首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An efficient and simple system for inducing somatic embryogenesis and regenerating plantlets from immature zygotic embryos of açaí palm (Euterpe oleracea) has been developed. Embryogenic calli (ECs) were induced from immature zygotic embryos of açaí palm on Murashige and Skoog (MS) modified medium with 2,4-dichlorophenoxyacetic acid and picloram. Embryogenic frequency was dependent on auxin type and concentration. The optimal concentration of picloram for the high-frequency induction of embryogenic calli (72%) was 225 μM. ECs were then subcultured on a differentiation and maturation medium composed of MS modified medium with 2-isopentenyladenine and naphthaleneacetic acid with subcultures at 4-week intervals. SEs were converted to plants on MS modified medium with half-strength macro- and micronutrients, 20 g l?1 sucrose, and 2.5 g l?1 activated charcoal and gelled with 2.5 g l?1 Phytagel. Detailed morpho anatomical changes during the different stages of somatic embryogenesis were characterized. The development of SEs was asynchronous, and ontogenic studies confirmed that the initial cell divisions occur in the epidermal and subepidermal regions of the zygotic embryos. Broad base attachment of SEs to the epidermis indicates the presence of a suspensor.  相似文献   

2.
We developed an efficient and simple system for inducing somatic embryogenesis and regenerating plantlets from mature zygotic embryos of oil palm. Embryogenic calli were induced from mature zygotic embryos of oil palm on modified Murashige and Skoog medium with 2,4-dichlorophenoxyacetic acid or picloram, alone or in combination with activated charcoal. The greatest frequency of embryogenic callus induction (97.5%) was obtained by culturing mature zygotic embryos on callus induction medium with 450 μM picloram and 2.5 g?L?1 activated charcoal. Embryogenic calli proliferated on a medium with a reduced concentration of picloram. Embryogenic calli were then subcultured on a medium supplemented with 12.3 μM 2-isopentenyladenine and 0.54 μM naphthaleneacetic acid, with subcultures at 4-wk intervals. Somatic embryos were regenerated on a medium with Murashige and Skoog macro- and micronutrients at half-strength concentrations supplemented with 20 g?L?1 sucrose, 2.5 g?L?1 activated charcoal, and 2.5 g?L?1 Phytagel. Detailed histological analysis revealed that somatic embryogenesis followed an indirect pathway. Primary calli were observed after 4–6 wk of culture and progressed to embryogenic calli at 12 wk. Embryogenic cells exhibited dense protoplasm, a high nucleoplasmic ratio, and small starch grains. Proembryos, which seemed to have a multicellular origin, formed after 16–20 wk of culture and successive cell divisions. Differentiated somatic embryos had a haustorium, a plumule, and the first and second foliar sheaths. In differentiated embryos, the radicular protrusion was not apparent because it generally does not appear until after the first true leaves emerge.  相似文献   

3.
An improved protocol for plant regeneration via somatic embryogenesis was developed using mature macaw palm (Acrocomia aculeata) zygotic embryos as initial explant. For induction of the embryogenic callus (EC), two basic media (BM) were tested consisting of Murashige and Skoog and Eeuwens (Y3) salts with 30 g L?1 sucrose, 0.5 g L?1 glutamine and 2.5 g L?1 Phytagel. The 3,6-dichloro-2-methoxybenzoic acid (dicamba), 4-amino-3,5,6-trichloro-picolinic acid (picloram) and 2,4-dichlorophenoxyacetic acid (2,4-D) auxins were added to the culture media at concentrations of 0, 1.5 or 3.0 mg L?1. After 240 days, the embryogenic calli were transferred to the respective BM media with auxin concentrations reduced to 0.5 or 1.0 mg L?1 in order to differentiate the somatic embryos (SEs). Plant regeneration was performed on the BM media without growth regulators. Embryogenic calli were observed after 180 days of culture and in all treatments with auxin. The Y3 medium showed the best EC formation results (60.8 %). These calli showed yellowish coloration, compact consistency and nodular aspect. After 60 days in differentiation medium, SEs were verified in different stages of development. Histological analysis showed that the SEs were formed from a nodular EC. The SEs generally presented unicellular origin with suspensor formation, and at the end of development, bipolar embryos were observed. The plant regeneration frequency reached levels up to 31.9 % when using induction medium consisting of Y3 associated to 1.5 mg L?1 of 2,4-D and the subsequent auxin reduction to 0.5 mg L?1 in the differentiation stage. Regenerated plants showed normal development, with root and aerial part growth.  相似文献   

4.
We developed an efficient and simple system for inducing somatic embryogenesis and regenerating plantlets from petal explant of Chrysanthemum (Chrysanthemum morifolium) cv. ‘Baeksun’. Somatic embryogenesis was induced from petal explants on the Murashige and Skoog (MS) medium supplemented with 1.0 mg l?1 2,4-dichlorophenoxyacetic acid (2,4-D) and 3.0 mg l?1 6-benzyladenine (BA), yielding the highest mean number of embryos (56.3) per explant after 5 weeks of culture. We evaluated the effects of basal medium and various concentrations of sucrose on the proliferation of secondary somatic embryos. MS medium was observed to be more effective in promoting the proliferation of somatic embryos than half-strength Murashige and Skoog (1/2MS). In addition, 1 % sucrose was also found to be the best in induction of secondary embryogenesis. The highest germination rate (70 %) of the somatic embryos was observed on the MS medium containing 0.2 mg l?1 α-naphthalene acetic acid and 1 g l?1 activated charcoal (AC). Shoots elongated rapidly and roots developed well on hormone-free MS medium with 1 g l?1 AC and successfully acclimated in the greenhouse. Flow cytometric analysis of the primary somatic embryos, secondary somatic embryos, and the somatic embryo-obtained plants along with the parent grown in the greenhouse showed that they all had same identical peaks, indicating that there was no variation of ploidy level during the regeneration process. We expect that our report would be useful for micropropagation and Agrobacterium-mediated genetic transformation studies of this cultivar.  相似文献   

5.
The objective was to establish an efficient regeneration protocol for Distylium chinense based on somatic embryogenesis and evaluate the genetic stability of plants regenerated in vitro. To induce callus mature zygotic embryos were cultured on Murashige and Skoog’s (MS) medium that was supplemented with different concentrations of 2,4-dichlorophenoxyacetic acid (2,4-D) and N6-benzyladenine (BA). After 20 days, the highest rate of callus formation (88.9 %) occurred on MS medium supplemented with 0.5 mg l?1 2,4-D and 0.1 mg l?1 BA. It was observed that light-yellow, compact, dry, nodular embryogenic calli had formed. These calli were then subcultured on fresh MS medium supplemented with 0.1 mg l?1 BA and 0.5 mg l?1 α-naphthaleneacetic acid (NAA) for proliferation for an additional 30 days. To induce somatic embryos and plant regeneration, the embryogenic callus was transferred to fresh MS medium that was supplemented with different concentrations of BA and NAA. After 30 days, 0.5 mg l?1 BA in combination with 0.5 mg l?1 NAA produced the best result in terms of somatic embryogenesis (%), shoot differentiation (%), number of shoots per callus and shoot length. Next, the plantlets were transferred to the field for 5 weeks and a 95 % survival rate was observed. The sequence-related amplified polymorphism markers confirmed genetic stability of plants regenerated in vitro. To our knowledge, this is the first report that describes a plant regeneration protocol for D. chinense via somatic embryogenesis to be used for germplasm conservation and commercial cultivation.  相似文献   

6.
Repetitive embryogenesis of Ocotea catharinensis from globular/early cotyledonary somatic embryos was successfully supported by WPM supplemented with 22.7 g l−1 sorbitol, 20 g l−1 sucrose, 400 mg l−1 glutamine and 2 g l−1 Phytagel. The best medium to induce repetitive embryogenesis in cotyledonary somatic embryos was half strength WPM supplemented with 20 g l−1 sucrose, 400 mg l−1 glutamine, 1.5 g l−1 activated charcoal and 2 g l−1 Phytagel. The mature somatic embryos gradually air dehydrated showed repetitive embryogenesis after subculture on half strength B5 medium supplemented with 20 g l sucrose, 20 g l−1 Phytagel, 1.5 g l−1 activated charcoal, 115.6 μM gibberellic acid and 214.8 μM naphthaleneacetic acid. The early cotyledonary, cotyledonary and mature somatic embryos tolerated respectively 95, 86 and 54% fresh weight losses without losing their repetitive embryogenesis potential. Cotyledonary and mature somatic embryos gradually air dehydrated in sealed Petri dishes showed 40–41% repetitive embryogenesis respectively after 20 days and 12 weeks desiccation storage. Repetitive embryogenesis in cotyledonary somatic embryos was significantly stimulated by chemical dehydration with 0.5 M sorbitol and 56% repetitive embryogenesis was achieved even after exposure to 2 M sorbitol for 24 h. The cotyledonary somatic embryos when alginate-encapsulated showed 47% repetitive embryogenesis even after chemical dehydration in 1.5 M sorbitol for 4 days followed by 1 h air dehydration, but failed to survive to the same dehydration conditions without encapsulation. The optimized repetitive embryogenesis and desiccation protocols offer the possibility to use in vitro techniques for continuous reliable somatic embryo production and short term germplasm storage.  相似文献   

7.
An efficient somatic embryogenesis and regeneration system was developed for the first time in onion using shoot apex explants. These explants were used to initiate callus in Murashige and Skoog (MS) medium supplemented with 4.0 mg l?1 2,4-dichlorophenoxyacetic acid. The induction frequency of primary callus in this medium was 85.3%. The primary calli were then transferred onto medium supplemented with 2.0 mg l?1 2,4-dichlorophenoxyacetic acid. Following two biweekly subcultures, embryogenic callus formed. Inclusion of a low concentration of 6-benzylaminopurine in the subculture medium promoted the formation of embryogenic callus. The addition of 2.0 mg l?1 glycine, 690 mg l?1 proline, and 1.0 g l?1 casein hydrolysate also increased the frequency of callus induction and embryogenic callus formation. The highest frequency of embryogenic callus (86.9%) and greatest number of somatic embryos (26.3 per callus) were obtained by the further addition of 8.0 mg l?1 silver nitrate. Somatic embryos formed plantlets on regeneration medium supplemented with 1.5 mg l?1 6-benzylaminopurine; addition of 2.0 mg l?1 glycine to the regeneration medium promoted a high frequency of regeneration (78.1%) and plantlet formation (28.7 plants per callus). The regenerated plantlets were transferred to half-strength MS medium supplemented with 1.5 mg l?1 indole-3-butyric acid for root development; the maximum frequency of root formation was 87.7% and the average number of roots was 7.6 per shoot. The regenerated plantlets were successfully grown to maturity after hardening in the soil. This is the first report of somatic embryogenesis and regeneration from shoot apex explants of onion.  相似文献   

8.
An effective protocol was developed for in vitro propagation of Psoralea corylifolia via somatic embryogenesis in cell suspension culture. Embryogenic callus was obtained on Murashige and Skoog (MS) medium supplemented with 6 μM naphthaleneacetic acid (NAA) and 30 μM glutamine from transverse TCLs from 10-day-old hypocotyl explants with a 96.4% frequency. Embryogenic callus produced a higher number of somatic embryos (123.7 ± 1.24 per gram fresh weight callus) on MS medium containing 30 g l?1 sucrose, 1 μM NAA, 4 μM benzyladenine (BA), 15 μM glutamine and 2 μM abscisic acid (ABA) after 4 weeks of culture. Somatic embryos successfully germinated (97.6%) on ½ MS medium containing 20 g l?1 sucrose, 8 g l?1 agar and supplemented with 2 μM BA, 1 μM ABA and 2 μM gibberellic acid (GA3) within 2 weeks of culture. Somatic embryos developed into normal plants, which hardened with 100% efficiency in soil in a growth chamber. Plants were successfully transferred to greenhouse and subsequently established in the field. Plant survival percentage in the field differed with seasonal variations. Average psoralen content of 12.9 μg g?1 DW was measured in different stages of somatic embryo development by high-performance liquid chromatography (HPLC). This protocol will be helpful for efficient propagation of elite clones on a mass scale, conservation efforts of this species and for secondary metabolites production studies.  相似文献   

9.
A new xylose fermenting yeast was isolated from over-ripe banana by enrichment in xylose-containing medium. The phylogenetic analysis of ITS1-5.8S-ITS2 region sequences of ribosomal RNA of isolate BY2 revealed that it shows affiliation to genus Pichia and clades with Pichia caribbica. In batch fermentation, Pichia strain BY2 fermented xylose, producing 15 g l?1 ethanol from 30 g l?1 xylose under shaking conditions at 28°C, with ethanol yield of 0.5 g g?1 and volumetric productivity of 0.31 g l?1 h?1. The optimum pH range for ethanol production from xylose by Pichia strain BY2 was 5–7. Pichia strain BY2 also produced 6.08 g l?1 ethanol from 30 g l?1 arabinose. Pichia strain BY2 can utilize sugarcane bagasse hemicellulose acid hydrolysate for alcohol production, efficiency of fermentation was improved by neutralization, and sequential use of activated charcoal adsorption method. Percent total sugar utilized and ethanol yield for the untreated hydrolysate was 17.14% w/v and 0.33 g g?1, respectively, compared with 66.79% w/v and 0.45 g g?1, respectively, for treated hemicellulose acid hydrolysate. This new yeast isolate showed ethanol yield of 0.45 g g?1 and volumetric productivity of 0.33 g l?1 h?1 from sugarcane bagasse hemicellulose hydrolysate detoxified by neutralization and activated charcoal treatment, and has potential application in practical process of ethanol production from lignocellulosic hydrolysate.  相似文献   

10.

Purpose of work

To establish pilot scale bioreactor cultures of somatic embryos of Siberian ginseng for the production of biomass and eleutherosides. Somatic embryos of Eleutherococcus senticosus were cultured in airlift bioreactors using Murashige and Skoog medium with 30 g sucrose l?1 for the production of biomass and eleutherosides. Various parameters including the type of bioreactor, aeration volume, and inoculum density were optimized for 3 l capacity bioreactors. Balloon-type airlift bioreactors, utilizing a variable aeration volume of 0.1–0.3 vvm and an inoculum of 5 g l?1, were suitable for biomass and eleutheroside production. In 500 l balloon-type airlift bioreactors, 11.3 g dry biomass l?1, 220 µg eleutheroside B l?1, 413 µg eleutheroside E l?1, and 262 µg eleutheroside E1 l?1 were produced.  相似文献   

11.
Plants of two accessions of Arachis glabrata were regenerated via somatic embryogenesis. Embryogenic calli were initiated from leaflet explants on Murashige and Skoog medium supplemented with picloram alone or picloram in combination with 6-benzylaminopurine. Leaflets of accession A6138 induced the highest percentage of somatic embryos in media composed of 10 mg dm−3 and 15 mg dm−3 picloram. In contrast, 5 mg dm−3 picloram with 0.1 mg dm−3 6-benzylaminopurine was one of the most effective combinations in accession AF385. MS medium supplemented with 2 g dm−3 activated charcoal (AC) used for 30 days was the most effective for embryo maturation. After 20 days of culture on MS medium devoid of growth regulators, 6 % of embryos converted into plantlets in accession A6138.  相似文献   

12.
Efficient and simple, organogenesis (direct and indirect) and somatic embryogenesis (cell suspension) systems were developed for in vitro propagation of Cyrtanthus mackenii, a valuable economic plant from leaf explants cultured on Murashige and Skoog (MS) medium supplemented with various concentrations and combinations of sucrose, plant growth regulators (PGRs), glutamine, phloroglucinol (PG) and 6-(2-hydroxy-3-methylbenzylamino) purine (PI55). MS medium solidified with 8 g L?1 agar (MSS) containing 40 g L?1 sucrose, 10 µM picloram, 2.5 µM benzyladenine (BA) and 20 µM glutamine produced a higher number of shoots from white nodular callus. This was however, not significantly different to direct shoot regeneration on media containing 10 µM picloram, 2.5 µM BA and a reduced concentration of sucrose and glutamine. The regenerated shoots were rooted best with MSS medium incorporating 10 µM PG. The number of somatic embryos (SEs) were significantly higher using liquid MS medium containing 30 g L?1 sucrose, 0.5 µM picloram, 1 µM thidiazuron or BA and 3 µM glutamine or gibberellic acid. The embryos were germinated in PGR-free MSS medium. All plantlets were successfully acclimatized in the greenhouse. Histological studies confirmed the different developmental stages and bipolar structure of SE. The organogenesis and somatic embryogenesis protocols provides a system for large scale propagation and germplasm conservation. Developed protocols can be used for clonal production and pharmacological and genetic transformation studies.  相似文献   

13.
The factors affecting the induction and development of somatic embryos and plantlet acclimatization of peach palm (Bactris gasipaes Kunth) were evaluated to establish an efficient regenerative protocol based on somatic embryogenesis. Mature zygotic embryos were cultured in Murashige and Skoog (MS) medium supplemented with 0–40 μM of picloram (4-amino-3,5,6-trichloropicolinic acid) and 0 or 5 μM of 2-isopentyladenine (6-dimethylaminopurine) (2-iP). After 5 mo. in culture embryogenic callus arose from primary calli. Picloram (10 μM) was effective in inducing embryogenic calli in 9.8% of the explants. The use of 1 μM of AgNO3 enhanced embryogenic competence. Embryogenic calli showed an organized structure, a globular aspect, and were white to yellowish in color. Histological analyses showed that cell proliferation arose from subepidermal cells adjacent to vascular bundles, resulting in primary callus formed by a meristematic zone from which somatic embryos arose. Protein profile analyses revealed two high molecular mass bands in these embryogenic calli, but not in other tissues. Embryogenic calli were transferred to a culture medium containing 40 μM of 2,4-dichlorophenoxyacetic acid, 10 μM of 2-iP, plus 1 g l−1 of glutamine, hydrolyzed 0.5 g l−1 casein, and activated 1.5 g l−1 of charcoal. Morphogenetic responses achieved in this medium were the development of somatic embryos, rooting, and loss of embryogenic capacity. Somatic embryos were converted to plantlets on MS medium plus 24.6 μM of 2-iP and 0.44 μM of naphthalene acetic acid. Plantlets were maintained in MS medium with activated charcoal (1.5 g l−1) until they were 6 cm tall, and then acclimatized. After 16 wk, 84.2 ± 6.4% survival was observed. M. P. Guerra and C. R. Clement are Fellows of the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Brasília, DF.  相似文献   

14.
Understanding the fate and dynamics of cells during callus formation is essential to understanding totipotency and the somatic embryogenesis (SE) mechanisms. In the present study, the histodifferentiation events involved during the acquisition and development of somatic embryogenesis in oil palm (Elaeis guineensis Jacq.) was investigated. Zygotic embryos were inoculated on SE induction medium, and at 14 days the first divisions of the procambial and perivascular cells were observed. This region progressed to the formation of meristematic masses at 21 days, indicating their procambial and perivascular origin. Primary calli emerged at 45 days of culture, followed by progression to embryogenic calli at 90 days. The formation of proembryos (PE) from the meristematic cells occurred at 135 days of cultivation. The PE were isolated from the tissue of origin by the slight thickening of the cell wall, indicating their unicellular origin. When transferred to the maturation phase, differentiation of the somatic embryos at different developmental stages (globular and torpedo) was observed. The differentiated somatic embryos presented protoderm, procambial strands and plumules. Afterwards, they were transferred to culture medium without growth regulators in which conversion of the somatic embryos from torpedo stage into plants was observed. These results enable a greater understanding of the SE process and plantlet formation in E. guineensis.  相似文献   

15.
An efficient procedure has been developed for inducing somatic embryogenesis and regeneration of plants from tissue cultures of oil palm (Elaeis guineensis Jacq.). Thin transverse sections (thin cell layer explants) of different position in the shoot apex and leaf sheath of oil palm were cultivated in Murashige and Skoog (MS) (Physiol Plant 15:473–497, 1962) medium supplemented with 0–450 μM picloram and 2,4-D with 3.0% sucrose, 500 mg L−1 glutamine, and 0.3 g L−1 activated charcoal and gelled with 2.5 g L−1 Phytagel. Embryogenic calluses were evaluated 12 wk after inoculation. Picloram (450 μM) was effective in inducing embryogenic calluses in 41.5% of the basal explants. Embryogenic calluses were maintained on a maturation medium composed of basal media, plus 0.6 μM NAA and 12.30 μM 2iP, 0.3 g L−1 activated charcoal, and 500 mg L−1 glutamine, with subcultures at 4-wk intervals. Somatic embryos were converted to plants on MS medium with macro- and micronutrients at half-strength, 2% sucrose, and 1.0 g L−1 activated charcoal and gelled with 2.5 g L−1 Phytagel.  相似文献   

16.
Embryogenic avocado cultures derived from ‘Hass’ protoplasts were genetically transformed with the plant defensin gene (pdf1.2) driven by the CaMV 35S promoter in pGPTV with uidA as a reporter gene and bar, the gene for resistance to phosphinothricin, the active ingredient of the herbicide Finale® (Basta) (Bayer Environmental Science, Research Triangle Park, Durham, NC ). Transformation was mediated by Agrobacterium tumefaciens strain EHA105. Transformed cultures were selected in the presence of 3.0 mg l?1 phosphinothricin in liquid maintenance medium for 3–4 mo. Liquid maintenance medium consisted of modified MS medium containing (per liter) 12 mg NH4NO3 and 30.3 mg KNO3 and supplemented with 0.1 mg l?1 thiamine HCl, 100 mg l?1 myo-inositol, 30 g l?1 sucrose, 3.0 mg l?1 phosphinothricin, and 0.41 μM picloram. Somatic embryo development from transformed cultures was initiated on MS medium supplemented with 45 g l?1 sucrose, 4 mg l?1 thiamine HCl, 100 mg l?1 myo-inositol, 10% (v/v) filter-sterilized coconut water, 3.0 mg l?1 phosphinothricin, and 6.0 g l?1 gellan gum. Limited plant recovery occurred from somatic embryos on semi-solid MS medium supplemented with 3.0 mg l?1 phosphinothricin, 4.44 μM 6-benzylaminopurine (BA), and 2.89 μM GA3; transformed shoots were micrografted on in vitro-grown seedling rootstocks. Approximately 1 yr after acclimatization in the greenhouse, transformed shoots were air-layered to recover transformed roots. Genetic transformation of embryogenic cultures, somatic embryos, and regenerated plants was confirmed by polymerase chain reaction (PCR), Southern blot hybridization, the XGLUC reaction for uidA, and application of the herbicide Finale® to regenerated plants.  相似文献   

17.
Regeneration of avocado via somatic embryogenesis is difficult due to poor embryo maturation, resulting in low frequencies of germination. In this study, the influence of semi-permeable cellulose acetate membranes and culture media, containing high levels of sucrose along with coconut water, on maturation and germination of somatic embryos of avocado have been evaluated. The culture of embryogenic calli on top of cellulose acetate membranes significantly increased the number of mature, white-opaque embryos that were recovered after 5 weeks of culture. These embryos showed a much more normal appearance and better quality compared with the control embryos, although the embryo size was significantly reduced. To increase the embryo size and to complete maturation, several two-step maturation treatments were tested. The culture of white-opaque somatic embryos in a modified MS medium with B5 macronutrients gelled with 10 g L?1 agar (B5m10A medium) over a 5-week period, followed by 5 additional weeks in B5m10A with 45 g L?1 sucrose and 20 % coconut water, yielded the best results, reducing the percentage of necrotic embryos and the number of calli formed. The beneficial effects of this maturation treatment were enhanced when using embryos that were pre-matured on cellulose acetate membranes. Following this two-step maturation treatment, the germination rate of the control somatic embryos, which were not cultured on cellulose membranes, was lower than 10 %, but it significantly improved when the embryos had been pre-matured on cellulose acetate membranes for 5 weeks, reaching a germination rate close to 40 %. The water availability was significantly reduced when somatic embryos were cultured on cellulose membranes, and after this pre-maturation treatment, the white-opaque embryos showed lower water potential and ABA content compared with the control embryos. These results suggest that culturing over cellulose membranes causes a controlled embryo desiccation that enhances the recovery of plants.  相似文献   

18.
A newly-isolated strain of Serratia marcescens, G12, was characterized for 2,3-butanediol (2,3-BD) production. In shake-flask and batch fermentations, 2,3-BD reached 48.5 and 51 g l?1, respectively. Low amounts of (~8 g l?1) of acetoin were also formed. In fed-batch fermentations, strain G12 produced 72.8 g 2,3-BD l?1 with glucose initially at 130 g l?1. When aeration rate was increased to 2.5 vvm for the fermentation process, 2,3-BD reached 87.8 g l?1 and the highest productivity was 1.6 g l?1 h?1. Acetoin was at 6.2 g l?1. G12 therefore may be a suitable candidate strain for large-scale production of 2,3-BD.  相似文献   

19.
An efficient, highly reproducible system for plant regeneration via somatic embryogenesis was developed for Cenchrus ciliaris genotypes IG-3108 and IG-74. Explants such as seeds, shoot tip segments and immature inflorescences were cultured on Murashige and Skoog (MS) medium supplemented with 2.0–5.0 mg dm?3 2,4-dichlorophenoxyacetic acid (2,4-D) and 0.5 mg dm?3 N6-benzyladenine (BA) for induction of callus. Callus could be successfully induced from all the three explants of both the genotypes. But the high frequency of embryogenic callus could be induced only from immature inflorescence explants. Somatic embryos were formed from nodular, hard and compact embryogenic calli when 2,4-D concentration was gradually reduced and BA concentration increased. Histological studies of somatic embryos indicated the presence of shoot apical meristem with leaf primordia. Ultrastructural details of globular and scutellar somatic embryos further validated successful induction and progression of somatic embryogenesis. Shoots were differentiated upon germination of somatic embryos on MS medium containing 2,4-D (0.25 mg dm?3) and BA or kinetin (1–5 mg dm?3). Roots were induced on ½ MS medium containing charcoal (0.8 %), and the regenerated plants transferred to pots and established in the soil showed normal growth and fertility.  相似文献   

20.
Hygromycin (hyg) at low doses (0.5–1.0 mg l?1) promoted somatic embryogenesis from apical sections of spinach lateral roots. The highest promoting effect on both the frequency of regeneration and the mean number of somatic embryos (SE) per explant was achieved at 0.5 mg l?1 hyg. With increasing the concentration of hyg to 1 mg l?1, the regeneration frequency decreased, while the mean SE number remained significantly higher than in control (hyg-free medium). Complete inhibition of SE regeneration started at 7.5 mg l?1 hyg. Moreover, hyg efficiently promoted the process of secondary somatic embryogenesis. Compared to control, a 2.75-fold increase in the secondary somatic embryo (SSE) mean number was obtained at 0.5 mg l?1 hyg, and the increment was still discernible at 1.0 and 2.5 mg l?1 hyg. Both primary SE and SSE explants became completely necrotic at 12.5 mg l?1 hyg. Since attempts with direct selection at 20 mg l?1 hyg proved unsuccessful, the results obtained in this study suggest that a stepwise selection procedure is suitable, starting with selection at 0.5 mg l?1 hyg, to exploit the promoting effect of low hyg doses on SE regeneration from transformed cells, then gradually increasing the hyg concentration to 20 mg l?1 for final selection. Complete SE and SSE explant mortality at hyg above 12.5 mg l?1 guarantees a low possibility of escape during the selection process. This study will be useful for increasing the efficiency of transgenic plant regeneration following genetic transformation in spinach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号