首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The specific recognition of homopurine–homo pyrimidine regions in duplex DNA by triplex-forming oligonucleotides (TFOs) provides an attractive strategy for genetic manipulation. Alkylation of nucleobases with functionalized TFOs would have the potential for site-directed mutagenesis. Recently, we demonstrated that a TFO bearing 2-amino-6-vinylpurine derivative, 1, achieves triplex-mediated reaction with high selectivity toward the cytosine of the G-C target site. In this report, we have investigated the use of this reagent to target mutations to a specific site in a shuttle vector plasmid, which replicates in mammalian cells. TFOs bearing 1 produced adducts at the complementary position of 1 and thereby introduced mutations at that site during replication/repair of the plasmid in mammalian cells. Reagents that produce covalent cytosine modifications are relatively rare. These TFOs enable the preparation of templates carrying targeted cytosine adducts for in vitro and in vivo studies. The ability to target mutations may prove useful as a tool for studying DNA repair, and as a technique for gene therapy and genetic engineering.  相似文献   

2.
3.
Topoisomerase I (topo I) is a ubiquitous DNA-cleaving enzyme and an important therapeutic target in cancer chemotherapy. Camptothecins (CPTs) reversibly trap topo I in covalent complex with DNA but exhibit limited sequence preference. The utilization of conjugates such as triplex-forming oligonucleotides (TFOs) to target a medicinal agent (like CPT) to a specific genetic sequence and orientation within the DNA has been accomplished successfully. In this study, different attachment points of the TFO to CPT (including positions 7, 9, 10, and 12) were investigated and our findings confirmed and extended previous conclusions. Interestingly, the conjugates induced specific DNA cleavage by topo I at the triplex site even when poorly active or inactive CPT derivatives were used. This suggests that the positioning of the drug in the cleavage complex by the sequence-specific DNA ligand is able to stabilize the ternary complex, even when important interactions between topo I and CPT are disrupted. Finally, certain TFO-CPT conjugates were able to induce sequence-specific DNA cleavage with the topo I mutants R364H and N722S that are resistant to camptothecin. The TFO-CPT conjugates are thus valuable tools to study the interactions involved in the formation of the ternary complex and also to enlarge the family of compounds that poison topo I. The fact that an inactive CPT analogue can act as a topo I poison when appropriately coupled to a TFO provides a new perspective at the level of drug design.  相似文献   

4.
A rational design by means of molecular mechanics has been carried out in an effort to extend the range of double-helical DNA sequences that could be recognized by triple helix-forming oligonucleotides. The DNA target is composed of alternating, adjacent fragments of oligopurine·oligopyrimidine sequences, instead of a long stretch of polypurine·polypyrimidine sequence used for canonical triple helix formation. Based on the combination of different triple helix motifs in eitherHoogsteen orreverse Hoogsteen configuration, mini-triple helices can be formed at each oligopurine·oligopyrimidine part of the target sequence with either parallel or antiparallel orientation with respect to the purine strand. As the adjacent purine target sequences are located in the complementary strands, the third strand oligonucleotides can be joined together through a natural phosphodiester backbone at the junctions in either a 5-3 or a 3-5 polarity. There are six distinct junction steps. Molecular modeling was aimed at optimizing the cooperative binding of the so-called switched triple helix-forming oligonucleotides by choosing appropriate nucleotide(s) at the junction between two adjacent minitriple helices. A comprehensiveswitch code describing the rules for forming switched triple helices has been established. Its practical applications in extending DNA recognition by this new generation of tailor-made triple helix-forming oligonucleotides are discussed.  相似文献   

5.
Indolocarbazole and benzopyridoquinoxaline derivatives have been shown to have anti-tumor activity and to stimulate DNA topoisomerase I-mediated cleavage. Two indolocarbazole compounds (R-6 and R-95) and one benzopyridoquinoxaline derivative (BPQ(1256)) were covalently attached to the 3'-end of a 16mer triple helix-forming oligonucleotide (TFO). These conjugates bind to DNA with a higher affinity than the unsubstituted oligonucleotides. Furthermore, they induce topoisomerase I-mediated and triplex-directed DNA cleavage in a sequence-specific manner.  相似文献   

6.
7.
To achieve a sequence-specific DNA cleavage by topoisomerase I, derivatives of the antitumor drug camptothecin have been covalently linked to triple helix-forming oligonucleotides that bind in a sequence-specific manner to the major groove of double-helical DNA. Triplex formation at the target sequence positions the drug selectively at the triplex site, thereby stimulating topoisomerase I-mediated DNA cleavage at this site. In a continuous effort to optimize this strategy, a broad set of conjugates consisting of (i) 16-20-base-long oligonucleotides, (ii) alkyl linkers of variable length, and (iii) camptothecin derivatives substituted on the A or B quinoline ring were designed and synthesized. Analysis of the cleavage sites at nucleotide resolution reveals that the specificity and efficacy of cleavage depends markedly on the length of both the triple-helical structure and the linker between the oligonucleotide and the poison. The optimized hybrid molecules induced strong and highly specific cleavage at a site adjacent to the triplex. Furthermore, the drug-stabilized DNA-topoisomerase I cleavage complexes were shown to be more resistant to salt-induced reversal than the complexes induced by camptothecin alone. Such rationally designed camptothecin conjugates could provide useful antitumor drugs directed selectively against genes bearing the targeted triplex binding site. In addition, they represent a powerful tool to probe the molecular interactions in the DNA-topoisomerase I complex.  相似文献   

8.
Triple helix-forming oligonucleotides (TFOs) have been demonstrated to be capable of interfering with gene expression and modifying genomic DNA in a sequence-specific manner. Partial incorporation of 2'-O,4'-C-methylene linked locked nucleic acid (LNA) residues in TFOs has been shown to enhance significantly triple helix formation, whereas the full-length LNA TFO failed to form a stable triplex. This work is aimed at understanding the triple helix-forming properties of LNA-containing TFOs and at optimally designing their sequences. Both DNA thermal melting, gel retardation, and restriction enzyme experiments as well as modeling studies by molecular mechanics were carried out to investigate the base composition/sequence and pH-dependence effects of LNA-containing TFOs, as well as their structural features underlying triple helix formation. Alternating LNA substitution every 2-3 nucleotides in TFOs is mandatory, whereas the use of thymine LNA residues should be favored under neutral pH conditions. A rule for designing optimal LNA-containing TFOs is proposed. In addition, alternative LNA and 2'-O-methyl residues in TFOs do not significantly improve triple helix formation.  相似文献   

9.
10.
Successful gene-targeting reagents must be functional under physiological conditions and must bind chromosomal target sequences embedded in chromatin. Triple helix-forming oligonucleotides (TFOs) recognize and bind specific sequences via the major groove of duplex DNA and may have potential for gene targeting in vivo. We have constructed chemically modified, psoralen-linked TFOs that mediate site-specific mutagenesis of a chromosomal gene in living cells. Here we show that targeting efficiency is sensitive to the biology of the cell, specifically, cell cycle status. Targeted mutagenesis was variable across the cycle with the greatest activity in S phase. This was the result of differential TFO binding as measured by cross-link formation. Targeted cross-linking was low in quiescent cells but substantially enhanced in S phase cells with adducts in approximately 20-30% of target sequences. 75-80% of adducts were repaired faithfully, whereas the remaining adducts were converted into mutations (>5% mutation frequency). Clones with mutations could be recovered by direct screening of colonies chosen at random. These results demonstrate high frequency target binding and target mutagenesis by TFOs in living cells. Successful protocols for TFO-mediated manipulation of chromosomal sequences are likely to reflect a combination of appropriate oligonucleotide chemistry and manipulation of the cell biology.  相似文献   

11.
12.
13.
Integration of human immunodeficiency virus type 1 DNA into the infected cell genome is one of the key steps of the viral replication cycle. Therefore viral enzyme integrase, which realizes the integration, is of interest as a target for new antiviral drugs. Conjugates of 11-mer single stranded oligonucleotides with hydrophobic molecules are shown to be efficient integrase inhibitors since they induce dissociation of the integrase-viral DNA complex. The effect of the oligonucleotide length and structure as well as the structure of hydrophobic molecules on the conjugate inhibitory activity has been studied. Conjugates with eosin and oleic acid are shown to be the most active. Conjugates of these molecules with 2'-O-methyl-oligonucleotide inhibit integrase at 50-100 nM and have no influence on a number of other DNA-binding enzymes.  相似文献   

14.
15.
An automated quantitative assay for fungal growth inhibition   总被引:7,自引:0,他引:7  
Abstract A simple technique which enables the monitoring of fungal growth with the aid of a microplate reader is described. In the absorbance range of 0 to 0.6 units, a straight-line relationship exists between absorbance at 595 nm and dry weight of microplate cultures, indicating that culture absorbance is an accurate indicator of fungal biomass. The relative standard deviation of the absorbance measurements was low (typically between 2 and 6%) when spores were used for inoculum. With inoculi consisting of mycelial fragments, slightly higher standard deviations (ca. 10%) were found. The microplate reader technique is particularly suited for determination of growth inhibition curves, since it is extremely fast, reliable, and requires as little as 75 μl of total culture volume.  相似文献   

16.
17.
Reagents that recognize and bind specific genomic sequences in living mammalian cells would have great potential for genetic manipulation, including gene knockout, strain construction, and gene therapy. Triple helix forming oligonucleotides (TFOs) bind specific sequences via the major groove, but pyrimidine motif TFOs are limited by their poor activity under physiological conditions. Base and sugar analogues that overcome many of these limitations have been described. In particular, 2'-O-modifications influence sugar pucker and third strand conformation, and have been important to the development of bioactive TFOs. Here we have analyzed the impact of 2'-O-hydroxyethyl (2'-HE) substitutions, in combination with other 2' modifications. We prepared modified TFOs conjugated to psoralen and measured targeting activity in a gene knockout assay in cultured hamster cells. We find that 2'-HE residues enhance the bioactivity of TFOs containing 2'-O-methyl (2'-OMe) modifications, but reduce the bioactivity of TFOs containing, in addition, 2'-O-aminoethyl (2'-AE) residues.  相似文献   

18.
19.
An unique set of 5'-O- and 3'-O-phosphonomethyl derivatives of four natural 2'-deoxyribonucleosides, 1-(2-deoxy-beta-D-threo-pentofuranosyl)thymine, 5'-O- and 2'-O-phosphonomethyl derivatives of 1-(3-deoxy-beta-D-erythro-pentofuranosyl)thymine, and 1-(3-deoxy-beta-D-threo-pentofuranosyl)thymine, has been synthesized as a pool of monomers for the synthesis of modified oligonucleotides. The phosphonate moiety was protected with 4-methoxy-1-oxido-2-pyridylmethyl ester group, serving also as an intramolecular catalyst in the coupling step.  相似文献   

20.
Specific recognition of a region of duplex DNA by triplex-forming oligonucleotides (TFOs) provides an attractive strategy for genetic manipulation. Based on this, we have investigated the ability of the triplex-directed approach to induce mutations at a chromosomal locus in living cells. A mouse fibroblast cell line was constructed containing multiple chromosomal copies of the lambdasupFG1 vector carrying the supFG1 mutation-reporter gene. Cells were treated with specific (psoAG30) or control (psoSCR30) psoralen-conjugated TFOs in the presence and absence of UVA irradiation. The results demonstrated a 6- to 10-fold induction of supFG1 mutations in the psoAG30-treated cells as compared with psoSCR30-treated or untreated control cells. Interestingly, UVA irradiation had no effect onthe mutation frequencies induced by the psoralen-conjugated TFOs, suggesting a triplex-mediated but photoproduct-independent process of mutagenesis. Sequencing data were consistent with this finding since the expected T.A-->A.T transversions at the predicted psoralen crosslinking site were not detected. However, insertions and deletions were detected within the triplex binding site, indicating a TFO-specific induction of mutagenesis. This result demonstrates the ability of triplex-forming oligonucleotides to influence mutation frequencies at a specific site in a mammalian chromosome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号