共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
Rocha CS Luz DF Oliveira ML Baracat-Pereira MC Medrano FJ Fontes EP 《Phytochemistry》2007,68(6):802-810
The sucrose binding protein (SBP) belongs to the cupin family of proteins and is structurally related to vicilin-like storage proteins. In this investigation, a SBP isoform (GmSBP2/S64) was expressed in E. coli and large amounts of the protein accumulated in the insoluble fraction as inclusion bodies. The renatured protein was studied by circular dichroism (CD), intrinsic fluorescence, and binding of the hydrophobic probes ANS and Bis-ANS. The estimated content of secondary structure of the renatured protein was consistent with that obtained by theoretical modeling with a large predominance of beta-strand structure (42%) over the alpha-helix (9.9%). The fluorescence emission maximum of 303 nm for SBP2 indicated that the fluorescent tryptophan was completely buried within a highly hydrophobic environment. We also measured the equilibrium dissociation constant (K(d)) of sucrose binding by fluorescence titration using the refolded protein. The low sucrose binding affinity (K(d)=2.79+/-0.22 mM) of the renatured protein was similar to that of the native protein purified from soybean seeds. Collectively, these results indicate that the folded structure of the renatured protein was similar to the native SBP protein. As a member of the bicupin family of proteins, which includes highly stable seed storage proteins, SBP2 was fairly stable at high temperatures. Likewise, it remained folded to a similar extent in the presence or absence of 7.6M urea or 6.7 M GdmHCl. The high stability of the renatured protein may be a reminiscent property of SBP from its evolutionary relatedness to the seed storage proteins. 相似文献
6.
A large set of candidate nucleotide-binding site (NBS)-encoding genes related to disease resistance was identified in the sorghum (Sorghum bicolor) genome. These resistance (R) genes were characterized based on their structural diversity, physical chromosomal location and phylogenetic relationships. Based on their N-terminal motifs and leucine-rich repeats (LRR), 50 non-regular NBS genes and 224 regular NBS genes were identified in 274 candidate NBS genes. The regular NBS genes were classified into ten types: CNL, CN, CNLX, CNX, CNXL, CXN, NX, N, NL and NLX. The vast majority (97%) of NBS genes occurred in gene clusters, indicating extensive gene duplication in the evolution of S. bicolor NBS genes. Analysis of the S. bicolor NBS phylogenetic tree revealed two major clades. Most NBS genes were located at the distal tip of the long arms of the ten sorghum chromosomes, a pattern significantly different from rice and Arabidopsis, the NBS genes of which have a random chromosomal distribution. 相似文献
7.
Cuneo MJ Changela A Warren JJ Beese LS Hellinga HW 《Journal of molecular biology》2006,362(2):259-270
Periplasmic binding proteins (PBPs) comprise a protein superfamily that is involved in prokaryotic solute transport and chemotaxis. These proteins have been used to engineer reagentless biosensors to detect natural or non-natural ligands. There is considerable interest in obtaining very stable members of this superfamily from thermophilic bacteria to use as robust engineerable parts in biosensor development. Analysis of the recently determined genome sequence of Thermus thermophilus revealed the presence of more than 30 putative PBPs in this thermophile. One of these is annotated as a glucose binding protein (GBP) based on its genetic linkage to genes that are homologous to an ATP-binding cassette glucose transport system, although the PBP sequence is homologous to periplasmic maltose binding proteins (MBPs). Here we present the cloning, over-expression, characterization of cognate ligands, and determination of the X-ray crystal structure of this gene product. We find that it is a very stable (apo-protein Tm value is 100(+/- 2) degrees C; complexes 106(+/- 3) degrees C and 111(+/- 1) degrees C for glucose and galactose, respectively) glucose (Kd value is 0.08(+/- 0.03) microM) and galactose (Kd value is 0.94(+/- 0.04) microM) binding protein. Determination of the X-ray crystal structure revealed that this T. thermophilus glucose binding protein (ttGBP) is structurally homologous to MBPs rather than other GBPs. The di or tri-saccharide ligands in MBPs are accommodated in long relatively shallow grooves. In the ttGBP binding site, this groove is partially filled by two loops and an alpha-helix, which create a buried binding site that allows binding of only monosaccharides. Comparison of ttGBP and MBP provides a clear example of structural adaptations by which the size of ligand binding sites can be controlled in the PBP super family. 相似文献
8.
9.
10.
Thierry G. A. Lonhienne Yuri Trusov Anthony Young Susanne Schmidt Chanyarat Paungfoo-Lonhienne 《Plant signaling & behavior》2014,9(10)
Externally supplied protein (bovine serum albumin, BSA) affects root development of Arabidopsis, increasing root biomass, root hair length, and root thickness. While these changes in root morphology may enhance access to soil microenvironments rich in organic matter, we show here that the presence of protein in the growth medium increases the plant''s resilience to the root pathogen Cylindrocladium sp. 相似文献
11.
Proteomic analyses in yeast have identified a large number of proteins that are associated with preribosomal particles. However, the product of the yeast ORF YJL010C, herein designated as Nop9, failed to be identified in any previous physical or genetic analysis of preribosomes. Here we report that Nop9 is a nucleolar protein, which is associated with 90S and 40S preribosomes. In cells depleted of Nop9p, early cleavages of the 35S pre-rRNA are inhibited, resulting in the nucleolar retention of accumulated precursors and a failure to synthesize 18S rRNA. Nop9 contains multiple pumilio-like putative RNA binding repeats and displays robust in vitro RNA binding activity. The identification of Nop9p as a novel, essential factor in the nuclear maturation of 90S and pre-40S ribosomal subunits shows that the complement of ribosome synthesis factors remains incomplete. 相似文献
12.
Analysis of polymorphic regions of Plasmodium vivax Duffy binding protein of Korean isolates. 总被引:2,自引:0,他引:2
The present study was designed to investigate polymorphism in Duffy binding protein (DBP) gene of Plasmodium vivax isolates of Korea. Thirty samples were obtained from P. vivax patients in Yonchon-gun, Kyonggi-do in 1998. The PCR products of the samples were subjected to sequencing and hybridization analyses of the regions II and IV of P. vivax DBP gene. Two genotypes, SK-1 and SK-2, were identified on the basis of amino acid substitution and deletion. The genotype of 10 isolates was SK-1 and that of 20 isolates was SK-2. Most of the predicted amino acids in the region II of DBP gene were conserved between the Korean isolates and Belem strain except for 4-5 amino acid substitutions. In the region IV of DBP, a 6-bp insert that was shown in the Sal-1 allele type was found in SK-1, and a 27-bp insert that was shown in the Papua New Guinea allele type was found in SK-2. In conclusion, the present findings suggest that two genotypes of P. vivax coexist in the endemic area of Korea. 相似文献
13.
14.
15.
16.
17.
18.
The crystal structure of a periplasmic l-aspartate/l-glutamate binding protein (DEBP) from Shigella flexneri complexed with an l-glutamate molecule has been determined and refined to an atomic resolution of 1.0 Å. There are two DEBP molecules in the asymmetric unit. The refined model contains 4462 non-hydrogen protein atoms, 730 water molecules, 2 bound glutamate molecules, and 2 Tris molecules from the buffer used in crystallization. The final Rcryst and Rfree factors are 13.61% and 16.89%, respectively. The structure has root-mean-square deviations of 0.016 Å from standard bond lengths and 2.35° from standard bond angles.The DEBP molecule is composed of two similarly folded domains separated by the ligand binding region. Both domains contain a central five-stranded β-sheet that is surrounded by several α-helices. The two domains are linked by two antiparallel β-strands. The overall shape of DEBP is that of an ellipsoid approximately 55 Å × 45 Å × 40 Å in size.The binding of ligand to DEBP is achieved mostly through hydrogen bonds between the glutamate and side-chain and main-chain groups of DEBP. Side chains of residues Arg24, Ser72, Arg75, Ser90, and His164 anchor the deprotonated γ-carboxylate group of the glutamate with six hydrogen bonds. Side chains of Arg75 and Arg90 form salt bridges with the deprotonated α-carboxylate group, while the main-chain amide groups of Thr92 and Thr140 form hydrogen bonds with the same group. The positively charged α-amino group of the l-glutamate forms salt bridge interaction with the side-chain carboxylate group of Asp182 and hydrogen bond interaction with main-chain carbonyl oxygen of Ser90. In addition to these hydrogen bond and electrostatic interactions, other interactions may also play important roles. For example, the two methylene groups from the glutamate form van der Waals interactions with hydrophobic side chains of DEBP.Comparisons with several other periplasmic amino acid binding proteins indicate that DEBP residues involved in the binding of α-amino and α-carboxylate groups of the ligand and the pattern of hydrogen bond formation between these groups are very well conserved, but the binding pocket around the ligand side chain is not, leading to the specificity of DEBP. We have identified structural features of DEBP that determine its ability of binding glutamate and aspartate, two molecules with different sizes, but discriminating against very similar glutamine and asparagine molecules. 相似文献
19.
Many techniques in molecular biology require the use of pure nucleic acids in general and circular DNA (plasmid or mitochondrial) in particular. We have developed a method to separate these circular molecules from a mixture containing different species of nucleic acids using rolling circle amplification (RCA). RCA of plasmid or genomic DNA using random hexamers and bacteriophage Phi29 DNA polymerase has become increasingly popular for the amplification of template DNA in DNA sequencing protocols. Recently, we reported that the mutant single-stranded DNA binding protein (SSB) from Thermus thermophilus (TthSSB) HB8 eliminates nonspecific DNA products in RCA reactions. We developed this method for separating circular nucleic acids from a mixture having different species of nucleic acids. Use of the mutant TthSSB resulted in an enhancement of plasmid or mitochondrial DNA content in the amplified product by approximately 500×. The use of mutant TthSSB not only promoted the amplification of circular target DNA over the background but also could be used to enhance the amplification of circular targets over linear targets. 相似文献