt tolerance in XZ16 is attributed to less Na+ accumulation and K+ reduction in leaves, more slight damage in cell ultrastructure, which in turn caused less influence on chloroplast function and photosynthesis.  相似文献   

15.
16.
17.
In higher plants, the salt overly sensitive (SOS) signalling pathway plays a crucial role in maintaining ion homoeostasis and conferring salt tolerance under salinity condition. Previously, we functionally characterized the conserved SOS pathway in the woody plant Populus trichocarpa. In this study, we demonstrate that overexpression of the constitutively active form of PtSOS2 (PtSOS2TD), one of the key components of this pathway, significantly increased salt tolerance in aspen hybrid clone Shanxin Yang (Populus davidiana × Populus bolleana). Compared to the wild‐type control, transgenic plants constitutively expressing PtSOS2TD exhibited more vigorous growth and produced greater biomass in the presence of high concentrations of NaCl. The improved salt tolerance was associated with a decreased Na+ accumulation in the leaves of transgenic plants. Further analyses revealed that plasma membrane Na+/H+ exchange activity and Na+ efflux in transgenic plants were significantly higher than those in the wild‐type plants. Moreover, transgenic plants showed improved capacity in scavenging reactive oxygen species (ROS) generated by salt stress. Taken together, our results suggest that PtSOS2 could serve as an ideal target gene to genetically engineer salt‐tolerant trees.  相似文献   

18.
To investigate key regulatory components and genes with great impact on salt tolerance, near isogenic or mutant lines with distinct salinity tolerance are suitable genetic materials to simplify and dissect the complex genes networks. In this study, we evaluated responses of a barley mutant genotype (73-M4-30), in comparison with its wild-type background (Zarjou) under salt stress. Although the root growth of both genotypes was significantly decreased by exposure to sodium chloride (NaCl), the effect was greater in the wild type. The chlorophyll content decreased under salt stress for the wild type, but no change occurred in the mutant. The mutant maintained the steady-state level of [K+] and significantly lower [Na+] concentrations in roots and higher [K+]/[Na+] ratio in shoots under salt conditions. The catalase (CAT), peroxidase (POD) activity, and proline content were higher in the mutant than those in the wild type under controlled conditions. The soluble proline was higher after 24 h of salt stress in roots of the mutant but was higher after 96 h of salt stress in the wild type. The CAT and POD activity of the mutant increased under salt stress which was as a coincidence to lower levels of hydrogen peroxide (H2O2) and malondialdehyde (MDA) contents. The ratio of dry-to-fresh weight of the roots increased for the mutant under salt stress which was as a result of the higher phenylalanine ammonia-lyase (PAL) gene expression and peroxidase activity and involved in cell wall lignification. Consequently, it seems that ion homeostasis and increased peroxidase activity have led to salt tolerance in the mutant’s genotype.  相似文献   

19.
Soil salinity represents a major constraint on plant growth. Here, we report that the over-expression of the Chrysanthemum crassum plasma membrane Na+/H+ antiporter gene CcSOS1, driven by the CaMV 35S promoter, improved the salinity tolerance of chrysanthemum ‘Jinba’. In salinity-stressed transgenic plants, both the proportion of the leaf area suffering damage and the electrical conductivity of the leaf were lower in the transgenic lines than in salinity-stressed wild type plants. After a 6 day exposure to 200 mM NaCl, the leaf content of both chlorophyll (a+b) and proline was higher in the transgenic than in the wild type plants. The activity of both superoxide dismutase and peroxidase was higher in the transgenic than in the wild type plants throughout the period of NaCl stress. The transgenic plants had a stronger control over the ingress of Na+ into the plant, particularly with respect to the youngest leaves, and so maintained a more favorable K+/Na+ ratio. The result suggests that a possible strategy for improving the salinity tolerance of chrysanthemum could target the restriction of Na+ accumulation. This study is the first to report the transgenic expression of a Na+ efflux carrier in chrysanthemum.  相似文献   

20.
After analyzing tomato plants transformed with GalUR gene for their ascorbic acid contents, it was found that some transgenic lines contained higher levels of ascorbic acid compared to control plants. In the present study, callus induction rate was 50.2 % in the explant and shoot regeneration rate was 51.5 % from the callus with transformation efficiency of 3.0 %. Based on PCR and Southern blot analysis, three independent transformants containing the insert gene were selected. Phenotypic traits of these transgenic progeny were similar to those of control tomatoes. Tomatoes (H15) with high fruit ascorbic acid contents were selected for next generation (GalUR T3) analysis. Transgenic tomatoes with increased ascorbic acid contents were found to be more tolerant to abiotic stresses induced by viologen, NaCl, or mannitol than non-transformed plants. In leaf disc senescence assay, the tolerance of these transgenic plants was better than control plants because they could retain higher chlorophyll contents. Under salt stress of less than 200 mM NaCl, these transgenic plants survived. However, control plants were unable to survive such high salt stress. Ascorbic acid contents in the transgenic plants were inversely correlated with MDA contents, especially under salt stress conditions. The GalUR gene was expressed in H15 tomatoes, but not in control plants. Higher expression levels of antioxidant genes (APX and CAT) were also found in these transgenic plants compared to that in the control plants. However, no detectable difference in SOD expression was found between transgenic plants and control plants. Results from this study suggest that the increase in ascorbic acid contents in plants could up-regulate the antioxidant system to enhance the tolerance of transgenic tomato plants to various abiotic stresses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号