首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Calcium transport across the basolateral membranes of the enterocyte represents the active step in calcium translocation. This step occurs by two mechanisms, an ATP-dependent pump and a Ca2+/Na+ exchange process. These studies were designed to investigate these two processes in jejunal basolateral membrane vesicles (BLMV) of the spontaneously hypertensive rats (SHR) and their genetically matched controls, Wistar-Kyoto (WKY) rats. The ATP-dependent calcium uptake was stimulated several-fold compared with no ATP condition in both SHR and WKY, but no differences were noted between rate of calcium uptake in SHR and WKY. Kinetics of ATP-dependent calcium uptake at concentrations between 0.01 and 1.0 microM revealed a Vmax of 0.67 +/- 0.03 nmol/mg protein/20 sec and a Km of 0.2 +/- 0.03 microM in SHR and Vmax of 0.69 +/- 0.12 and a Km of 0.32 +/- 0.14 microM in WKY rats. Ca2+/Na+ exchange in jejunal BLMV of SHR and WKY was investigated in two ways. First, sodium was added to the incubation medium (cis-Na+). Second, Ca2+ efflux from BLMV was studied in the presence of extravesicular Na+ (trans-Na+). Both studies suggest a decreased exchange of calcium and Na+. Kinetic parameters of Na(+)-dependent Ca2+ uptake at concentrations between 0.01 and 1.0 microM exhibited Vmax of 0.05 +/- 0.01 nanmol/mg protein/5 sec and a Km of 0.21 +/- 0.13 microM in SHR and Vmax of 0.11 +/- 0.02 nanmol/mg protein/5 sec and a Km of 0.09 +/- 0.05 in WKY, respectively. These results confirm that the intestinal BLMV of SHR and WKY rats have two mechanisms for calcium extrusion, an ATP-dependent Ca2+ transport process and a Na+/Ca2+ exchange process. The ATP-dependent process appears to be functional in SHR; however, the Ca2+/Na+ exchange mechanism appears to have a marked decrease in its maximal capacity. These findings suggest that calcium extrusion via Ca2+/Na+ is impaired in the SHR, which may lead to an increase in intracellular calcium concentration. These findings may have relevance to the development of hypertension.  相似文献   

2.
Voltage-dependent 45Ca2+ uptake and endogenous norepinephrine (NE) release were measured simultaneously in synaptosomes isolated from rat hypothalamus, brainstem, and cerebellum at 1, 3, 5, 15, and 30 s. In synaptosomes depolarized by 125 mM KCl, 45Ca2+ uptake and NE release exhibited fast and slow components. Rates of NE release and 45Ca2+ uptake were fastest from 0 to 1 s. NE release and 45Ca2+ uptake rates from 1 to 5 s were less than 15% of 0-1 s rates. Both resting (5 mM KCl) and depolarization-induced (125 mM KCl) NE release paralleled 45Ca2+ uptake from 1 to 30 s. Voltage-dependent NE release was approximately 1% and 2% of total synaptosomal NE content at 1- and 30-s measurement intervals, respectively, and did not differ between the three brain regions studied. Calcium and potassium dependence studies showed that NE release was stimulated by increased potassium and that depolarization-induced NE release was dependent on the presence of external calcium. These results show that calcium-dependent NE release from synaptosomes is correlated with calcium entry. Both processes exhibit fast and slow temporal components.  相似文献   

3.
The effect of 1,25 (OH)2 vitamin D3 on basal 45Ca uptake was examined in vascular smooth muscle cells cultured from mesenteric arteries of spontaneously hypertensive (SHR) and Wistar Kyoto (WKY) normotensive rats. Basal uptake of 45Ca was significantly greater in myocytes of WKY than SHR at 5, 10, 30 and 60 min incubation with the isotope. Incubation with 1 ng/ml 1,25 (OH)2 vitamin D3 for 48 hr increased basal 45Ca uptake between 1-10 min in SHR and between 5-10 min in WKY. The dose-response relationship indicated that cells from both strains are equally sensitive to the calciotropic effects of 1,25 (OH)2 vitamin D3 with half-maximal stimulation occurring at approximately 0.3-0.4 ng/ml. In cells of both strains maximal stimulation of 45Ca uptake was achieved only after a 12-24 hr period of incubation with hormone and pretreatment with cycloheximide inhibited 1,25 (OH)2 vitamin D3-enhanced 45Ca uptake. Although 45Ca binding by extracellular matrix material was significantly greater in WKY than SHR, 1,25 (OH)2 vitamin D3 had no effect on the amount of matrix 45Ca binding in either strain. These results suggest that 1,25 (OH)2 vitamin D3 induces an increase in intracellular protein synthesis that results in enhanced 45Ca uptake. The similar responses of the two strains indicate that hypertensive smooth muscle is not more sensitive to 1,25 (OH)2 vitamin D3 and the Ca2+ response is a general property of vascular muscle.  相似文献   

4.
Cytosolic free Ca2+ concentrations [( Ca2+]i) were measured in smooth muscle cells (SMC) from spontaneously hypertensive rats (SHR) and age and sex matched Wistar-Kyoto rats (WKY). Resting levels of [Ca2+]i were 114 +/- 6 nM and 116 +/- 5 nM in SMC from WKY and SHR, respectively. Angiotensin II (AII) induced a dose-dependent large increases in [Ca2+]i in SMC. There were no significant differences in resting or AII-stimulated levels of [Ca2+]i when SMC from WKY and SHR were compared. Arg-vasopressin (AVP) caused a similar but smaller [Ca2+]i increase than AII in SMC. AVP caused larger [Ca2+]i increases in SMC from SHR than in SMC from WKY. Although concentrations of AVP higher than those ordinarily detected in plasma were necessary to obtain different responses between SHR and WKY, these differences may be related to the pathogenesis of hypertension.  相似文献   

5.
Arterial hypertension in the spontaneously hypertensive rat (SHR) is associated with an abnormal Ca2+ homeostasis, compared with its normotensive control, the Wistar Kyoto rat (WKY). In particular, epithelial Ca2+ transport is perturbed, with intestinal absorption and renal tubular reabsorption being decreased in the adolescent and adult SHR. In the present study we examined Ca2+ uptake into isolated duodenal brush-border membrane vesicles (BBMV) in 12-14 week-old male rats. This uptake can be separated in a nonsaturable and a saturable component. The latter follows Michaelis-Menten kinetics. Vmax of this component was found to be significantly higher (p less than 0.05) in SHR than in WKY (0.58 +/- 0.19 versus 0.35 +/- 0.06 nmol/mg protein x 10 sec, mean +/- SD) whereas Km did not differ. Thus, the defect in the intestinal Ca2+ absorption previously identified in the SHR of this age is not due to a decrease in Ca uptake at the level of the duodenal brush-border membrane, but is most likely located in the baso-lateral membrane.  相似文献   

6.
The effect of several regulators of whole animal Ca2+ homeostasis on 45Ca uptake by primary cultures of aortic myocytes isolated from spontaneously hypertensive (SHR) and normotensive Wistar Kyoto (WKY) rats was examined. Exposure of confluent cells to 1.0, 1.25 or 1.50 mM ionized Ca2+ in serum-free medium for seven days resulted in increased 45Ca uptake at the higher concentrations of Ca2+ in cells of the SHR but not the WKY. 1,25 (OH)2 vitamin D3 (1 ng/ml) for 7 days caused enhanced influx in cells from both the SHR and WKY while parathyroid hormone (1-34) (1 ng/ml) was without effect. The data indicate that humoral factors that serve to regulate whole animal Ca2+ homeostasis may also play a role in the regulation of Ca2+ metabolism of the vascular smooth muscle cell.  相似文献   

7.
K+-stimulated 45Ca2+ uptake into rat brain and guinea pig cerebral cortex synaptosomes was measured at 10 s and 90 s at K+ concentrations of 5-75 mM. Net increases in 45Ca2+ uptake were observed in rat and guinea pig brain synaptosomes. 45Ca2+ uptake under resting or depolarizing conditions was not increased by the 1,4-dihydropyridine BAY K 8644, which has been shown to activate Ca2+ channels in smooth and cardiac muscle. High-affinity [3H]nitrendipine binding in guinea pig synaptosomes (KD = 1.2 X 10(-10) M, Bmax = 0.56 pmol mg-1 protein) was competitively displaced with high affinity (IC50 2.3 X 10(-9) M) by BAY K 8644. Thus high-affinity Ca2+ channel antagonist and activator binding sites exist in synaptosome preparations, but their relationship to functional Ca2+ channels is not clear.  相似文献   

8.
The effect of dihydropyridine agonists and antagonists on neuronal voltage sensitive calcium channels was investigated. The resting intracellular calcium concentration of synaptosomes prepared from whole brain was 110 +/- 9 nM, as assayed by the indicator quin 2. Depolarisation of the synaptosomes with K+ produced an immediate increase in [Ca2+]i. The calcium agonist Bay K 8644 and antagonist nifedipine did not affect [Ca2+]i under resting or depolarising conditions. In addition, K+ stimulated 45Ca2+ uptake into synaptosomes prepared from the hippocampus was insensitive to Bay K 8644 and PY 108-068 in normal or Na+ free conditions. In neuronally derived NG108-15 cells the enantiomers of the dihydropyridine derivative 202-791 showed opposite effects in modulating K+ stimulated 45Ca2+ uptake. (-)-R-202-791 inhibited K+ induced 45Ca2+ uptake with an IC50 of 100 nM and (+)-S-202-791 enhanced K+ stimulated uptake with an EC50 of 80 nM. These results suggest that synaptosomal voltage sensitive calcium channels either are of a different type to those found in peripheral tissues and cells of neural origin or that expression of functional effects of dihydropyridines requires different experimental conditions to those used here.  相似文献   

9.
The possibility that protein kinase C modulates neurotransmitter release in brain was investigated by examining the effects of 12-O-tetradecanoylphorbol 13-acetate (TPA) on Ca2+ transport and endogenous dopamine release from rat striatal synaptosomes. TPA (0.16 and 1.6 microM) significantly increased dopamine release by 24 and 33%, respectively, after a 20-min preincubation with TPA followed by 60 s of depolarization with 30 mM KCl. Depolarization-induced 45Ca2+ uptake, measured simultaneously with dopamine release, was not significantly increased by TPA. Neither 45Ca2+ uptake nor dopamine release was altered under resting conditions. When the time course of K+-stimulated 45Ca2+ uptake and dopamine release was examined, TPA (1.6 microM) enhanced dopamine release after 15, 30, and 60 s, but not 1, 3, or 5 s, of depolarization. A slight increase in 45Ca2+ uptake after 60 s of depolarization was also seen. The addition of 30 mM KCl to synaptosomes which had been preloaded with the Ca2+-sensitive fluorophore fura-2 increased the cytosolic free Ca2+ concentration ([Ca2+]i) from 445 nM to 506 nM after 10 s of depolarization and remained elevated after 60 s. TPA had no effect on [Ca2+]i under depolarizing or resting conditions. Replacing extracellular Ca2+ with 100 microM EGTA reduced K+-stimulated (60 s) endogenous dopamine release by 53% and decreased [Ca2+]i to 120 nM. In Ca2+-free medium, 30 mM KCl did not produce an increase in the [Ca2+]i. TPA (1.6 microM) did not alter the [Ca2+]i under resting or depolarizing conditions, but did increase K+-stimulated dopamine release in Ca2+-free medium.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
We studied whether mitochondrial functions and Ca2+ metabolism were altered in Wistar Kyoto normotensive (WKY) and spontaneous hypertensive rats (SHR). Ca2+ uptake was decreased in SHR compared to WKY rats. Accumulation of Ca2+ was more efficient in WKY than in SHR rats. mDeltaPsi was lower in SHR compared to WKY rats. Basal complex IV activity was higher in SHR than WKY rats, whereas basal L-citrulline production, an indicator of nitric oxide synthesis, was decreased in SHR and dependent on Ca2+ concentration (p<0.05). Impact of Ca2+ was counteracted by EGTA. These data show an age-dependent decreased mitochondrial functions in brain mitochondria during hypertension.  相似文献   

11.
Previous studies have shown that an adenosine triphosphate-dependent calcium uptake activity in lysed brain synaptosomes is attributable to the neuronal endoplasmic reticulum elements. The present study has examined the effects of tetracaine, lidocaine, and dibucaine on this calcium uptake process. The adenosine triphosphate-dependent uptake of 45Ca2+ was measured (in the absence and in the presence of drug) by Millipore filtration and liquid scintillation spectrometry. The local anesthetics studied exhibited a biphasic effect on 45Ca2+ uptake by lysed synaptosomes from rat brain cortex. High concentrations (5 mM tetracaine, 50 mM lidocaine, 0.6 mM dibucaine) inhibited the uptake of 45Ca2+; the order of potency for this effect was dibucaine greater than tetracaine greater than lidocaine. Lower concentrations of these local anesthetics produced either no effect on 45Ca2+ uptake (2 mM tetracaine or 30 mM lidocaine) or a stimulation of 45Ca2+ uptake (1 mM tetracaine, 10 mM lidocaine, and 0.3 mM or 0.1 mM dibucaine); the order of potency for stimulation of 45Ca2+ uptake was dibucaine greater than tetracaine greater than lidocaine.  相似文献   

12.
Parathyroid hormone (PTH) (0.1-10 ng/ml) evokes a dose-dependent increase in 45Ca2+ accumulation in synaptosomes isolated from the rat brain cortex. In the presence of PTH the fast (I sec) potential-dependent 45Ca2+ uptake was less than in the control. PTH had no effect on 3H-GABA uptake by synaptosomes (P2 fraction). Synaptosomes preincubated in the presence of PTH in Ca2+-free medium and transferred into Ca2+-containing normal medium released more 3H-GABA than control synaptosomes. In this case depolarization-evoked 3H-GABA release was diminished.  相似文献   

13.
45Ca2+ uptake and cytosolic Ca2+ concentrations [( Ca2+]i) were measured in synaptosomes prepared from the cerebral cortex of 3-, 16-, and 24-month-old male Charles River Wistar rats. Electron-microscopic examination demonstrated no morphological differences between the synaptosomes prepared from 3- and 24-month-old rats. The fast phase of Ca2+ uptake was reduced in the 24-month-old animals as compared to the 3-month-old ones (-23%, p less than 0.001), whereas no difference was found between the 16- and the 3-month-old rats. Age did not modify [Ca2+]i, as measured by the quin 2 technique, both at rest and immediately after depolarization with 50 mM K+. The Ca2+ load following depolarization was cleared in about 13 min in the 3-month-old rats. The rate of clearance was significantly slower both in the 16- (p less than 0.01) and in the 24-month-old rats (p less than 0.0001). The addition of verapamil (60 microM) after depolarization restored [Ca2+]i to resting level in aged rats at the same rate as in young rats. A prolonged Ca2+ influx, therefore, may be responsible for the slower clearance of Ca2+ load in aged rats.  相似文献   

14.
In the erythrocytes incubated at low temperature (3-6 degrees C), the uptake of Li+ in 6- and 16-week old spontaneously hypertensive rats (SHR) was significantly higher than in the normotensive rats (WKY) of the same age. During the incubation of cells at 37 degrees C no difference occurred in either ouabain-sensitive or ouabain-resistant fluxes of Rb+, Na+ and Li+ between the 16-week old SHR and the WKY. K+ efflux from the erythrocytes at 3 degrees C was consistently stimulated after addition to the incubation medium of 1 mmol/l Ca2+. The value of Ca2+-dependent K+-transport was significantly elevated in 16-week old SHR than in the WKY, but there was no difference in 6-week old rats. Propranolol-induced Ca2+-dependent K+ efflux from the cells at 22 degrees C was markedly higher in 6- and 16-week old SHR as compared with the WKY. The results provide a further evidence in favor of the hypothesis on the existence of a "membrane defect" in red blood cells in the SHR.  相似文献   

15.
Post-quiescent potentiation (PQP), an enhanced contraction following a long pause that occurs as a result of increased Ca2+ release from intracellular stores, and post-stimulation potentiation (PSP), an enhanced contraction following a rapid series of contractions that is believed to be related to increased Ca2+ influx, were measured in streptozotocin-treated Wistar, spontaneously hypertensive (SHR), and Wistar-Kyoto (WKY) diabetic heart tissues. Decreased PQP values were found in Wistar and SHR diabetic papillary muscles (PM) in comparison with the same strain controls, which suggests a diminished degree of releasable Ca2+ from sarcoplasmic reticulum (SR) in these tissues. Decreased PSP was found in SHR diabetic PM, which may be related primarily to a depressed sarcolemmal (SL) Na(+)-Ca2+ exchange in this tissue. PSP was not decreased in diabetic Wistar or WKY cardiac preparations, indicating that Ca2+ entry via channels must be involved in the PSP mechanism. Ryanodine depressed PQP in Wistar and SHR PM, and SHR left atria in both control and diabetic tissues. It abolished PQP and SHR diabetic tissues but had no effect on WKY control and diabetic tissues. The data suggest that the ryanodine effect differs in the various strains of rat. These differences may be due to differences in the SR sensitivity to ryanodine among the strains. Diabetic SR with impaired Ca2+ uptake may contribute to these phenomena. Ryanodine depressed PSP of Wistar and SHR diabetic PM but had no effects on tissues from controls. The influence of ryanodine on diabetic SL Na(+)-Ca2+ exchange requires further investigation.  相似文献   

16.
The current studies were designed to characterize calcium transport by intestinal brush border membrane in the spontaneously hypertensive rat (SHR) and normotensive control, the Wistar-Kyoto (WKY) rat. The biochemical and functional purity of the intestinal brush border membranes in SHR and WKY rats was validated by marker enzymes and the ability to transiently transport D-glucose in the presence of Na+ gradient. Calcium transport into duodenal and jejunal vesicles represented a minor binding component and transmembrane movement as evident by initial rate studies, A23187 studies, and lanthanum displacement experiments. Initial rate and time course of calcium uptake was lower in SHR compared with WKY rats. Kinetic analysis of calcium uptake by the jejunum (total uptake minus binding component) showed a Vmax of 6.98 +/- 0.2 and 1.8 +/- 0.2 nmol/mg protein/7 sec in WKY rats and SHR, respectively (P less than 0.001), whereas Km values were 0.76 +/- 0.04 and 0.87 +/- 0.1 mM for WKY rats and SHR, respectively. Similar kinetic analysis of calcium uptake by the duodenal segments showed a Vmax of 10.3 +/- 0.8 and 2.8 +/- 0.2 nmol/mg protein/7 sec in WKY rats and SHR, respectively (P less than 0.01). Km values were 0.7 +/- 0.2 and 0.3 +/- 0.06 mM (P greater than 0.05). Vmax of calcium uptake in the 2-week-old rats (prehypertensive period) was 6.0 +/- 0.3 and 3.53 +/- 0.3 nmol/mg protein/7 sec in WKY rats and SHR, respectively (P less than 0.001), whereas Km values were 0.60 +/- 0.07 and 0.5 +/- 0.01 mM, respectively. These results suggest that calcium binding and uptake by duodenal and jejunal intestinal brush border membranes of SHR is significantly decreased compared with WKY rats. The decrease in transmembrane calcium uptake is secondary to decrease in Vmax and is present before the appearance of hypertension, implying a genetically determined defect in calcium uptake in intestinal brush border membranes of the SHR.  相似文献   

17.
To determine whether Na/Ca exchange is altered in primary hypertension, Na-dependent changes in intracellular Ca, ([Ca]i), were measured in isolated perfused hearts from Wistar-Kyoto (WKY) and spontaneously hypertensive (SHR) rats. Intracellular Na, (Nai, mEq/kg dry wt), and [Ca]i were measured by NMR spectroscopy. Control [Ca]i was less in WKY than SHR (176 +/- 18 vs 253 +/- 21 nmol/l; mean +/- S.E., P < 0.05), whereas Nai was not significantly different. One explanation for this is that net Na/Ca exchange flux is decreased in SHR. If this hypothesis is correct, the rate of Ca uptake in SHR should be less than WKY when Na/Ca exchange is reversed by decreasing the transmembrane Na gradient. The Na gradient was reduced by decreasing extracellular Na, ([Na]o) and/or by increasing [Na]i. To increase [Na]i, Na uptake was stimulated by acidification while Na extrusion by Na/K ATPase was inhibited by K-free perfusion. Seventeen minutes after acidification, Nai had increased but was not significantly different in SHR and WKY (18.0 +/- 2.3 to 57.4 +/- 7.6 vs 20.3 +/- 0.6 to 66.5 +/- 4.8 mEq/kg dry wt, respectively). Yet [Ca]i was greater in WKY than SHR (1768 +/- 142 vs 1201 +/- 90 nmol/l; P < 0.05). [Ca]i was also measured after decreasing [Na]o from 141 to 30 mmol/l. Fifteen minutes after reducing [Na]o, [Ca]i was greater in WKY than SHR (833 +/- 119 vs 425 +/- 94 nmol/l; P < 0.05). Thus for both protocols, decreasing the transmembrane Na gradient led to increased [Ca]i in both SHR and WKY, but less increase in SHR. The results are consistent with the hypothesis that Na/Ca exchange activity is less in SHR than WKY myocardium.  相似文献   

18.
Plasma parathyroid hormone levels (pPTH) have been measured by radioimmunoassay (RIA) in young spontaneously hypertensive rats (SHR) and normotensive Wistar-Kyoto controls (WKY) aged from 6 to 16 weeks to assess the possible role of PTH during the development of hypertension. Three antisera were used in the RIAs. One antiserum was directed toward the inactive C-terminal fragment of PTH, another toward the bioactive N-terminal fragment (PTH 1-34), and a third was obtained by immunization against intact PTH 1-84. Blood pressures were measured by tail-cuff plethysmography with prewarming. Blood ionized calcium and sodium concentrations (b[Ca2+] and b[Na+]) were determined by ion-selective electrolyte analysis. No significant differences were observed between pPTH in the SHR compared with WKY during the development of hypertension. Neither were significant differences in b[Ca2+] or b[Na+] present at any age. The expected progression of hypertension in SHRs was observed and blood pressure was significantly greater in SHR than in WKY at all times. The results suggest that differences in pPTH and b[Ca2+] in SHR reported in other studies may be secondary phenomena to the establishment of hypertension. Our data suggest that PTH is not involved in the pathogenetic processes occurring during the development of spontaneous hypertension in rats.  相似文献   

19.
Adult SHR aged 19-21 weeks, subjected to osmotic diuresis, responded to an intravenous 1.8% saline loading (15 ml/kg b.w.) with greater sodium excretion than age-matched WKY. Young (6-7 weeks old) SHR and WKY also responded to saline loading with an increased sodium excretion but there were no differences in the relative changes of sodium excretion between young WKY and SHR. In adult WKY, saline loading induced a faster erythrocyte 22Na uptake as compared with adult SHR or young WKY. This suggests that volume and/or sodium loading increased sodium turnover of red cells only in adult WKY. The sodium transport differences found in erythrocytes of adult SHR and WKY could be caused by some membrane differences or could be due to different hormonal and nonhormonal response(s) to saline loading. If similar alterations would also occur in other tissues, they might be important for the sodium excretion pattern.  相似文献   

20.
The goal of this study was to investigate the isolated and combined effect of ebselen and Hg2+ on calcium influx and on glutamatergic system. We examined the in vitro effects of 2 phenyl-1,2-benzisoselenazol-3(2H)-ona), (Ebselen) on 45Ca2+ influx in synaptosomes of rat at rest and during depolarization and glutamate uptake into synaptosomes. Entry of 45Ca was measured during exposure to mercury in non-depolarizing and depolarizing solutions. Ebselen abolished the inhibition of 45Ca2+ influx on non-depolarizing conditions; however, ebselen did no modify inhibition uptake of 45Ca2+ caused by Hg2+ in high K+ depolarizing medium. Ebselen did not modify glutamate uptake inhibition caused by Hg2+ in synaptosomes. These results indicate that ebselen has an in vitro protective effect against Hg2+ induced inhibition of Ca2+ influx into synaptosomes, depending on the depolarizing conditions of the assay. The effects of Hg2+ on glutamate uptake were not modified by ebselen, suggesting that its protection is dependent on the target protein considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号