首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The solubility of calcium, magnesium, and zinc in model solutions based on the low molecular weight components of bovine and human milks was examined over a pH range similar to that found in the human digestive system. Zinc was removed from solution in all models as calcium phosphates precipitated. The pH at which precipitable calcium phosphates formed was altered by the concentration of inorganic phosphate. All calcium and zinc in a model based on human milk remain in solution up to pH 6.5 while in a model based on bovine milk they were in solution up to pH 5. The use of simple model solutions may provide information useful for understanding the different bioavailabilities of minerals from skimmed bovine and human milks.  相似文献   

2.
The solubility of both free and low molecular weight ligand complexed calcium, magnesium, and zinc in skimmed human and bovine milks over intestinal luminal pH ranges (approximately 3-7) was measured using ultrafiltration techniques. Some of the experimental difficulties associated with the separation of labile metal ion ligand components from milks by ultrafiltration techniques are discussed. Experimental methods designed to minimize interferences in mineral ultrafiltrations from milks are outlined. Mineral solubilities in skimmed human and bovine milks are compared to data obtained in a previous study using milk models. The solubility of zinc in both skimmed bovine and bovine model milks is less than in human and human model milks at the higher pHs, characteristic of the luminal region where zinc absorption is thought to occur. The decrease in zinc solubility is caused by the coprecipitation of zinc with calcium phosphate, particularly in bovine milk samples. If solubility at the higher pHs is a requisite for zinc absorption then the enhanced bioavailability of zinc from human milk may be related to the detrimental element-compound interaction discussed in this study.  相似文献   

3.
The solubilities of zinc, iron, copper, magnesium, calcium, inorganic phosphate, and citrate in milk decreased when acidic milk preparations were neutralized. In decaseinated bovine milk soluble zinc, iron, and copper were reduced 90%, 60%, and 50%, respectively, as the pH was raised from 4 to 7. Simultaneous precipitation of minerals and citrate was confirmed by analysis of washed precipitate. We propose that the diminished solubilities of zinc, iron, copper, magnesium, and citrate are linked to the precipitation of calcium phosphate through one or more mechanisms of coprecipitation. Such control on mineral solubility may have an impact upon mineral absorption from milk.  相似文献   

4.
Differences in zinc bioavailability among milk and formulas may be attributed to binding of zinc to various ligands. We determined the distribution of zinc and protein at different pHs and zinc and calcium concentrations. We used radiolabelled cow's milk, human milk, whey-predominant (WPF) and casein-predominant (CPF) infant formula. Lowering the pH changed zinc and protein distribution: zinc shifted from pellet (casein) to whey in cow's milk, from fat to whey in human milk and from fat and pellet to whey in formulas. Protein shifted from whey to pellet in human milk and from whey and pellet to fat in formulas. Increasing zinc and calcium concentrations shifted protein and zinc from pellet to whey for cow's milk and from whey and pellet to fat for the formulas. Protein distribution was not affected by calcium or zinc addition in human milk or CPF, while zinc shifted from whey to fat in human milk and from fat and pellet to whey in CPF. Zinc and calcium binding to isolated bovine or human casein increased with pH. At 500 mg/L of zinc, bovine casein bound 32.0 +/- 1.8 and human casein 10.0 +/- 0.9 mg zinc/g protein. At 500 mg/L of calcium, calcium was preferentially bound over zinc. Adding calcium and zinc resulted in 32.0 +/- 1.8 mg zinc/g bound to bovine casein and 17.0 +/- 0.8 mg zinc/g to human casein, while calcium binding was low. Suckling rat pups dosed with 65Zn labelled infant diets were killed and individual tissues were gamma counted. Lower zinc bioavailability was found for bovine milk at pH = 4.0 (%65Zn in liver = 18.7+1.4) when compared to WPF (22.8 +/- 1.6) or human milk (26.9 +/- 0.8). Lowering the pH further decreased zinc bioavailability from human milk, but not from cow's milk or WPF. Knowledge of the compounds binding minerals and trace elements in infant formulas is essential for optimizing zinc bioavailability.  相似文献   

5.
Low molecular weight zinc(II) and copper(II) binding ligands were detected in ultrafiltered human, bovine, and goat milk by the application of the method of modified gel chromatography. Human milk contains at least three detectable low molecular weight copper binders, whereas bovine and goat milk contain at least two. All three milks show two copper binding peaks with the same elution volumes. Zinc chromatograms were less specific than copper. Zinc showed only a single detectable low molecular weight binding ligand common to all three milks. Elution volumes for both zinc(II) and copper(II) citrate and picolinate systems were measured. Elution volumes of both copper(II) and zinc(II) citrate complexes are identical to elution volumes of an intense peak observed with all three milks; it is reasonable to assume that at least part of this peak corresponds to citrate. Human milk alone has a relatively intense binding peak for copper(II) at the same elution volume as the glutamate complex. Human and goat milk have another low intensity copper(II) binding ligand peak at the same elution volume; a number of amino acid complexes have binding peaks at this position. No peak characteristic of the zinc(II) or copper(II) picolinate systems could be found with any of the milks.  相似文献   

6.
Influence of zinc on lotic plants   总被引:2,自引:0,他引:2  
SUMMARY. The toxicity of zinc to Hormidium rivulare Kütz. in laboratory culture media is decreased by rises in the levels of magnesium, calcium and phosphate, and increased by rises in pH and cadmium. The effects of all these are sufficiently marked that they may be expected to have considerable importance in the field. In contrast, assays with sodium, chloride and sulphate showed no detectable influence of these ions on zinc toxicity.
When applied at higher concentrations, calcium was always more effective than magnesium, but the reverse was sometimes true at lower concentrations. Both magnesium and phosphate were more effective in reducing zinc toxicity with zinc-tolerant populations than with zinc-sensitive ones. Cadmium was highly toxic, either alone or in combination with zinc; however, calcium had a proportionately greater effect in reducing cadmium toxicity than zinc toxicity. The toxic effects of zinc and cadmium were synergistic, and it seems probable that the presence of cadmium at levels of 0.01 mgl−1 and above will usually lead to a significant increase in the toxicity of any zinc also present. Cadmium (in the absence of zinc) was 34 times more toxic than zinc to a zinc + cadmium sensitive population, and 15.5 times more toxic to a zinc + cadmium tolerant population. Because of the synergistic response, cadmium had an even greater effect in the presence of zinc.  相似文献   

7.
Milk calcium salt solution was prepared by the following procedures using casein phosphopeptides (CPP). To CPP solution, 1 M citric acid, 1 M CaCl2 and 1 M K2HPO4 were added with stirring, while adjusting the pH to 6.7. The prepared solution was left for 12 hr at 25 degrees C and then used for subsequent experiments, or lyophilized. The concentrations of organic phosphate of CPP, calcium, inorganic phosphate, and citrate in the typical milk salt solution were 7, 30, 22, and 10 mM, respectively, which were close to those in bovine milk. The lyophilized sample was easily dissolved in water. No crystal structure of hydroxyapatite was shown in the lyophilized milk calcium salts by X-ray diffraction analysis, although the pattern of KCl crystal was observed. The X-ray diffraction pattern of commercial whey mineral, which was prepared by precipitation at alkaline pH from rennet whey, was similar to that of hydroxyapatite. It was confirmed by high-performance gel chromatographic analysis that the form of calcium phosphate in the milk calcium salts was similar to that of casein micelles.  相似文献   

8.
The presence of superoxide dismutase in bovine and human milk was investigated by ultrafiltration, gel filtration, and isoelectric focusing. Conclusive evidence for the presence of this enzyme in both milks is presented. The molecular weight of the enzyme was estimated by gel filtration on Sephadex G-100 to be 30,000, which is consistent with reported values for the copper, zinc form of superoxide dismutase. In addition, enzyme activity was inhibited by cyanide, thus eliminating the possibility that the enzyme was present in the manganese form. Several isoenzymes were detected by isoelectric focusing in polyacrylamide gel, and the isoenzyme pattern in bovine milk was the same as that found for bovine plasma, suggesting that milk superoxide dismutase originates from plasma. It may be that the presence of copper, zinc superoxide dismutase in milk is important for the maintenance of its oxidative stability.  相似文献   

9.
The salt of milk constitutes a small part of milk (8-9 g.L(-1)); this fraction contains calcium, magnesium, sodium and potassium for the main cations and inorganic phosphate, citrate and chloride for the main anions. In milk, these ions are more or less associated between themselves and with proteins. Depending on the type of ion, they are diffusible (cases of sodium, potassium and chloride) or partially associated with casein molecules (cases of calcium, magnesium, phosphate and citrate), to form large colloidal particles called casein micelles. Today, our knowledge and understanding concerning this fraction is relatively complete. In this review, the different models explaining (i) the nature and distribution of these minerals (especially calcium phosphate) in both fractions of milk and (ii) their behaviour in different physico-chemical conditions, are discussed.  相似文献   

10.
A chelating resin specific for divalent cations (Chelex) was used to prepare metal-depleted media for lymphocyte culture. A batch procedure (resin in pH 7.4 phosphate buffer/specimen, 1:1) removed 70-80% of iron, 77-87% of copper and 88-98% of zinc, calcium and magnesium. At variance with other reports, when a resin/specimen ratio of 1:4 was used, iron chelation decreased to 40%, whereas other cation chelation remained unchanged. Best chelation for iron and calcium was obtained at pH 5-6.4; for copper, zinc and magnesium, at pH 7.4-8.0. During the procedure protein content decreased by 8-10%; arginine and lysine by 80%; asparagine, cystine, tyrosine and phenylalanine by 60%, other amino acids by 35%. These new data suggest that cation-depleted media prepared with Chelex may be used to study the effects of cations on lymphocytes in culture, provided that the most appropriate pH and resin/specimen ratio are selected and adequate amino acid replacement is performed. Results on normal human lymphocytes are reported.  相似文献   

11.
When high-pressure (HP)-treated reconstituted skim milks (200–600 MPa/5–30 min) were acidified with glucono-δ-lactone, the elastic modulus (G′) displayed atypical behaviour with pH, increasing as the pH decreased between 6.0 and 5.3, indicating that a weak gel had formed as soon as the pH of the milk decreased. The formation of a weak gel at pH 6.0 to 5.3 indicates that HP milks are more unstable to acidification than untreated or heated milks; this effect has not been previously reported. Untreated and heated (90 °C/30 min) milks did not show an increase in G′ until the pH was below 4.9 and 5.3, respectively. Frequency sweeps confirmed that the HP-treated milks formed weak gels at pH much higher than where typical acid gelation of milk occurs. Microstructural and particle size analyses indicated that the HP-treated milks started aggregating as soon as the pH declined whereas the heated milks did not aggregate until the pH was below 5.5. Heat treatment of milk either before or after HP treatment completely eliminated the weak gelation as these samples did not form gels until the pH decreased below pH 5.3. It is apparent that the restructured colloidal particles formed when milk is HP treated are unstable to acidification, and it is proposed that the redistributed κ-casein cannot stabilize these particles when the milk is acidified. The role of denatured whey proteins in the weak gelation phenomenon is unclear.  相似文献   

12.
The isolation of whey proteins from human and bovine milks followed by profiling of their entire N-glycan repertoire is described. Whey proteins resulting from centrifugation and ethanol precipitation of milk were treated with PNGase F to release protein-bound N-glycans. Once released, N-glycans were analyzed via nanoflow liquid chromatography coupled with quadrupole time-of-flight mass spectrometry following chromatographic separation on a porous graphitized carbon chip. In all, 38 N-glycan compositions were observed in the human milk sample while the bovine milk sample revealed 51 N-glycan compositions. These numbers translate to over a hundred compounds when isomers are considered and point to the complexity of the mixture. High mannose, neutral, and sialylated complex/hybrid glycans were observed in both milk sources. Although NeuAc sialylation was observed in both milk samples, the NeuGc residue was only observed in bovine milk and marks a major difference between human and bovine milks. To the best of our knowledge, this study is the first MS based confirmation of NeuGc in milk protein bound glycans as well as the first comprehensive N-glycan profile of bovine milk proteins. Tandem MS was necessary for resolving complications presented by the fact that (NeuGc:Fuc) corresponds to the exact mass of (NeuAc:Hex). Comparison of the relative distribution of the different glycan types in both milk sources was possible via their abundances. While the human milk analysis revealed a 6% high mannose, 57% sialylation, and 75% fucosylation distribution, a 10% high mannose, 68% sialylation, and 31% fucosylation distribution was observed in the bovine milk analysis. Comparison with the free milk oligosaccharides yielded low sialylation and high fucosylation in human, while high sialylation and low fucosylation are found in bovine. The results suggest that high fucosylation is a general trait in human, while high sialylation and low fucosylation are general features of glycosylation in bovine milk.  相似文献   

13.
1. The pH optimum of CO2-dependent O2 evolution by barley (Hordeum vulgare L.) chloroplasts was found to be between 7.8 and 8.2. The addition of 1 mM MgCl2 in the dark inhibited O2 evolution over the entire pH range tested and resulted in a much sharper pH profile centered around pH 8.2. 2. The pH optimum for O2 evolution, in the presence and absence of 1 mM MgCl2, was acid-shifted 0.3--0.4 pH units by 2 mM NH4Cl. The pH optimum of O2 evolution, with and without 1 mM MgCl2, was base-shifted by 2 mM sodium acetate, approx. 0.5 pH units relative to the controls. 3. O2 evolution in the presence of bicarbonate plus 3-phosphoglycerate or ribose-5-phosphate was considerably less sensitive to pH than CO2-dependent O2 evolution in the absence of substrate. With these substrates, both in the presence and absence of 1 mM MgCl2, the pH optimum was broad and was centered around pH 7.8. 4. Inhibition of CO2-dependent O2 evolution by inorganic phosphate and magnesium increased as the pH of the reaction mixture was decreased below the optimum. Decreasing the pH from 8.2 to 7.6, reduced over 3-fold the concentration of inorganic phosphate required to inhibit O2 evolution completely. For magnesium, a similar change in pH reduced the concentration required to inhibit O2 evolution 50% approx. 5-fold. At pH 8.2, magnesium inhibition required inorganic phosphate. Magnesium was not required for inhibition of O2 evolution by inorganic phosphate, but incresaed the relative inhibition observed. 5. Illumination of intact barley chloroplasts increased the activity of NADP-glyceraldehyde-3-P dehydrogenase, phosphoribulokinase and fructose-1,6-diphosphatase. MgCl2 and inorganic phosphate prevented this increase in enzyme activity at concentrations that completely inhibited CO2-dependent O2 evolution. 6. The results obtained suggest that magnesium inhibition of O2 evolution may be caused by enhanced phosphate exchange across the chloroplast envelope.  相似文献   

14.
Alkaline phosphatase (EC 3.1.3.1) from bovine intestine mucosa (BIAP) is a homodimeric metalloenzyme, which hydrolyses nonspecifically phosphate monoesters at alkaline pH with release of inorganic phosphate and alcohol. BIAP is either soluble (sBIAP) or membrane-anchored by a glycosylphosphatidylinositol moiety (GPI-BIAP). This anchor might have some contribution in the stabilization of the GPI-linked protein structure. Our purpose was to study the role of the anchor by using two parameters, the enzymatic activity and the protein conformation, which was analyzed by using FTIR spectroscopy. We determined that the two forms of BIAP show some similarities with the previously described structure of alkaline phosphatase isolated from Escherichia coli and human placenta. Meanwhile GPI-BIAP and sBIAP exhibit similar specific activities, the presence of the anchor increases the thermal and pH stabilities of the enzyme activity and conformation.  相似文献   

15.
An equilibrium thermodynamic model of the interaction of calcium, phosphate and casein in milk is described in which the micellar calcium phosphate is assumed to be in the form of calcium phosphate nanoclusters. A generalized empirical formula for the nanocluster is used to define the molar ratios of small ions (Ca, Mg, Pi and citrate) to a casein phosphorylated sequence (phosphate centre, PC). From this model, a method of calculating the partition of milk salts into diffusible and non-diffusible fractions is obtained. No arbitrary assumptions are made, no fitting of adjustable parameters is done and the PCs in the caseins are defined by inspection of their primary structures. In addition to the salt partition, the mole fractions of the individual caseins not complexed to the calcium phosphate through one or more of their PCs are computed and a generic stability rule for milks is derived. The use of the model is illustrated by calculations of the partition of salts in a standard milk and by comparison with experimental data on the partition of salts in the milk of individual cows. The generic stability rule is applied to the individual milks to determine whether the micellar calcium phosphate is thermodynamically stable. According to the calculations, compositions that might lead to pathological calcification in the lumen of the mammary gland were seldom found in primiparous healthy cows in early or mid lactation but occurred more often in multiparous animals, in late lactation and during mastitic infection.Abbreviations ACP amorphous calcium phosphate - Cit citrate - CN casein - CPN calcium phosphate nanocluster - DCPD dicalcium phosphate dihydrate - HA hydroxyapatite - IAP ion activity product - MCP micellar calcium phosphate - MWCO molecular weight cut-off - OCP octacalcium phosphate - PC phosphate centre - TCC tricalcium citrate  相似文献   

16.
The effects of liquid milk and skim milk powder on the bacterial composition of rat dental plaque and dental caries were examined in two separate experiments. First, groups of rats fed a cariogenic diet plus one or other of three types of liquid milk had. after 28 d. similar plaque flora. Those rats receiving reconstituted spray-dried skim milk had a significantly higher incidence of dental caries than those receiving either pasteurized and homogenized milk or ultra-heat treated milk. The differences in caries scores may be related to differences in inorganic phosphate and calcium levels of the milks. Secondly, rats fed a diet containing 65% phosphate-free sucrose plus 32% spray-dried skim milk in powder form had a significantly lower dental caries score than did rats receiving a diet containing 65% sucrose plus 32% autoclaved roller-dried skim milk powder. At the end of this experiment, the plaque flora had changed significantly and the difference in caries incidence was related to the reduction in the percentage of potentially cariogenic bacteria.
These results indicate that the mechanism by which milk reduces dental caries incidence may be (a) by remineralizing incipient carious lesions or (b) by mediating changes in the bacterial composition of dental plaque.  相似文献   

17.
The effects of several inorganic salts on the combustion of cigarette and the transfer of nicotine into cigarette smoke have been investigated. Ferric, ferrous, ammonium, magnesium salts and chlorides or sulfates depress the combustibility. Contrary to this, potassium, calcium salts, nitrates and carbonates promote it. The combustion-zone temperatures of cigarettes are within the range from 815°C to 857°C, they are not significantly affected by an addition of inorganic salts. Magnesium nitrate, zinc nitrate and potassium phosphate improve the whiteness of cigarette ash, but the other salts rather darken it. Any relations, however, are not recognized between the whiteness of ash and combustibility of cigarettes. The amounts of nicotine transferred into smoke can be reduced by an addition of inorganic salts, among which magnesium is the most effective.  相似文献   

18.
Bile salts and calcium absorption   总被引:5,自引:2,他引:3       下载免费PDF全文
1. The study of the effect of bile salts on enhancing calcium absorption in the rachitic chick has been extended to bile salts not present in chick bile, e.g. glycine conjugates and bile alcohol sulphates. 2. Bile and bile salts cause an increase in calcium absorption from sparingly soluble calcium hydrogen phosphate when compared with a suspension of calcium hydrogen phosphate in saline. 3. If the bile ducts of normal rats are tied the absorption of calcium from calcium hydrogen phosphate decreases but can be restored by giving bile salts with the calcium salt. 4. Bile salts increase solubility in water of the sparingly soluble calcium salts, phytate and phosphate at pH values between 6 and 8. 5. Bile salts increase the solubility in lipid solvents of calcium in approximately the same proportion as they increase the absorption of calcium from the gut. 6. The physiological role of bile in calcium absorption and its mode of action are discussed.  相似文献   

19.
Summary Two acid soils showing different Al solubility as a function of pH were limed to a range of pH values (in 10–2 M CaCl2) between 4.1 and 5.6. The apparent critical pH for the growth of barley in pots was 0.25 lower in the soil showing lower Al solubility. The addition of phosphate reduced exchangeable and soluble Al in the soils, and lowered the apparent critical pH by 0.35 while maintaining the difference between the soils. The Al concentration at the critical pH, measured after cropping to take account of the treatment effects on soil Al, also varied with soil and with phosphate addition. These apparent critical values of both pH and soluble Al varied linearly with available phosphate, over the range 18 to 73 mg P/kg soil, as follows: pH from 4.9 to 4.3; soluble Al, from 0.010 mM to 0.056 mM; and the soluble Ca/Al mole ratio, from 1270 to 214.  相似文献   

20.
The change of salt distribution of skimmilk during frozen storage at ?7°C and its reversion after thawing were investigated. Losses of ultrafiltrable calcium, inorganic phosphate and citrate were indicated. A part of insolubilized calcium and citrate reversed to a soluble form after thawing, but insolubilized phosphate hardly reversed when the storage period was prolonged. Comparison on the changes in skimmilk and in its dialyzate suggested that the insolubilization of salt constituents in milk due to frozen storage involved the interaction of these constituents with calcium caseinate phosphate complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号