首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
保护地以其丰富的生物多样性和优美的自然环境为生态旅游的开展提供了基础条件。近年来, 保护地的生态旅游与旅游道路建设得到了飞速发展。旅游公路的修建, 在促进经济发展的同时, 也带来了野生动物致死、基因隔离、栖息地丧失、生境破碎化等一系列生态问题。因此设立合适的野生动物通道作为一种有效方式, 成为缓解公路对野生动物负面影响的主要途径。本文基于动物通道相关研究, 提出通道设计应遵从针对性、科学性、持续有效性、可行性四条原则, 道路生态学与保护生物学相关理论、保护地管理法规与管理规划、关键物种或类群生态学特性与栖息地现状以及沿线地形地貌特征都应作为通道设置的参考依据; 并从通道建设的数量、位置、类型、尺寸、表面设计、配套设施以及后期监测等方面提出了通道建设的技术参数。为长期有效地发挥野生动物通道的生态功能, 建议制定通道建设技术规范, 细化通道技术参数, 积极开展科研监测, 以缓解道路对野生动物的影响。  相似文献   

2.
Roads are one of the most widespread human‐caused habitat modifications that can increase wildlife mortality rates and alter behavior. Roads can act as barriers with variable permeability to movement and can increase distances wildlife travel to access habitats. Movement is energetically costly, and avoidance of roads could therefore impact an animal's energy budget. We tested whether reptiles avoid roads or road crossings and explored whether the energetic consequences of road avoidance decreased individual fitness. Using telemetry data from Blanding's turtles (Emydoidea blandingii; 11,658 locations of 286 turtles from 15 sites) and eastern massasaugas (Sistrurus catenatus; 1,868 locations of 49 snakes from 3 sites), we compared frequency of observed road crossings and use of road‐adjacent habitat by reptiles to expected frequencies based on simulated correlated random walks. Turtles and snakes did not avoid habitats near roads, but both species avoided road crossings. Compared with simulations, turtles made fewer crossings of paved roads with low speed limits and more crossings of paved roads with high speed limits. Snakes made fewer crossings of all road types than expected based on simulated paths. Turtles traveled longer daily distances when their home range contained roads, but the predicted energetic cost was negligible: substantially less than the cost of producing one egg. Snakes with roads in their home range did not travel further per day than snakes without roads in their home range. We found that turtles and snakes avoided crossing roads, but road avoidance is unlikely to impact fitness through energetic expenditures. Therefore, mortality from vehicle strikes remains the most significant impact of roads on reptile populations.  相似文献   

3.
Tree‐dwelling mammals may be vulnerable to road mortality if forced to cross canopy gaps on the ground. This group of mammals has received scant attention worldwide despite major road projects potentially causing severe fragmentation to their habitat. Gliding mammals may be enabled to cross road gaps that exceed their gliding capability by the installation of tall wooden poles to act as “stepping stones.” We investigated whether such glide poles installed across two land‐bridges in eastern Australia could restore landscape connectivity for small gliding petaurid marsupials. Hair‐traps revealed repeated use of all poles at both locations over periods of 1–3 years. Camera traps at one site suggest a crossing frequency on the poles by the squirrel glider (Petaurus norfolcensis) of once every 3.8 nights. Radio‐tracked animals did not glide directly over the road but instead used the poles to cross on the bridge. Hair‐traps and camera traps installed within the middle of two reference land‐bridges that lacked glide poles failed to detect crossings by gliding mammals despite their presence in adjacent forest. These observations suggest that glide poles can facilitate road crossing and thereby restore habitat connectivity for gliding mammals. This lends support to the notion that glide poles have the potential to mitigate road‐induced habitat fragmentation for gliding mammals worldwide.  相似文献   

4.

Background

Understanding the ecological consequences of roads and developing ways to mitigate their negative effects has become an important goal for many conservation biologists. Most mitigation measures are based on road mortality and barrier effects data. However, studying fine-scale individual spatial responses in roaded landscapes may help develop more cohesive road planning strategies for wildlife conservation.

Methodology/Principal Findings

We investigated how individuals respond in their spatial behavior toward a highway and its traffic intensity by radio-tracking two common species particularly vulnerable to road mortality (barn owl Tyto alba and stone marten Martes foina). We addressed the following questions: 1) how highways affected home-range location and size in the immediate vicinity of these structures, 2) which road-related features influenced habitat selection, 3) what was the role of different road-related features on movement properties, and 4) which characteristics were associated with crossing events and road-kills. The main findings were: 1) if there was available habitat, barn owls and stone martens may not avoid highways and may even include highways within their home-ranges; 2) both species avoided using areas near the highway when traffic was high, but tended to move toward the highway when streams were in close proximity and where verges offered suitable habitat; and 3) barn owls tended to cross above-grade highway sections while stone martens tended to avoid crossing at leveled highway sections.

Conclusions

Mortality may be the main road-mediated mechanism that affects barn owl and stone marten populations. Fine-scale movements strongly indicated that a decrease in road mortality risk can be realized by reducing sources of attraction, and by increasing road permeability through measures that promote safe crossings.  相似文献   

5.
ABSTRACT Roads can affect the persistence of wildlife populations, through posing mortality risks and acting as barriers. In many countries, transportation agencies attempt to counterbalance these negative impacts. Road mortality is a major threat for European wildcats (Felis silvestris); therefore, we tested the effectiveness of a newly developed wildcat-specific fence in preventing wildcat mortality along a new motorway. We hypothesized that such a fenced motorway would at the same time be a significant barrier to wildcats and may at worst result in 2 isolated populations. We used radiotracking data of 12 wildcats, resulting in 13,000 fixes, to investigate individual movement behavior during and after construction of a new motorway in southwestern Germany. The motorway was fenced with the wildcat-specific fence and included crossing structures, not especially constructed for wildlife. Additionally we collected road kills on stretches of the same motorway with various types of fencing. A rate of 0.4 wildcat kills/km/year on the motorway, which was traveled by 10,000 vehicles/day and fenced with a regular wildlife fence, was reduced by 83% on stretches with wildcat-specific fencing. Of the available crossing structures, wildcats preferred open-span viaducts. Road underpasses were used but hold a mortality risk themselves. As opposed to our expectations, the fenced motorway (fenced with wildcat fence) posed only a moderate barrier to wildcats. Individuals were hindered in their daily routine and some stopped crossing completely but others continued crossing regularly. The adaptation of spatial and temporal behavior to traffic volume and location of crossing structures has an energetic cost. Hence, we suggest that only a small number of major roads can be tolerated within a wildcat's home range. To meet the demands of the European Habitats Directive, we recommend installing the wildcat fence in wildcat core areas along motorways to reduce wildcat mortality. We suggest that fences should incorporate safe crossing structures every 1.5-2.5 km. Our findings in terms of fencing design and crossing structures can be used by transportation agencies for an effective reduction of road mortality and barrier effect for carnivores.  相似文献   

6.
ABSTRACT Roads pose many threats to wildlife including wildlife-vehicle collisions, which are a danger to humans as well as wildlife. Bridges built with provisions for wildlife can function as important corridors for wildlife passage. We used video surveillance to record wildlife passage under a bridge near Durham, North Carolina, USA, to determine whether it functioned as a wildlife underpass. This is particularly important for white-tailed deer (Odocoileus virginianus) because forests associated with the bridge created a corridor between 2 natural areas. We calculated detection probabilities and estimated the number of crossings as observed crossings divided by detection probability. We observed 126 crossings by >10 species of mammals. Detection probability was 42%; therefore, an estimated 299 wildlife crossings occurred. We observed 75 deer: 17 deer approached the underpass and retreated. We estimated sighting 40% of deer crossings and 92% of deer approaches. Thus, an estimated 185 deer crossings and 18 approaches occurred. As an index of road mortality, we conducted weekly surveys of vehicle-killed animals on a 1.8-km section containing the underpass. We discovered only 5 incidences of animals killed by vehicles. The size and design of the bridge promoted wildlife use of the underpass, providing landscape connectivity between habitats on opposite sides of the highway and likely increasing motorist safety. Thus, bridges in the appropriate landscape context and with a design conducive to wildlife use, can function as a corridor to reduce the effects of fragmentation.  相似文献   

7.
动物通道是缓解高速公路对其周边野生动物生境隔离的有效措施,通道的位置是影响其使用效率的关键因素,然而现有研究对通道的选址却甚少涉及。以武深高速为例,推荐一种基于物种运动路径识别的通道选址方法,选取影响动物生境选择的环境因子构建评价体系,借助GIS手段对公路周边野生动物生境适宜性进行分析,在此基础上借鉴水文分析原理快速准确地刻画出物种在生境中的潜在活动路径,从而确定了5处高速公路上建设动物通道的理想位置。结果表明,该方法能定量地反映出生境的质量格局对于物种运动的影响,准确定位出物种运动受到阻碍的关键区域,在景观层次上,提出的通道位置能有效地缓解栖息地破碎化造成的生态压力;研究不但能弥补目前研究的不足,同时亦为道路网设计、城市生态规划等相关领域研究提供科学参考。  相似文献   

8.
In the current context of biodiversity loss through habitat fragmentation, the effectiveness of wildlife crossings, installed at great expense as compensatory measures, is of vital importance for ecological and socio‐economic actors. The evaluation of these structures is directly impacted by the efficiency of monitoring tools (camera traps…), which are used to assess the effectiveness of these crossings by observing the animals that use them. The aim of this study was to quantify the efficiency of camera traps in a wildlife crossing evaluation. Six permanent recording video systems sharing the same field of view as six Reconyx HC600 camera traps installed in three wildlife underpasses were used to assess the exact proportion of missed events (event being the presence of an animal within the field of view), and the error rate concerning underpass crossing behavior (defined as either Entry or Refusal). A sequence of photographs was triggered by either animals (true trigger) or artefacts (false trigger). We quantified the number of false triggers that had actually been caused by animals that were not visible on the images (“false” false triggers). Camera traps failed to record 43.6% of small mammal events (voles, mice, shrews, etc.) and 17% of medium‐sized mammal events. The type of crossing behavior (Entry or Refusal) was incorrectly assessed in 40.1% of events, with a higher error rate for entries than for refusals. Among the 3.8% of false triggers, 85% of them were “false” false triggers. This study indicates a global underestimation of the effectiveness of wildlife crossings for small mammals. Means to improve the efficiency are discussed.  相似文献   

9.
The Tiger (Panthera tigris) population in India has undergone a sharp decline during the last few years. Of the number of factors attributed to this decline, habitat fragmentation has been the most worrisome. Wildlife corridors have long been a subject of discussion amongst wildlife biologists and conservationists with contrasting schools of thought arguing their merits and demerits. However, it is largely believed that wildlife corridors can help minimize genetic isolation, offset fragmentation problems, improve animal dispersal, restore ecological processes and reduce man animal conflict. This study attempted to evaluate the possibilities of identifying a suitable wildlife corridor between two very important wildlife areas of central India--the Kanha National Park and the Pench National Park--with tiger as the focal species. Geographic Information System (GIS) centric Least Cost Path modeling was used to identify likely routes for movement of tigers. Habitat suitability, perennial water bodies, road density, railway tracks, human settlement density and total forest edge were considered as key variables influencing tiger movement across the Kanha-Pench landscape. Each of these variables was weighted in terms of relative importance through an expert consultation process. Using different importance scenarios, three alternate corridor routes were generated of which one was identified as the most promising for tiger dispersal. Weak links--where cover and habitat conditions are currently sub-optimal--were flagged on the corridor route. Interventions aimed at augmenting the identified corridor route have been suggested using accepted wildlife corridor design principles. The involvement of local communities through initiatives such as ecotourism has been stressed as a crucial long term strategy for conservation of the Kanha-Pench wildlife corridor. The results of the study indicate that restoration of the identified wildlife corridors between the two protected areas is technically feasible.  相似文献   

10.
Abstract: Highways have significant direct and indirect impact on natural ecosystems, including wildlife barrier and fragmentation effects, resulting in diminished habitat connectivity and highway permeability. We used Global Positioning System (GPS) telemetry to assess Rocky Mountain elk (Cervus elaphus nelsoni) permeability across a 30-km stretch of highway in central Arizona, USA, currently being reconstructed with 11 wildlife underpasses, 6 bridges, and associated ungulate-proof fencing. The highway was reconstructed in phases, allowing for comparison of highway crossing and passage rates during various stages of reconstruction. We instrumented 33 elk (25 F, 8 M) with GPS receiver collars May 2002 to April 2004. Our collars accrued 101,506 GPS fixes with 45% occurring within 1 km of the highway. Nearly 2 times the proportion of fixes occurred within 1 km of the highway compared with random. We think elk were attracted to the highway corridor by riparian—meadow foraging habitats that were 7 times more concentrated within the 1-km zone around the highway compared with the mean proportion within elk use areas encompassing all GPS fixes. Elk crossed the highway 3,057 times; crossing frequency and distribution along the highway were aggregated compared with random. Crossing frequency within 0.16-km highway segments was negatively associated with the distance to riparian—meadow habitats (rs = -0.714, n = 190, P < 0.001). Mean observed crossing frequency (92.6 ± 23.5 [SE] crossings/elk) was lower than random (149.6 ± 27.6 crossings/elk). Females crossed 4.5 times as frequently as males. Highway permeability among reconstruction classes was assessed using passage rates (ratio of highway crossings to approaches); our overall mean passage rate was 0.67 ± 0.08 crossings per approach. The mean passage rate for elk crossing the highway section where reconstruction was completed (0.43 ± 0.15 crossings/approach) was half that of sections under reconstruction and control sections combined (0.86 ± 0.09 crossings/approach). Permeability was jointly influenced by the size of the widened highway and associated vehicular traffic on all lanes. Crossing frequency was used to delineate where ungulate-proof fencing yielded maximum benefit in intercepting and funneling crossing elk toward underpasses, promoting highway safety. Use of passage rates provides a quantitative measure to assess permeability, conduct future pre- and postconstruction comparisons, and to develop mitigation strategies to minimize highway impacts to wildlife.  相似文献   

11.
Abstract Roads often negatively affect terrestrial wildlife, via habitat loss or fragmentation, noise, and direct mortality. We studied moose (Alces alces) behavior relative to a road network, in an area with a history of moose-vehicle accidents, to determine when moose were crossing roadways or using areas near roads and to investigate if environmental factors were involved in this behavior. We tracked 47 adult moose with Global Positioning System collars in a study area crossed by highways and forest roads. We hypothesized that moose would avoid crossing roads but would make occasional visits to roadsides to feed on sodium-rich vegetation and avoid biting insects. Further, we expected moose avoidance to be greater for highways than forest roads. We recorded 196,710 movement segments but only observed 328 highway and 1,172 forest-road crossings (16 and 10 times lower than expected by chance). Moose usually avoided road proximity up to ≥500 m on each side but 20% of collared moose made visits to areas within 50 m of highways, which might have resulted from moose searching for sodium in vegetation and roadside salt pools. In fact, vegetation along highways had higher sodium concentrations and was browsed in similar proportions to vegetation in adjacent forest, despite moose avoidance of these zones. Moose, however, did not use areas near roads more during periods of biting insect abundance. Our results supported the hypothesis of scale-dependent selection by moose; avoidance of highways at a coarse scale may confer long-term benefits, whereas selection of highway corridors at finer scales may be part of a strategy to overcome short-term limiting factors such as sodium deficiency. We found a positive relationship between home-range size and the proportion of road axes they contained, suggesting that moose either compensated for habitat loss or made specific movements along highways to gather sodium. The presence of sodium along highways likely increases moose-vehicle accident risks. Removal of salt pools or use of a de-icing salt other than sodium chloride should render highway surroundings less attractive to moose.  相似文献   

12.
The mitigation of road-effects on wildlife, especially road mortality and habitat fragmentation, has become increasingly common in the last 20 years. However, exclusion fencing and habitat connectivity structures can be very costly and several questions remain regarding how to best determine locations that will optimize mitigation success. Based on data collected across several years and across multiple landscapes and taxa, we present a comparative analysis of two methods: road surveys and circuit theory, and review their benefits and challenges to better inform decision making. Road surveys were completed in two locations over three years for large mammals and herpetofauna to identify road crossing hotspots. Circuit theory was also applied to these systems to identify crossing hotspots using habitat resistance models. The location, number and width of hotspots were compared between methods. Hotspot distributions were similar between methods for some herpetofauna, but different for Mammals, and road surveys produced a significantly greater number of smaller hotspots compared to circuit theory, implying that road surveys provide better hotspot resolution. As circuit model complexity increased, the number and width of hotspots decreased, diffusing across the landscape. Road surveys were better at predicting optimal crossing structure location at a local scale; however, circuit theory is less costly, and can be useful at large scales. As both methods can offer valuable information, we argue that the combination of these two approaches provides a strong basis for managers and biologists to make informed decisions about costly mitigation measures, optimizing both conservation benefits and limited funding.  相似文献   

13.
Understanding the use of small bridges and culverts by wildlife to cross the Qinghai–Tibet railway will aid in the design of wildlife crossing structures for similar transportation infrastructure. From 2014 to 2016, 36 infrared cameras were placed inside 14 small bridges and 11 culverts along the Qinghai–Tibet railway to determine the structures’ effectiveness as wildlife passages. Thirteen species of mammals were found to use the small bridges and culverts to cross the railway. The crossing rates for all mammals were significantly higher for small bridges than for culverts. Tibetan antelope (Pantholops hodgsonii), Tibetan gazelle (Procapra picticaudata), kiang (Equus kiang), and wild yak (Bos mutus) preferred small bridges over culverts to cross the railway. In contrast, mountain weasel (Mustela altaica) and Asian badger (Meles leucurus) preferred culverts to cross the railway. The crossing rates of all mammals, particularly Tibetan gazelle and woolly hare, were positively influenced by structure width. Structure height had a positive influence on wild yak, but structure length had a negative influence on kiang. The distance to the highway had a positive influence on the crossing rates of all mammals, particularly wild yak and woolly hare. Human use of the structures had no influence on the crossings of most mammals except for common wolf. We suggest that road design schemes include large and open crossing structures to benefit most species with limitations on human activities near wildlife passages.  相似文献   

14.
ABSTRACT We used 38,709 fixes collected from December 2003 through June 2006 from 44 elk (Cervus elaphus) fitted with Global Positioning System collars and hourly traffic data recorded along 27 km of highway in central Arizona, USA, to determine how traffic volume affected elk distribution and highway crossings. The probability of elk occurring near the highway decreased with increasing traffic volume, indicating that elk used habitat near the highway primarily when traffic volumes were low (<100 vehicles/hr). We used multiple logistic regression followed by model selection using Akaike's Information Criterion to identify factors influencing probability of elk crossings. We found that increasing traffic rates reduced the overall probability of highway crossing, but this effect depended on both season and the proximity of riparian meadow habitat. Elk crossed highways at higher traffic volumes when accessing high quality foraging areas. Our results indicate that 1) managers assessing habitat quality for elk in areas with high traffic-volume highways should consider that habitat near highways may be utilized at low traffic volumes, 2) in areas where highways potentially act as barriers to elk movement, increasing traffic volume decreases the probability of highway crossings, but the magnitude of this effect depends on both season and proximity of important resources, and 3) because some highway crossings still occurred at the high traffic volumes we recorded, increasing traffic alone will not prevent elk-vehicle collisions. Managers concerned with elk-vehicle collisions could increase the effectiveness of wildlife crossing structures by placing them near important resources, such as riparian meadow habitat.  相似文献   

15.
Several species of carnivores, as jaguar, live in low densities and require extent habitat areas for survive. One of their main threats is fragmentation and demographic isolation. Identifying the habitat corridors, we can help the conservation of these species. We identified the viable and potential corridors between jaguar management and conservation areas for Panthera onca in Mexico. We considerate an ensemble model of the potential distribution of P. onca in Mexico, from which were identified jaguar management and conservation areas (JCMA). According to these attributes, we identified the possible habitat corridors between the JCMA with Corridor Designer. Thirteen habitat corridors were between all JCMA. However only seven were viable corridors and six were potential corridors. Also, in two areas of potential corridors were identified Stepping Stones that can help the jaguar movement between large fragments. In the thirteen habitat corridors, the main threats for jaguars are habitat fragmentation, roads, highway and possible conflict human-wildlife (livestock predation). The results from this work can provide the bases to take actions on the protection of connecting zones and alleviate the mortality of wildlife in these areas.  相似文献   

16.
Roads affect wildlife in many direct and indirect ways. For ungulates, roads may inhibit seasonal migration and may cause an effective loss of habitat due to avoidance. On the other hand, roadsides and associated agricultural lands offer high quality forage that may attract ungulates and increase the frequency of car accidents. Mitigating actions require detailed knowledge on space use in relation to roads. Using data from 67 global positioning system (GPS)-marked red deer in Norway, we quantified 1) scale of avoidance of roads, 2) crossing frequency, and 3) selection of crossing sites. Red deer avoided roads only on a very local scale and only during daytime, with minor influence of variation in road size (traffic burden). Marked red deer crossed roads, on average, 2 times per day. Females crossed more frequently than males and crossings were most frequent during autumn and winter and during night. Deer selected forested crossing sites close to agricultural pastures, reflecting that roads are crossed most often on nightly feeding excursions. Our findings imply that red deer in our study area have adjusted to exploit feeding habitat close to roads at times of low traffic burden. The high frequency of crossings suggests a limited influence on seasonal migration patterns. The frequency at which red deer cross highways suggests that mitigation measures to reduce road mortality may be effective if targeted in the right areas. © 2012 The Wildlife Society.  相似文献   

17.
The fragmentation of habitats by roads and other artificial linear structures can have a profound effect on the movement of arboreal species due to their strong fidelity to canopies. Here, we used 12 microsatellite DNA loci to investigate the fine-scale spatial genetic structure and the effects of a major road and a narrow artificial waterway on a population of the endangered western ringtail possum (Pseudocheirus occidentalis) in Busselton, Western Australia. Using spatial autocorrelation analysis, we found positive genetic structure in continuous habitat over distances up to 600 m. These patterns are consistent with the sedentary nature of P. occidentalis and highlight their vulnerability to the effects of habitat fragmentation. Pairwise relatedness values and Bayesian cluster analysis also revealed significant genetic divergences across an artificial waterway, suggesting that it was a barrier to gene flow. By contrast, no genetic divergences were detected across the major road. While studies often focus on roads when assessing the effects of artificial linear structures on wildlife, this study provides an example of an often overlooked artificial linear structure other than a road that has a significant impact on wildlife dispersal leading to genetic subdivision.  相似文献   

18.
Large-scale spatial planning requires careful use and presentation of spatial data as it provides a means for communication with local stakeholders and decision makers. This is especially true for endangered species, such as the badger (Meles meles) in the Netherlands. To effectively mitigate the badger's traffic mortality in an area, two types of tools are needed. The first one estimates the probability of a successful road crossing for individual animals. The second tool is GIS-based and not only models the movement patterns of animals but also estimates an animal's daily number of road crossings. With data on population size as well as on road and traffic characteristics, a combination of both tools provides a measure of the mortality risk roads pose to wildlife in an area. Such estimations proved to be invaluable in a planning process with local inhabitants in the municipality of Brummen (the Netherlands), where ecological as well as safety problems appear. Our study demonstrates the applicability of GIS tools in balancing ecological consequences of road network options with a different distribution of traffic flows over the area in spatial planning and ecology.  相似文献   

19.

Aim

Several large-mammal species in Europe have recovered and recolonized parts of their historical ranges. Knowing where suitable habitat exists, and thus where range expansions are possible, is important for proactively promoting coexistence between people and large mammals in shared landscapes. We aimed to assess the opportunities and limitations for range expansions of Europe's two largest herbivores, the European bison (Bison bonasus) and moose (Alces alces).

Location

Central Europe.

Methods

We used large occurrence datasets from multiple populations and species distribution models to map environmentally suitable habitats for European bison and moose across Central Europe, and to assess human pressure inside the potential habitat. We then used circuit theory modeling to identify potential recolonization corridors.

Results

We found widespread suitable habitats for both European bison (>120,000 km2) and moose (>244,000 km2), suggesting substantial potential for range expansions. However, much habitat was associated with high human pressure (37% and 43% for European bison and moose, respectively), particularly in the west of Central Europe. We identified a strong east–west gradient of decreasing connectivity, with major barriers likely limiting natural recolonization in many areas.

Main conclusions

We identify major potential for restoring large herbivores and their functional roles in Europe's landscapes. However, we also highlight considerable challenges for conservation planning and wildlife management, including areas where recolonization likely leads to human–wildlife conflict and where barriers to movement prevent natural range expansion. Conservation measures restoring broad-scale connectivity are needed in order to allow European bison and moose to recolonize their historical ranges. Finally, our analyses and maps indicate suitable but isolated habitat patches that are unlikely to be colonized but are candidate locations for reintroductions to establish reservoir populations. More generally, our work emphasizes that transboundary cooperation is needed for restoring large herbivores and their ecological roles, and to foster coexistence with people in Europe's landscapes.  相似文献   

20.
沿道路设置供野生动物迁徙、扩散和连接栖息地的廊道是应对道路干扰最有效的措施,科学选址则是野生动物廊道建设的前提,也是廊道研究的薄弱领域。以大熊猫廊道为例对野生动物廊道选址指标体系、方法和程序进行了探索,将栖息地特征、地形因素、植被可转化性、工程成本作为大熊猫廊道选址指标,基于Arcgis和栖息地格局、海拔、坡度、植被数据,为四川306省道椅子垭口段确定了两处大熊猫廊道位置,并用监测数据证明了所选位置具有较大的可行性和准确性。研究表明栖息地格局是廊道选址的重要基础,应侧重对地形因素的研究。研究为廊道选址方法和流程进行了示范,还对选址指标体系优化、提高选址的科学性进行了探讨,有助于推动野生动物廊道研究从理论探索走向实际应用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号