首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract. Many sacoglossan sea slugs incorporate intact, functional chloroplasts from their algal food sources into specialized cells lining the digestive diverticulum. The chloroplasts in adults of Elysia clarki are photosynthetically functional for many months. Members of this species feed on algae in the Ulvophyceae, including species of Penicillus and Bryopsis. However, other sacoglossans (Elysia patina, Elysia rufescens, and Placida kingstoni) use similar algal food sources as do adults of E. clarki, but are unable to maintain the chloroplasts for more than a week, with individuals of P. kingstoni apparently being unable to maintain chloroplasts for >24 h. We have examined chloroplast sequestering cells of these species looking for morphological differences that may help explain the variation in chloroplast sequestration and maintenance among them. Our results indicate that P. kingstoni does not actively sequester chloroplasts at all, digesting them instead. However, the plastid sequestering mechanisms of individuals of E. patina and E. rufescens are similar to those of E. clarki, and the degradation of chloroplasts by specimens of E. patina is ultrastructurally similar to the same process in E. clarki, although chloroplast degradation occurs much more slowly in individuals of E. clarki. Our results suggest that species-level differences in the digestive capability of the phagosomes involved in the uptake of chloroplasts account for variation in the length of these kleptoplastic associations.  相似文献   

2.
Kleptoplasty is a remarkable type of photosynthetic association, resulting from the maintenance of functional chloroplasts—the ‘kleptoplasts’—in the tissues of a non-photosynthetic host. It represents a biologically unique condition for chloroplast and photosynthesis functioning, occurring in different phylogenetic lineages, namely dinoflagellates, ciliates, foraminiferans and, most interestingly, a single taxon of metazoans, the sacoglossan sea slugs. In the case of sea slugs, chloroplasts from macroalgae are often maintained as intracellular organelles in cells of these marine gastropods, structurally intact and photosynthetically competent for extended periods of time. Kleptoplasty has long attracted interest owing to the longevity of functional kleptoplasts in the absence of the original algal nucleus and the limited number of proteins encoded by the chloroplast genome. This review updates the state-of-the-art on kleptoplast photophysiology, focusing on the comparative analysis of the responses to light of the chloroplasts when in their original, macroalgal cells, and when sequestered in animal cells and functioning as kleptoplasts. It covers fundamental but ecologically relevant aspects of kleptoplast light responses, such as the occurrence of photoacclimation in hospite, operation of photoprotective processes and susceptibility to photoinhibition. Emphasis is given to host-mediated processes unique to kleptoplastic associations, reviewing current hypotheses on behavioural photoprotection and host-mediated enhancement of photosynthetic performance, and identifying current gaps in sacoglossan kleptoplast photophysiology research.  相似文献   

3.
It has been well documented that nutritional state can influence the foraging behavior of animals. However, photosynthetic animals, those capable of both heterotrophy and symbiotic photosynthesis, may have a delayed behavioral response due to their ability to photosynthesize. To test this hypothesis we subjected groups of the kleptoplastic sea slug, Elysia clarki, to a gradient of starvation treatments of 4, 8, and 12 weeks plus a satiated control. Compared to the control group, slugs starved 8 and 12 weeks displayed a significant increase in the proportion of slugs feeding and a significant decrease in photosynthetic capability, as measured in maximum quantum yield and [chl a]. The 4 week group, however, showed no significant difference in feeding behavior or in the metrics of photosynthesis compared to the control. This suggests that photosynthesis in E. clarki, thought to be linked to horizontally-transferred algal genes, delays a behavioral response to starvation. This is the first demonstration of a link between photosynthetic capability in an animal and a modification of foraging behavior under conditions of starvation.  相似文献   

4.
5.
The phenomenon of the uptake, intracellular sequestration, and subsequent usage of algal chloroplasts by the digestive cells of many species of sacoglossan sea slugs, currently called kleptoplasty, has been of considerable interest since its discovery in the 1960s. While a large body of literature reported that captured chloroplasts were photosynthetically active inside slug cells and that plastid longevity in some species might be the result of the horizontal transfer of functional algal nuclear genes into the slug genome, a few recent studies have called the older results into question. Here, we have reviewed the literature and showed that while kleptoplasty occurs in many slug species and almost all derive benefit from kleptoplast photosynthesis, the slug adaptations to maintain the chloroplasts differ from species to species. These adaptations range from behavioral to molecular, including gene transfer, in a variety of combinations.  相似文献   

6.

Background

Among metazoans, retention of functional diet-derived chloroplasts (kleptoplasty) is known only from the sea slug taxon Sacoglossa (Gastropoda: Opisthobranchia). Intracellular maintenance of plastids in the slug's digestive epithelium has long attracted interest given its implications for understanding the evolution of endosymbiosis. However, photosynthetic ability varies widely among sacoglossans; some species have no plastid retention while others survive for months solely on photosynthesis. We present a molecular phylogenetic hypothesis for the Sacoglossa and a survey of kleptoplasty from representatives of all major clades. We sought to quantify variation in photosynthetic ability among lineages, identify phylogenetic origins of plastid retention, and assess whether kleptoplasty was a key character in the radiation of the Sacoglossa.

Results

Three levels of photosynthetic activity were detected: (1) no functional retention; (2) short-term retention lasting about one week; and (3) long-term retention for over a month. Phylogenetic analysis of one nuclear and two mitochondrial loci revealed reciprocal monophyly of the shelled Oxynoacea and shell-less Plakobranchacea, the latter comprising a monophyletic Plakobranchoidea and paraphyletic Limapontioidea. Only species in the Plakobranchoidea expressed short- or long-term kleptoplasty, most belonging to a speciose clade of slugs bearing parapodia (lateral flaps covering the dorsum). Bayesian ancestral character state reconstructions indicated that functional short-term retention arose once in the last common ancestor of Plakobranchoidea, and independently evolved into long-term retention in four derived species.

Conclusion

We propose a sequential progression from short- to long-term kleptoplasty, with different adaptations involved in each step. Short-term kleptoplasty likely arose as a deficiency in plastid digestion, yielding additional energy via the release of fixed carbon. Functional short-term retention was an apomorphy of the Plakobranchoidea, but the subsequent evolution of parapodia enabled slugs to protect kleptoplasts against high irradiance and further prolong plastid survival. We conclude that functional short-term retention was necessary but not sufficient for an adaptive radiation in the Plakobranchoidea, especially in the genus Elysia which comprises a third of all sacoglossan species. The adaptations necessary for long-term chloroplast survival arose independently in species feeding on different algal hosts, providing a valuable study system for examining the parallel evolution of this unique trophic strategy.  相似文献   

7.
Solar-powered sea slugs (Sacoglossa: Gastropoda) have long captured the attention of laymen and scientists alike due to their remarkable ability to steal functional chloroplasts from their algal food, enslaving them to withstand long starvation periods. Recently, a wealth of data has shed insight into this remarkable relationship; however, the cellular mechanisms governing this process are still completely unknown. This study explores these mechanisms, providing insight into the chloroplast retention and delayed digestion, occurring within the slug’s digestive gland. We examine the relationships between functional chloroplast and lysosome abundances during starvation, in live material, for the long-term retaining species Elysia timida, the ambiguous long/short-term retaining Elysia viridis, and the short-term retaining Thuridilla hopei, to elucidate digestive differences that contribute to the development of functional kleptoplasty. Functional chloroplast and lysosome abundance are measured using chlorophyll a autofluorescence and the pH-dependent stain acridine orange. In each species, the number of chloroplasts and lysosomes is indirectly proportional, with the plastid density decreasing when starvation begins. We also present a new FIJI/Image J Plugin, the 3D—Accounting and Measuring Plugin, 3D-AMP, which enables the reliable analysis of large image sets.  相似文献   

8.
Some sacoglossan sea slugs have become famous for their unique capability to extract and incorporate functional chloroplasts from algal food organisms (mainly Ulvophyceae) into their gut cells. The functional incorporation of the so-called kleptoplasts allows the slugs to rely on photosynthetic products for weeks to months, enabling them to survive long periods of food shortage over most of their life-span. The algal food spectrum providing kleptoplasts as temporary, non-inherited endosymbionts appears to vary among sacoglossan slugs, but detailed knowledge is sketchy or unavailable. Accurate identification of algal donor species, which provide the chloroplasts for long-term retention is of primary importance to elucidate the biochemical mechanisms allowing long-term functionality of the captured chloroplast in the foreign animal cell environment. Whereas some sacoglossans forage on a variety of algal species, (e.g. Elysia crispata and E. viridis) others are more selective. Hence, characterizing the range of functional sacoglossan-chloroplast associations in nature is a prerequisite to understand the basis of this enigmatic endosymbiosis. Here, we present a suitable chloroplast gene (tufA) as a marker, which allows identification of the respective algal kleptoplast donor taxa by analysing DNA from whole animals. This novel approach allows identification of donor algae on genus or even species level, thus providing evidence for the taxonomic range of food organisms. We report molecular evidence that chloroplasts from different algal sources are simultaneously incorporated in some species of Elysia. NeigborNet analyses for species assignments are preferred over tree reconstruction methods because the former allow more reliable statements on species identification via barcoding, or rather visualize alternative allocations not to be seen in the latter.  相似文献   

9.
The transformation of amyloplast into chloroplasts in potato (Solanum tuberosum L.) tuber tissue can be induced by light. Excised potato tuber discs illuminated with white light of 3000 lux began to synthesize chlorophyll after a lag period of 1 day, and continued to synthesize chlorophyll for 3 weeks. In this paper we present evidence, based on ultracentrifugal sedimentation and immunoprecipitation, that the light-mediated synthesis of Ribulose-1,5-bisphosphate carboxylase began 1 day after illumination with white light. When illuminated the chloroplasts isolated from light-grown potato tuber tissue incorporated [35S]methionine into polypeptides, one of which has been identified as the large subunit of Ribulose-1,5-bisphosphate carboxylase. These chloroplasts are functional as determined by O2 evolution in the Hill reaction.  相似文献   

10.
The galactolipids monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG) are the predominant lipids in thylakoid membranes and indispensable for photosynthesis. Among the three isoforms that catalyze MGDG synthesis in Arabidopsis thaliana, MGD1 is responsible for most galactolipid synthesis in chloroplasts, whereas MGD2 and MGD3 are required for DGDG accumulation during phosphate (Pi) starvation. A null mutant of Arabidopsis MGD1 (mgd12), which lacks both galactolipids and shows a severe defect in chloroplast biogenesis under nutrient‐sufficient conditions, accumulated large amounts of DGDG, with a strong induction of MGD2/3 expression, during Pi starvation. In plastids of Pi‐starved mgd1‐2 leaves, biogenesis of thylakoid‐like internal membranes, occasionally associated with invagination of the inner envelope, was observed, together with chlorophyll accumulation. Moreover, the mutant accumulated photosynthetic membrane proteins upon Pi starvation, indicating a compensation for MGD1 deficiency by Pi stress‐induced galactolipid biosynthesis. However, photosynthetic activity in the mutant was still abolished, and light‐harvesting/photosystem core complexes were improperly formed, suggesting a requirement for MGDG for proper assembly of these complexes. During Pi starvation, distribution of plastid nucleoids changed concomitantly with internal membrane biogenesis in the mgd1‐2 mutant. Moreover, the reduced expression of nuclear‐ and plastid‐encoded photosynthetic genes observed in the mgd1‐2 mutant under Pi‐sufficient conditions was restored after Pi starvation. In contrast, Pi starvation had no such positive effects in mutants lacking chlorophyll biosynthesis. These observations demonstrate that galactolipid biosynthesis and subsequent membrane biogenesis inside the plastid strongly influence nucleoid distribution and the expression of both plastid‐ and nuclear‐encoded photosynthetic genes, independently of photosynthesis.  相似文献   

11.
Several sacoglossan sea slugs (Plakobranchoidea) feed upon plastids of large unicellular algae. Four species—called long-term retention (LtR) species—are known to sequester ingested plastids within specialized cells of the digestive gland. There, the stolen plastids (kleptoplasts) remain photosynthetically active for several months, during which time LtR species can survive without additional food uptake. Kleptoplast longevity has long been puzzling, because the slugs do not sequester algal nuclei that could support photosystem maintenance. It is widely assumed that the slugs survive starvation by means of kleptoplast photosynthesis, yet direct evidence to support that view is lacking. We show that two LtR plakobranchids, Elysia timida and Plakobranchus ocellatus, incorporate 14CO2 into acid-stable products 60- and 64-fold more rapidly in the light than in the dark, respectively. Despite this light-dependent CO2 fixation ability, light is, surprisingly, not essential for the slugs to survive starvation. LtR animals survived several months of starvation (i) in complete darkness and (ii) in the light in the presence of the photosynthesis inhibitor monolinuron, all while not losing weight faster than the control animals. Contrary to current views, sacoglossan kleptoplasts seem to be slowly digested food reserves, not a source of solar power.  相似文献   

12.
13.
Parapodia of the sacoglossan slug Elysia timida were preserved by high-pressure cryofixation during feeding experiments and investigated with transmission electron microscopy. This slug has been known for its long-term retention of active chloroplasts and photosynthesis. We observed different stages of phagocytosis of chloroplast components from ingested algal food by slug digestive gland cells. Thylakoid stacks and stroma of chloroplasts were engulfed by the slug cells. In the slug cells thylakoids were surrounded by one membrane only. This membrane is interpreted as having been generated by the mollusk during phagocytosis. It is inferred to be eukaryotic in origin and unlikely, therefore, to be endowed with the translocons system ordinarily regulating import of algal gene-encoded plastid preproteins. Our structural findings suggest that chloroplast components in the slug cells are thylakoid stacks with chloroplast stroma only.  相似文献   

14.
The only animal cells known that can maintain functional plastids (kleptoplasts) in their cytosol occur in the digestive gland epithelia of sacoglossan slugs. Only a few species of the many hundred known can profit from kleptoplasty during starvation long-term, but why is not understood. The two sister taxa Elysia cornigera and Elysia timida sequester plastids from the same algal species, but with a very different outcome: while E. cornigera usually dies within the first two weeks when deprived of food, E. timida can survive for many months to come. Here we compare the responses of the two slugs to starvation, blocked photosynthesis and light stress. The two species respond differently, but in both starvation is the main denominator that alters global gene expression profiles. The kleptoplasts'' ability to fix CO2 decreases at a similar rate in both slugs during starvation, but only E. cornigera individuals die in the presence of functional kleptoplasts, concomitant with the accumulation of reactive oxygen species (ROS) in the digestive tract. We show that profiting from the acquisition of robust plastids, and key to E. timida''s longer survival, is determined by an increased starvation tolerance that keeps ROS levels at bay.  相似文献   

15.

Background  

The holoparasitic plant genus Cuscuta comprises species with photosynthetic capacity and functional chloroplasts as well as achlorophyllous and intermediate forms with restricted photosynthetic activity and degenerated chloroplasts. Previous data indicated significant differences with respect to the plastid genome coding capacity in different Cuscuta species that could correlate with their photosynthetic activity. In order to shed light on the molecular changes accompanying the parasitic lifestyle, we sequenced the plastid chromosomes of the two species Cuscuta reflexa and Cuscuta gronovii. Both species are capable of performing photosynthesis, albeit with varying efficiencies. Together with the plastid genome of Epifagus virginiana, an achlorophyllous parasitic plant whose plastid genome has been sequenced, these species represent a series of progression towards total dependency on the host plant, ranging from reduced levels of photosynthesis in C. reflexa to a restricted photosynthetic activity and degenerated chloroplasts in C. gronovii to an achlorophyllous state in E. virginiana.  相似文献   

16.
Photosynthesis is a fundamental process sustaining heterotrophic organisms at all trophic levels. Some mixotrophs can retain functional chloroplasts from food (kleptoplasty), and it is hypothesized that carbon acquired through kleptoplasty may enhance trophic energy transfer through increased host growth efficiency. Sacoglossan sea slugs are the only known metazoans capable of kleptoplasty, but the relative fitness contributions of heterotrophy through grazing, and phototrophy via kleptoplasts, are not well understood. Fitness benefits (i.e. increased survival or growth) of kleptoplasty in sacoglossans are commonly studied in ecologically unrealistic conditions under extended periods of complete darkness and/or starvation. We compared the growth efficiency of the sacoglossan Elysia viridis with access to algal diets providing kleptoplasts of differing functionality under ecologically relevant light conditions. Individuals fed Codium fragile, which provide highly functional kleptoplasts, nearly doubled their growth efficiency under high compared to low light. In contrast, individuals fed Cladophora rupestris, which provided kleptoplasts of limited functionality, showed no difference in growth efficiency between light treatments. Slugs feeding on Codium, but not on Cladophora, showed higher relative electron transport rates (rETR) in high compared to low light. Furthermore, there were no differences in the consumption rates of the slugs between different light treatments, and only small differences in nutritional traits of algal diets, indicating that the increased growth efficiency of E. viridis feeding on Codium was due to retention of functional kleptoplasts. Our results show that functional kleptoplasts from Codium can provide sacoglossan sea slugs with fitness advantages through photosynthesis.  相似文献   

17.
Polyamines are low‐molecular weight biogenic amines. They are a specific group of cell growth and development regulators. In the past decade biochemical, molecular and genetic studies have contributed much to a better understanding of the biological role of polyamines in the plant cell. Substantial evidence has also been added to our understanding of the role of polyamines in plastid development. In developing chloroplasts, polyamines serve as a nitrogen source for protein and chlorophyll synthesis. In chloroplast structure, thylakoid proteins linked to polyamines belong mainly to antenna proteins of light‐harvesting chlorophyll a/b–protein complexes. The fact that LHCII oligomeric forms are much more intensely labelled by polyamines, in comparison to monomeric forms, suggests that polyamines participate in oligomer stabilisation. In plastid metabolism, polyamines modulate effectiveness of photosynthesis. The role of polyamines in mature chloroplasts is also related to the photo‐adaptation of the photosynthetic apparatus to low and high light intensity and its response to environmental stress. The occurrence of polyamines and enzymes participating in their metabolism at every stage of plastid development indicates that polyamines play a role in plastid differentiation, structure, functioning and senescence.  相似文献   

18.
Seedlings of Celosia plumosa under prolonged irradiation with far red light synthesize chlorophyll α and betaxanthin. Levulinic acid and 2,4-dinitrophenol, inhibitors of chlorophyll synthesis and cyclic photophosphorylation respectively, reduce betaxanthin synthesis. Pigment formation is also inhibited by actinomycin-D and puromycin, but is unaffected by 3-(3,4-dichlorophenyl)-1,1-dimethylurea, an inhibitor of noncyclic photophosphorylation. These findings are evidence of the involvement of photosynthesis through cyclic photophosphorylation, in the far red HER associated with betaxanthin synthesis. Under continuous far red seedlings of Amaranthus tricolor synthesize only chlorophyll α. Lack of betacyanin formation is ascribed to the inactive status of the genes involved in the pigment synthesis.  相似文献   

19.
20.
Phototrophic Dinophysis species are known to acquire plastids of the cryptophyte Teleaulax amphioxeia through feeding on the ciliate Mesodinium rubrum or M. cf. rubrum. In addition, several molecular studies have detected plastid encoding genes of various algal taxa within field populations of Dinophysis species. The trophic pathway by which Dinophysis species acquire plastids from algae other than the cryptophyte genus Teleaulax, however, is unknown. In this study, we examined the fate of prey organelles and plastid genes obtained by Dinophysis caudata through ingestion of Mesodinium coatsi, a benthic ciliate that retains green plastids of Chroomonas sp. Transmission electron microscopy and molecular analysis revealed relatively rapid digestion of prey-derived plastids. Following digestion of M. coatsi, however, photodamaged D. caudata cells having olive-green rather than reddish-brown plastids were able to recover some of their original reddish-brown pigmentation. Results further suggest that plastid genes of various algal taxa detected in field populations of Dinophysis species may reflect prey diversity rather than sequestration of multiple plastid types. Ingestion and digestion of prey other than M. rubrum or M. cf. rubrum may also provide nutritional requirements needed to repair and perhaps maintain sequestered T. amphioxeia plastids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号