首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
DNA methylation is known to play an important role in various developmental processes and defense mechanisms in plants and other organisms. However, it is not known whether DNA methylation is implicated in the genetic regulation of plant secondary metabolism, including resveratrol biosynthesis. Resveratrol is a naturally occurring polyphenol that is present in grapes, peanuts, and other plant sources, and it exhibits a wide range of valuable biologically active properties. The transformation of the wild-growing grape Vitis amurensis with the oncogene rolB from Agrobacterium rhizogenes has been demonstrated to considerably increase resveratrol production. To investigate whether DNA methylation regulates resveratrol biosynthesis, we treated both rolB transgenic and empty vector control V. amurensis cell cultures with the DNA demethylation agent 5-azacytosine (azaC). The azaC treatment significantly increased stilbene synthase 10 gene (VaSTS10) expression and resveratrol content in the V. amurensis cell cultures. Using bisulfite sequencing, we examined the methylation status of VaSTS10 in cell cultures under normal conditions and after azaC treatment. Both the promoter and 3′-end of the protein coding region of the VaSTS10 gene were hypermethylated (54–67 %) in the control cell culture. The rolB transgenic cell culture had high levels of resveratrol and lower hypermethylation levels of the VaSTS10 gene (20–47 %). The azaC treatment resulted in reduction in the DNA methylation levels in the promoter and coding regions of the VaSTS10 gene in both cell cultures. These data suggest that the DNA methylation may be involved in the control of resveratrol biosynthesis via the regulation of STS genes expression.  相似文献   

2.
DNA methylation is known to be involved in the regulation of plant development and defense mechanisms. However, there is a general lack of data on the role of methylation in plant secondary metabolism. We have investigated the effect of a cytidine analog, 5-azacytidine (azaC), which is known to block DNA methylation, on resveratrol biosynthesis and stilbene synthase (STS) gene expression in Vitis amurensis cultured cells. Resveratrol is a naturally occurring polyphenol that has been reported to exhibit a wide range of important biological and pharmacological properties. We previously obtained a control cell line of V. amurensis (VV) as well as a rolB-transgenic cell line of V. amurensis (VB2) that has a higher level of resveratrol accumulation. In our experimental setup, the azaC-treated VV and VB2 calli produced 0.092% and 0.455% dry weight (DW) resveratrol, respectively. We found that treatment with 200 μM of azaC resulted in 1.9- and 2.0-fold increases in resveratrol production in VV and VB2 calli, respectively. A quantitative real-time PCR assay for STS gene expression in the azaC-treated VV and VB2 cells revealed that there were statistically increased expression levels of VaSTS10 in VV calli and of VaSTS5, VaSTS6, and VaSTS10 in VB2 calli. These results demonstrate that azaC is able to increase resveratrol production in V. amurensis calli through a mechanism that involves the induction of STS gene expression.  相似文献   

3.
4.
Resveratrol is a plant-derived phenol but the mechanism that regulates its biosynthesis remains unidentified. Stilbene synthase (STS) catalyzes resveratrol formation in vivo and we have proposed that inducers of resveratrol production affect STS expression through an unidentified epigenetic mechanism. To investigate the role of DNA methylation in resveratrol biosynthesis, we treated both rolB transgenic and empty vector control Vitis amurensis cell cultures with the DNA demethylation agent, 5-azacytidine. Treated cells had increased resveratrol production through activation of VaSTS10 expression. The lowest levels of cytosine methylation were at the 5′- and 3′-ends of the VaSTS1 protein-coding sequence. Cytosine methylation decreased mostly at the 5′- and 3′-ends of VaSTS10 after azaC treatment with an intriguing regularity in the number of cytosine nucleotides within the 5′- and 3′- ends of the protein-coding sequences. Thus, cytosine methylation is crucial for the regulation of the resveratrol biosynthetic pathway.  相似文献   

5.
Resveratrol, a naturally occurring polyphenol, has been reported to exhibit a wide range of valuable biological and pharmacological properties. In the present investigation, we show that transformation of Vitis amurensis Rupr. with the oncogene rolC of Agrobacterium rhizogenes increased resveratrol production in the two transformed callus cultures 3.7 and 11.9 times. The rolC-transformed calli were capable of producing 0.099% and 0.144% dry weight of resveratrol. We characterized phenylalanine ammonia-lyase (PAL) and stilbene synthase (STS) gene expression in the two rolC transgenic callus cultures of V. amurensis. In the rolC transgenic culture with higher resveratrol content, expression of VaPAL3, VaSTS3, VaSTS4, VaSTS5, VaSTS6, VaSTS8, VaSTS9, and VaSTS10 was increased; while in the rolC culture with lower resveratrol content, expression of VaPAL3 and VaSTS9 was increased. We suggest that transformation of V. amurensis calli with the rolС gene induced resveratrol accumulation via selective enhancement of expression of individual PAL and STS genes involved in resveratrol biosynthesis. We compared the data on PAL and STS gene expression in rolC transgenic calli with the previously obtained results for rolB transgenic calli of V. amurensis. We propose that the transformation of V. amurensis with the rolC and rolB genes of A. rhizogenes increased resveratrol accumulation through different regulatory pathways.  相似文献   

6.
The present study examines the effect of calcium influx induced by the calcium ionophore (CI) on the biosynthesis of resveratrol and the expression of stilbene synthase (STS) and calcium-dependent protein kinase (CDPK) genes in cell cultures of Vitis amurensis, which have different levels of resveratrol production. The present study utilized the control cell culture V2 of V. amurensis, which contains no more than 0.02?% dry weight (DW) of resveratrol, in addition to rolB transgenic cell cultures VB1 and VB2, which have increased resveratrol contents (0.1–0.8?% DW). Treatment with the CI at a 1?μM concentration significantly increased STS gene expression (6 of 10 analyzed STS genes) and resveratrol production in the control V2 cell culture by fourfold; however, use of the CI at 10?μM significantly decreased resveratrol production by 2–4 fold in all cell cultures tested. In the control V2 grape cell culture, treatment with the CI increased expression of all of the CDPK genes except VaCDPK1a and VaCDPK3a. In the rolB transgenic VB2 grape cell culture treated with the CI, we detected alterations in expression of several CDPK genes, but these changes in gene expression were not significant. Our results indicated that treatment with 1?μM of the CI increased resveratrol content and production in control grape cells by selectively increasing the expression of STS genes. Conversely, the CI treatment did not significantly increase resveratrol content and production, or the expression of CDPK or STS genes in the rolB transgenic cells. Likely, untreated VB2 cells have increased concentrations of cytoplasmic calcium, and therefore, treatment with the CI did not significantly change CDPK expression. These results suggest that the rolB gene has an important role in the regulation of calcium-dependent transduction pathways in transformed cells.  相似文献   

7.
Summary DNA methylation has been associated with gene activity in differentiating and developing plant tissues. The objective of this study was to determine the involvement of methylation in the expression of a gene transferred into carrot (Daucus carota L.) tissues by particle bombardment. Expression of the Dc8-GUS gene construct in response to treatments with 5-azacytidine (S-azaC) and to in vitro methylation by methylases was investigated by histochemical assay of GUS activity. The 5-azaC treatment increased the frequency of Dc8-driven GUS expression in both calli and somatic embryos. The increase occurred with treatment either to E. coli containing the plasmid insert or to the carrot tissues before bombardment. GUS expression, increased by the 5-azaC treatment, was enhanced by ABA treatment of both calli and somatic embryos and was more prominent in the latter. Increased digestion of the 5-azaC-treated plasmid DNA with EcoRII suggested that demethylation had occurred. In vitro methylation of Dc8-GUS by methylases generally resulted in a lower frequency of GUS expression. SssI methylase completely inhibited GUS expression. The level of GUS expression was correlated with the extent of methylation of the plasmid.Abbreviations ABA Abscisic Acid - 5-azaC 5-azacytidine - GUS -glucuronidase - Dc8 carrot promoter  相似文献   

8.
Resveratrol is a polyphenol, present in grapes, peanuts, and other plant sources, with a wide range of valuable biological activities. We established a Vitis amurensis cell culture accumulating high levels of resveratrol by introducing the rolB gene of Agrobacterium rhizogenes in the V. amurensis genome, and studied the stability of resveratrol accumulation during 27 months of continuous subculturing. This study demonstrates a decline in the high level of resveratrol production by the rolB transgenic cell line during its long-term cultivation. Elicitation of the rolB transgenic calli with methyl jasmonate and salicylic acid, which are known to stimulate the production of plant secondary metabolites, resulted in a recovery of resveratrol accumulation in the rolB transgenic cell culture, while the empty vector-transformed culture with trace starting content of resveratrol exhibited low inducibility to the treatment.  相似文献   

9.
10.
11.
The calmodulin antagonist N-(6-Aminohexyl)-5-chloro-1-naphthalenesulfonamide (W7) binds to calmodulzin and inhibits Ca2+/calmodulin-regulated enzyme activities. In plant cells, W7 inhibits the activity of calcium-dependent protein kinases (CDPKs)—the major calcium sensors in plants. In the present study, we examined the effect of W7 on increased resveratrol biosynthesis and expression of CDPK and stilbene synthase (STS) genes in a cell culture of Vitis amurensis Rupr. We used coumaric acid (CA), salicylic acid (SA), and phenylalanine (Phe) to increase the content of resveratrol in V. amurensis calli, since its content is low under standard conditions. W7 significantly decreased resveratrol production and expression of STS genes in CA-, SA-, and Phe-treated grape cells. Also, treatment of the V. amurensis calli with SA, Phe, or CA considerably increased expression of VaCDPK1a (with SA, Phe), VaCDPK1L (with SA, Phe), VaCDPK2a (with Phe) genes, and decreased expression of VaCDPK3a (with CA). Addition of W7 to CA-, SA-, and Phe-treated grape cells reversed this effect, resulting in increased VaCDPK3a expression and decreased VaCDPK1a, VaCDPK1L, and VaCDPK2a expression. The results obtained suggest that CDPK activities might play an important role in resveratrol biosynthesis.  相似文献   

12.
13.
14.
15.
16.

Background  

Aberrations in DNA methylation patterns promote changes in gene expression patterns and are invariably associated with neoplasia. DNA methylation is carried out and maintained by several DNA methyltransferases (DNMTs) among which DNMT1 functions as a maintenance methylase while DNMT3a and 3b serve as de novo enzymes. Although DNMT3b has been shown to preferentially target the methylation of DNA sequences residing in pericentric heterochromatin whether it is involved in gene specific methylation remains an open question. To address this issue, we have silenced the expression of DNMT3b in the prostate-derived PC3 cells through RNA interference and subsequently studied the accompanied cellular changes as well as the expression profiles of selected genes.  相似文献   

17.
Genomes must balance active suppression of transposable elements (TEs) with the need to maintain gene expression. In Arabidopsis, euchromatic TEs are targeted by RNA-directed DNA methylation (RdDM). Conversely, active DNA demethylation prevents accumulation of methylation at genes proximal to these TEs. It is unknown how a cellular balance between methylation and demethylation activities is achieved. Here we show that both RdDM and DNA demethylation are highly active at a TE proximal to the major DNA demethylase gene ROS1. Unexpectedly, and in contrast to most other genomic targets, expression of ROS1 is promoted by DNA methylation and antagonized by DNA demethylation. We demonstrate that inducing methylation in the ROS1 proximal region is sufficient to restore ROS1 expression in an RdDM mutant. Additionally, methylation-sensitive expression of ROS1 is conserved in other species, suggesting it is adaptive. We propose that the ROS1 locus functions as an epigenetic rheostat, tuning the level of demethylase activity in response to methylation alterations, thus ensuring epigenomic stability.  相似文献   

18.
The numbers of chromosomes and nucleoli in cultured cells of Vitis amurensis transformed with the rolB oncogene from A. rhizogenes have been studied. In general, the integration of the rolB gene in grape DNA mostly caused the elevation of the level of the chromosome variability, as well as higher numbers of nucleoli in the cultured cells. The possible influence of the observed chromosomal modifications on the productivity parameters of the grape cell cultures is discussed.  相似文献   

19.
Cellular differentiation is controlled by a variety of factors including gene methylation, which represses particular genes as cell fate is determined. The incorporation of 5-azacytidine (5azaC) into DNA in vitro prevents methylation and thus can alter cellular differentiation pathways. Human bone marrow fibroblasts and MG63 cells treated with 5azaC were used as models of osteogenic progenitors and of a more mature osteoblast phenotype, respectively. The capacity for differentiation of these cells following treatment with glucocorticoids was investigated. 5azaC treatment led to significant expression of the osteoblastic marker alkaline phosphatase in MG63 osteosarcoma cells, which was further augmented by glucocorticoids; however, in human marrow fibroblasts alkaline phosphatase activity was only observed in glucocorticoid-treated cultures. MG63 cells represent a phenotype late in the osteogenic lineage in which demethylation is sufficient to induce alkaline phosphatase activity. Marrow fibroblasts are at an earlier stage of differentiation and require stimulation with glucocorticoids. In contrast, the expression of osteocalcin, an osteoblastic marker, was unaffected by 5azaC treatment, suggesting that regulation of expression of the osteocalcin gene does not involve methylation. These models provide novel approaches to the study of the control of differentiation in the marrow fibroblastic system.  相似文献   

20.
The M·AluI DNA-(cytosine C5)-methyltransferase (5mC methylase) acts on the sequence 5′-AGCT-3′. The amino acid sequences of known 5mC methylases contain ten conserved motifs, with a variable region between Motifs VIII and IX that contains one or more “target-recognizing domains” (TRDs) responsible for DNA sequence specificity. Monospecific 5mC methylases are believed to have only one TRD, while multispecific 5mC methylases have as many as five. M·AluI has the second-largest variable region of all known 5mC methylases, and sequence analysis reveals five candidate TRDs. In testing whether M·AluI is in fact monospecific it was found that AGCT methylation represents only 80–90% of the methylating activity of this enzyme, while control experiments with the enzyme M·HhaI gave no unexplained activity. Because individual TRDs can be deleted from multispecific methylases without general loss of activity, a series of insertion and deletion mutants of the M·AluI variable region were prepared. All deletions that removed more than single amino acids from the variable region caused significant loss of activity; a sensitive in vivo assay for methylase activity based on McrBC restriction suggested that the central portion of the variable region is particularly important. In some cases, multispecific methylases can accommodate a TRD from another multispecific methylase, thereby acquiring an additional specificity. When TRDs were moved from a multispecific methylase into two different locations in the variable region of M·AluI, all hybrid enzymes had greatly reduced activity and no new specificities. M·AluI thus behaves in most respects as a monospecific methylase despite the remarkable size of its variable region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号