首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Surface plasmon polaritons (SPPs) have appealing features such as tighter spatial confinement and higher local field intensity. Manipulation of surface plasmon polaritons on metal/dielectric interface is an important aspect in the achievement of integrated plasmonic circuit beyond the diffraction limit. Here, we introduce a design of pin cushion structure and a holographic groove pattern structure for tunable multi-port SPPs excitation and focusing. Free space light is coupled into SPPs through momentum matching conditions. Both nanostructures are capable of tunably controlling of SPPs depending on the incident polarizations, while the holographic method provides more flexibility of wavelength-dependent excitations. Furthermore, a quantitative method is applied to calculate the efficiencies of excitation for both nanostructures under different conditions, including radially polarized incident beams. These results can work as a guidance and be helpful to further choice of the suitable design strategies for variable plasmonic applications such as beam splitter, on-chip spectroscopy, and plasmonic detectors.  相似文献   

2.
Plasmonics - Surface plasmon polariton (SPP) Airy beams are very attractive in theory and applications. We propose a new method to design dielectric relief holographical structures for controlling...  相似文献   

3.
We have theoretically investigated the unidirectional surface plasmon polariton (SPP) excitation on single slits with oblique backside illumination. An aperture diffraction method is devised, from which the conditions of slit width and beam illumination angle for the unidirectional SPP excitation are formulated analytically. The derived unidirectional conditions are validated with vectorial electromagnetic simulation using the rigorous coupled wave analysis.  相似文献   

4.
We theoretically demonstrate the possibility of obtaining nanosources through an original schema based on the generation of the radially polarized surface plasmon mode of a cylindrical metallic tip. This mode has no cutoff radius and can propagate along the tip walls until its nanometric-sized apex. Instead of radiating from the tip end, the guided mode will give rise to a nanospotlight via the well-known antenna effect. 3D calculations demonstrate that both surface plasmon-guided mode and antenna effect are directly involved in the light confinement. Near-field optical microscopy can benefit significantly from this kind of probe because the sample does not need to be directly illuminated.  相似文献   

5.
We performed numerical investigations of surface plasmon excitation and propagation in structures made of a photochromic polymer layer deposited over a metal surface using the finite-difference time-domain method. We investigated the process of light coupling into surface plasmon polariton excitation using surface relief gratings formed on the top of a polymer layer and compared it with the coupling via rectangular ridges grating made directly in the metal layer. We also performed preliminary studies on the influence of refractive index change of photochromic polymer on surface plasmon polariton propagation conditions.  相似文献   

6.
Semiconductor surface plasmon polariton (SPP) waveguide has unique optical properties and compatibility with existing integrated circuit manufacturing technology; thus, SPP devices of semiconductor materials have wide application potential. In this study, a new integrated graphene SPP waveguide is designed using the bottom and top roles of graphene. Moreover, a T waveguide structure is designed by InGaAs of semiconductor gain, with rectangular GaAs material on both sides. The structure adopts light to stimulate the SPP, where its local area is enhanced by the interaction between two interface layers and a semiconductor gain and where its frequency can be adjusted by the thickness of the graphene. Characteristic analysis reveals the coupling between the T semiconductor gain and the SPP mode. The propagation distance of the waveguide can reach 75 cm, the effective mode field is approximately 0.0951λ 2, the minimum of gain threshold is approximately 2992.7 cm?1, and the quality factor (FOM) can reach 180. The waveguide structure which provides stronger localization can be compatible with several optical and electronic nanoscale components. That means, it can provide light for surface plasmon circuit and also can provide a great development in the low-threshold nanolaser.  相似文献   

7.
In allusion to special modes supported by surface plasmon polariton (SPP) waveguides, explicit expression for mode coupling coefficient which plays a central role in coupled mode theory is firstly redefined by adding the longitudinal electric field component. The mode coupling coefficients calculated by the proposed formula improve greatly compared with the coupled mode theory suited to conventional optical waveguides, and reasonable explanations from the point of view of physics and mathematics have been given. Afterwards, the coupling lengths, the transmission lengths, the normalized power exchanges, and the cross talk performances of adjacent parallel SPP waveguides with varying waveguide separation distances D and waveguide lengths L are investigated at telecom wavelength. The results are encouraging as they indicate that the coupled mode theory is developed in a self-consistent manner by retaining the longitudinal electric field component in the derivation and neglecting it only when the waveguides structure satisfies the weakly guiding situations. As a result, the new mode coupling coefficient formula for SPP waveguides considered in this paper is an important complement in the theory of SPP waveguides.  相似文献   

8.

The plasmonic integrated circuit, a potential application of surface plasmon polaritons (SPPs), can manipulate an SPP wave propagating on a metal surface in a way similar to electronic circuits. Here, we propose the concept of three-dimensional (3D) SPP wave manipulation: control of an SPP wave propagating in both the horizontal direction and the vertical direction. A hole set in the film can guide an SPP wave in the vertical direction. In the horizontal direction, two holographic groove patterns are used to focus an incident SPP wave on one surface of the film to the hole and control the divergent SPP waves transmitted from the hole on the other metal surface, respectively. The holographic groove patterns are designed via the methodology of surface electromagnetic wave holography. 3D finite-difference time-domain method simulations show a good performance of the 3D manipulation via these designed holographic groove patterns.

  相似文献   

9.
Two prototypical transducer structures are proposed, including a single-waveguide (SW) and Mach–Zehnder interferometer (MZI), implemented with surface plasmon polariton waveguides. Formulas of the output power with structural parameters are deduced respectively. The sensitivities are found to be proportional to S 1 for SW and S 2 for MZI, which are dependent on waveguide parameters. Maximizing S 1 or S 2 maximizes the corresponding sensitivity, leading to optimized waveguide designs and preferred operating wavelengths. Sensitivity parameters S 1 and S 2 are calculated for fundamental modes of V grooves, triangular wedges, and dielectric-loaded surface plasmon polariton waveguides (DLSPPWs), as a function of measured material refractive index n c (n c ?=?1.3~1.6, representative refractive index of biochemical matter), at wavelength λ?=?1.55 μm. Finally, the sensitivity S 2 is analyzed as a function of work wavelength for DLSPPWs with different ridge thickness and specific fluidic SPP waveguide for biochemical sensing is presented. The results offer foundations for application of surface plasmon polariton waveguides in biochemical sensing.  相似文献   

10.
11.
12.
Plasmonics - Surface plasmon (SP) coupling behaviors of an InGaN/GaN quantum well (QW) with surface plasmon polariton (SPP) induced on a smooth Ag-film/GaN interface and localized surface plasmon...  相似文献   

13.
A near-field coupling method for studying propagation properties of surface plasmon polariton (SPP) in subwavelength dielectric-loaded SPP waveguides (DLSPPWs) is presented. In this method, a tapered fiber probe is employed to generate a nanometer optical spot. When this spot is near the entrance of the DLSPPW with its polarization parallel to the waveguide, a strong guiding wave is observed by a leakage radiation microscope. For DLSPPWs with a dielectric height of about 600 nm, we observed SPP waves with zigzag propagation patterns at 650 nm wavelength. Such zigzag propagation results in a great reduction of propagation loss. In addition, the zigzag wave has a strong optical confinement. The bending loss for an L-bend DLSPPW is only about 0.4 dB.  相似文献   

14.
For many years, the search for efficient surface plasmon polariton (SPP) excitation mechanisms has been a recurring matter in the development of compact plasmonic devices. In this work, we excited SPPs illuminating a subwavelength metallic ridge with a focused spot to characterize the coupling efficiency by varying the incidence angle of the excitation beam from ??50 to 50°. The intensity distribution of the excited SPPs was measured using leakage radiation microscopy to determine the relative coupling efficiency in the wavelength interval from 740 to 840 nm. We modeled the excitation efficiency as a function of the incidence angle using a simple analytical diffraction model. Two ridges of different width (200 and 500 nm) were used to compare results and validate the model. The experimental results show a higher coupling efficiency at oblique incidence, where the coupling was enhanced by factors of 2× for the 500-nm-wide ridge, and 3× for the 200-nm-wide ridge, as well as unidirectional SPP excitation. The experimental results are in good agreement with the proposed model.  相似文献   

15.
We propose and numerically investigate a dielectric-thickness-adjusting method to manipulate the graphene surface plasmon polariton (SPP). The dispersion relationships of graphene SPP at different dielectric thickness are derived by solving the analytic equations. In addition, the SPP effective index at cutoff dielectric thickness is obtained according to different dielectric permittivity and working frequencies. As a typical application, a plasmonic Bragg reflector is designed by alternately depositing dielectric gratings along the transverse direction of the SPP propagation. The performance of the Bragg reflector is analyzed at different grating thickness, and the effective index at cutoff thickness is verified by numerical simulation. The proposed method will have important potential prospects in designing graphene-based wave trapping and slow wave devices in future.  相似文献   

16.
The excitation of surface plasmon polaritons (SPP) at a gold?Cvacuum interface by femtosecond light pulses mediated by organic nanofiber-induced dielectric perturbations is observed using interferometric time-resolved photoemission electron microscopy. The experimental data are quantitatively reproduced by analytic simulations, where the nanofibers are considered as superior source of the SPP emission. The flexibility and tuneability of phenylene-based nanofibers in their morphology and intrinsic optical properties open up future applications to fabricate custom-designed nanoscale sources of SPP.  相似文献   

17.

Exploring hybrid gap surface plasmon polariton waveguides (HGSPPWs) is an important milestone in developing the next-generation, nanoscale integrated photonic circuit technology. To advance their potential applications, HGSPPWs are required to have tunable capability, highly reliable, simple fabrication process, and feasible integration. In this paper, we propose two tunable HGSPPWs fulfilling the requirements. The proposed HGSPPWs consist of a metallic wedge laterally coupled with a dielectric waveguide. The modal characteristics of HGSPPWs are investigated at the optical telecommunication wavelength, which shows the modal characteristics could be effectively controlled by tuning the key geometry parameters and structure of HGSPPWs. The propagation length could achieve the centimeter scale while maintaining the propagation mode size at the deep-subwavelength scale (~ λ2/105). The studies on fabrication tolerance and waveguide crosstalk show their robust property for practical implementations. The effective tunable mechanism is also proposed and studied, which shows remarkable feasibility to realize multifunctional plasmon-based photonic components. Compared with the conventional HGSPPWs, the proposed HGSPPWs exhibit superior features in ultralow loss deep-subwavelength light guiding, are highly reliable, and are easy to integrate.

  相似文献   

18.
Lou  Jian  Zhu  Jun  Wei  Duqu  Jiang  Frank 《Plasmonics (Norwell, Mass.)》2019,14(1):33-39
Plasmonics - Surface plasmon polariton lasers are the basis for photonic circuits, but their losses, thresholds, and some other problems remain thorny issues. In this study, we put forward a novel...  相似文献   

19.
The anticrossing behavior of dispersion curves of the surface plasmon polaritons supported by metal-insulator-metal structures are studied experimentally and theoretically. Samples consisting of a poly(methyl methacrylate) layer sandwiched by Ag films are prepared and their angle- and wavelength-scan attenuated total reflection spectra are measured. From an analysis of the angle-scan spectrum, the coupled-mode nature of the surface plasmon polariton modes is suggested. The dispersion relations obtained from the wavelength-scan spectra exhibit clearly the anticrossing behavior that arises from the coupling of the modes. The experimental dispersion relations are in good agreement with theoretical ones.  相似文献   

20.
Plasmonics - Long-range surface plasmon resonance (LRSPR)-based sensors exhibit high sensitivity as compared to the conventional SPR sensors due to low losses. A high refractive index prism and low...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号