共查询到20条相似文献,搜索用时 15 毫秒
1.
John A. McLane Marion Katz Nana Abdelkader 《In vitro cellular & developmental biology. Plant》1990,26(4):379-387
Summary 1,25-Dihydroxyvitamin D3 (1,25-(OH)2-D3) is known to decrease the proliferation and increase the differentiation of different cell types including human keratinocytes.
The growth and differentiation of keratinocytes in the presence of 1,25-(OH)2-D3 using serum-free media formulations has been described previously. This investigation extends these studies to describe various
culture conditions with human foreskin keratinocytes to determine the optimal antiproliferative activity of 1,25-(OH)2-D3. Keratinocytes were plated onto tissue culture dishes using one of three basic serum-free media protocols; a) with no feeder
layer in keratinocyte growth medium (KGM); b) onto mitomycin C-treated 3T3 mouse embryo fibroblasts; or c) onto mitomycin
C-treated dermal human fibroblasts. The last two protocols utilized Dulbecco's modified Eagle's Medium (DMEM) supplemented
with growth factors. Keratinocyte cell growth was greatest in the KGM medium. Although the growth of keratinocytes on either
feeder layer was similar, there were differences in the ability of the cells to form envelopes in the presence of 1,25-(OH)2-D3. The addition of hydrocortisone and cholera toxin to the medium also affected the response of the keratinocytes to 1,25-(OH)2-D3. The antiproliferative effect of 1,25-(OH)2-D3 was not altered by varying the extracellular calcium levels from 0.25 to 3 mM. The antiproliferative activity of 1,25-(OH)2-D3 is attenuated in cells at low density. Our results suggest that an optimal condition to investigate the ability of 1,25-(OH)2-D3 to inhibit keratinocyte proliferation is at preconfluent cell density in the presence of KGM supplemented with 1.5 mM calcium without a feeder layer. These conditions are not appropriate for investigating the enhancement of differentiation
by 1,25-(OH)2-D3, but can be used to assay other agents that modulate keratinocyte proliferation.
Portions of this work were presented and abstracted at the April 1988 meeting of the Society of Investigative Dermatology
(J. Inv. Derm. 90(4): 586; 1988) and the February 1988 meeting of New York Academy of Sciences (Ann NY Acad. Sci. 548: 341–342;
1988). 相似文献
2.
1,25-Dihydroxyvitamin D3 [1,25(OH)2D3] and all-trans retinoic acid (RA), the active metabolites of vitamins D and A respectively, regulate the proliferation and differentiation of keratinocytes. Both the vitamin D receptor (VDR) and the retinoic acid receptor family (RAR) bind to DNA response elements as heterodimers with the retinoic X receptor (RXR), suggesting that there are pathways of action that are shared by both compounds. Therefore, we examined the interactions of 1,25(OH)2D3 and RA upon the proliferation and differentiation of normal human keratinocytes (NHK) and of a squamous cell carcinoma cell line, SCC4. Although both 1,25(OH)2D3 and RA were each able to inhibit NHK proliferation in a dose-dependent manner, when they were administered in combination, proliferation was stimulated, suggesting mutual antagonism. In contrast, SCC4 cells proved insensitive in terms of proliferation to 1,25(OH)2D3 and to all but the highest concentration (10−6 M) of RA. 1,25(OH)2D3 exerted a biphasic effect on transglutaminase (TGase) and involucrin (INV) mRNA levels, with maximal stimulation at 10−9 M. RA inhibited TGase and INV mRNA levels and antagonized the stimulation by 1,25(OH)2D3. A similar pattern was observed for TGase protein, but, RA, which, by itself, reduced INV, markedly enhanced the ability of 1,25(OH)2D3 to raise INV levels, possibly by inhibiting 1,25(OH)2D3-stimulated TGase activity and cross-linking of soluble INV into the insoluble cornified envelope (CE). Thus, in NHK cells, RA antagonizes the antiproliferative prodifferentiating actions of 1,25(OH)2D3, but assessment of a single marker, such as INV protein, may be misleading. J. Cell. Physiol. 174:1–8, 1998. © 1998 Wiley-Liss, Inc. 相似文献
3.
The steroid hormone 1,25 dihydroxyvitamin D3 (1,25(OH)2D3) regulates cell proliferation and differentiation. Intracellular calcium (Cai) concentrations play a crucial role in these events. From our previous studies, we have demonstrated a calcium receptor (CaR) in keratinocytes which appears to regulate the initial release of Cai from intracellular stores in response to extracellular calcium (Cao) and so is likely to participate in the differentiation process. In this study, we determined whether the ability of 1,25(OH)2D3 to enhance Ca++ -induced differentiation was mediated at least in part through changes in the CaR. Keratinocytes were grown in keratinocyte growth medium (KGM) with 0.03 mM, 0.1 mM, or 1.2 mM Ca and treated with 10(-8) M 1,25(OH)2D3 till harvest after 5, 7, 14, and 21 days. CaR mRNA levels were quantitated by polymerase chain reaction. The results were compared to the ability of 1,25(OH)2D3 to enhance calcium-stimulated increases in Cai. In cells grown in 0.03 mM Ca, the CaR mRNA levels decreased with time. 1,25(OH)2D3 stimulated the levels at 5 days and prevented the falloff over the subsequent 16 days. On the other hand, in cells grown in 0.1 or 1.2 mM Ca, the message levels remained high, and 1,25(OH)2D3 had no further effect. To study the functional relationship, we harvested cells after 5 and 7 days in culture following a 24 h treatment with 1,25(OH)2D3 or vehicle to measure the Cai response to 2 mM Cao. The preconfluent cells grown in 0.03 mM Ca showed a nearly twofold increase in the Cai response to Cao when pretreated with 1,25(OH)2D3, whereas the confluent cells and those grown in 1.2 mM Ca showed no enhancement by 1,25(OH)2D3. Studies with 45Ca influx into keratinocytes revealed that 1,25(OH)2D3 enhanced the influx in preconfluent and confluent cells when grown in KGM containing 0.03 mM Ca but not in cells grown in 1.2 mM calcium. We conclude that 1,25(OH)2D3 maintains the CaR mRNA levels in cells grown in 0.03 mM Ca, thus maintaining their responsiveness to Cao and so ensuring their ability to differentiate in response to the calcium signal. 相似文献
4.
Primary cultures of neonatal human foreskin keratinocytes converted 25-hydroxyvitamin D in high yield to a metabolite with the chromatographic behavior of 1,25-dihydroxyvitamin D3. The identity of this metabolite as 1,25-dihydroxyvitamin D3 was confirmed both by its potency in displacing 1,25-dihydroxyvitamin D3 in the chick cytosol receptor assay and by mass spectral analysis. These results suggest that 1,25-dihydroxyvitamin D3 may be formed in the epidermis to regulate vitamin D production by the epidermis and to provide an alternative to 1,25-dihydroxyvitamin D3 production by the kidneys. 相似文献
5.
De Haes P Garmyn M Carmeliet G Degreef H Vantieghem K Bouillon R Segaert S 《Journal of cellular biochemistry》2004,93(5):951-967
We previously reported that 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] protects primary human keratinocytes against ultraviolet (UV)B-induced apoptosis. Here, we confirmed the anti-apoptotic effect of 1,25(OH)2D3 in keratinocytes, using cisplatin and doxorubicin as apoptotic triggers. We further showed that 1,25(OH)2D3 activates two survival pathways in keratinocytes: the MEK/extracellular signal regulated kinase (ERK) and the phosphatidylinositol 3-kinase (PI-3K)/Akt pathway. Activation of ERK and Akt by 1,25(OH)2D3 was transient, required a minimal dose of 10(-9) M and could be blocked by actinomycin D and cycloheximide. Moreover, inhibition of Akt or ERK activity with respectively a PI-3K inhibitor (LY294002) or MEK inhibitors (PD98059, UO126), partially or totally suppressed the anti-apoptotic capacity of 1,25(OH)2D3. Finally, 1,25(OH)2D3 changed the expression of different apoptosis regulators belonging to the Bcl-2 family. Indeed, 1,25(OH)2D3 treatment increased levels of the anti-apoptotic protein Bcl-2 and decreased levels of the pro-apoptotic proteins Bax and Bad in a time- and dose-dependent way. Induction of Bcl-2 by 1,25(OH)2D3 was further shown to be mediated by ERK and, to a lesser extent, by Akt. In conclusion, 1,25(OH)2D3 clearly protects keratinocytes against apoptosis (1) by activating the MEK/ERK and the PI-3K/Akt survival pathways and (2) by increasing the Bcl-2 to Bax and Bad ratio. 相似文献
6.
K Matsumoto Y Azuma M Kiyoki H Okumura K Hashimoto K Yoshikawa 《Biochimica et biophysica acta》1991,1092(3):311-318
In this study, we investigated the possibility that cultured keratinocytes from normal human adult skin produce 1,25-dihydroxyvitamin D-3 (1,25(OH)2D3, a biologically active form of vitamin D-3) from 25-hydroxyvitamin D-3 [25(OH)D3], and that 1,25(OH)2D3 endogenously produced by keratinocytes is involved in the self regulation of their growth and differentiation. To determine whether 1,25(OH)2D3 is produced from 25(OH)D3 by skin keratinocytes, 25(OH)[3H]D3 was added to keratinocyte cultures and incubated for 1 h and 5 h. The intracellular and extracellular metabolites were analyzed by three chromatographic systems. The three chromatograms revealed that the major metabolite produced from 25(OH)D3 was 1,25(OH)2D3. Most of the 1,25(OH)2D3 endogenously produced from 25(OH)D3 remained within the cells. To examine the time course of 1,25(OH)2D3 production, the amount of 1,25(OH)[3H]D3 was measured at 15 min, 1 h, 5 h and 10 h, being at a maximum 1 h after the addition of 25(OH)D3. These data indicate that keratinocytes rapidly convert 25(OH)D3 to 1,25(OH)2D3 and that 1,25(OH)2D3 is not released into the medium. To determine whether endogenously produced 1,25(OH)2D3 is involved in the regulation of growth and differentiation of normal human keratinocytes, we examined the effects of 1,25(OH)2D3 and 25(OH)D3 on their growth and differentiation. Keratinocyte growth was inhibited to 52.6% and 23.4% by 10(-8) M and 10(-7) M 1,25(OH)2D3 and to 80.5% and 23.9% by 10(-8) M and 10(-7) M 25(OH)D3, respectively. Differentiation of these cells was evaluated by quantifying the number which express involucrin, a precursor protein of cornified envelope. The population of involucrin expressing cells (differentiated cells) increased from 6.2% to 14.5% by 2.5.10(-7) M 1,25(OH)2D3, and to 11.8% by 2.5.10(-7) M 25(OH)D3. These results clearly indicate that 25(OH)D3 is as effective on human keratinocytes as 1,25(OH)2D3 in inhibiting growth and inducing differentiation, although to a slightly lesser extent than 1,25(OH)2D3. The possibility that the effect of 25(OH)D3 is mediated through binding to the 1,25(OH)2D3 receptor can be excluded, since a competitive binding assay revealed that the affinity of 25(OH)D3 for the 1,25(OH)2D3 receptor in a cytosolic extract of keratinocytes was 100-times lower than that of 1,25(OH)2D3. Thus, these results suggest that 1,25(OH)2D3 endogenously produced in keratinocytes from 25(OH)D3 is involved in the regulation of their growth and differentiation in vitro. 相似文献
7.
Growth-inhibitory effects of 1,25-dihydroxyvitamin D3 on normal human keratinocytes cultured in serum-free medium 总被引:1,自引:0,他引:1
K Matsumoto K Hashimoto Y Nishida M Hashiro K Yoshikawa 《Biochemical and biophysical research communications》1990,166(2):916-923
The effect of 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] on the growth of normal human keratinocytes cultured in serum-free medium was investigated. 1,25(OH)2D3 inhibited the cell growth at 10(-7) M by 75.3% and at 10(-6) M almost completely. The growth inhibition was accompanied by changes related to proliferation: (1) remarkable inhibition of DNA synthesis, (2) the decrease in the number of high-affinity receptors for epidermal growth factor, with almost no change in total receptor number, (3) the rapid decrease in c-myc mRNA level. The inhibition of DNA synthesis and the decrease of c-myc mRNA expression occurred at 3 h after the addition of 1,25(OH)2D3. These results suggest that decrease of c-myc mRNA expression is one of the primary effects of 1,25(OH)2D3 in the growth inhibition of human keratinocytes. 相似文献
8.
Kikuchi R Sobue S Murakami M Ito H Kimura A Iwasaki T Shibayama S Takagi A Kojima T Suzuki M Banno Y Nozawa Y Murate T 《FEBS letters》2007,581(9):1800-1804
1α,25-Dihydroxyvitamin D3 (VitD3) increases protein and gene expression of phospholipase D1 (PLD1), but not PLD2, in HaCaT human keratinocytes. We show that VitD3 increases PLD1 gene expression through a vitamin D responsive element (VDRE) on the 5′ PLD1 promoter (−260 bp to −246 bp from exon 1). Similar results were obtained by transfecting VitD3 receptor (VDR) into HEK293 cells, which are originally VitD3-unresponsive. Electrophoresis mobility shift assays (EMSA) and chromatin immunoprecipitation (CHIP) assays showed that the complex of VitD3, VDR and retinoid X receptor α (RXRα) binds to the VDRE and increases PLD1 gene expression in HaCaT cells. 相似文献
9.
Kunio Matsumoto Yoshiaki Azuma Mamoru Kiyoki Hidenobu Okumura Koji Hashimoto Kunihiko Yoshikawa 《Biochimica et Biophysica Acta (BBA)/Molecular Cell Research》1991,1092(3):311-318
In this study, we investigated the possibility that cultured keratinocytes from normal human adult skin produce 1,25-dihydroxyvitamin D-3 (1,25(OH)2D3, a biologically active form of vitamin D-3) from 25-hydroxyvitamin D-3 [25(OH)D3], and that 1,25(OH)2D3 endogenously produced by keratinocytes is involved in the self regulation of their growth and differentiation. To determine whether 1,25(OH)2D3 is produced from 25(OH)D3 by skin keratinocytes, 25(OH)[3H]D3 was added to keratinocyte cultures and incubated for 1 h and 5 h. The intracellular and extracellular metabolites were analyzed by three chromatographic systems. The three chromatograms revealed that the major metabolite produced from 25(OH)2D3 was 1,25(OH)2D3. Most of the 1,25(OH)2D3 endogenously produced from 25(OH)D3 remained within the cells. To examine the time course of 1,25(OH)2D3 production, the amount of 1,25(OH)[3H]D3 was measured at 15 min, 1 h, 5 h and 10 h, being at a maximum 1 h after the addition of 25(OH)D3. These data indicate that keratinocytes rapidly convert 25(OH)D3 to 1,25(OH)2D3 and that 1,25(OH)2D3 is not released into the medium. To determine whether endogenously produced 1,25(OH)2D3 is involved in the regulation of growth and differentiation of normal human keratinocytes, we examined the effects of 1,25(OH)2D3 and 25(OH)D3 on their growth and differentiation. Keratinocyte growth was inhibited to 52.6% and 23.4% by 10?8 M and 10?7 M 1,25(OH)2D3 and to 80.5% and 23.9% by 10?8 M and 10?7 M 25(OH)D3, respectively. Differentiation of these cells was evaluated by quantifying the number which express involucrin, a precursor protein of cornified envelope. The population of involucrin expressing cells (differentiated cells) increased from 6.2% to 14.5% by 2.5·10?7 M 1,25(OH)2D3, and to 11.8% by 2.5·10?7 M 25(OH)D3. These results clearly indicate that 25(OH)D3 is as effective on human keratinocytes as 1,25(OH)2D3 in inhibiting growth and inducing differentiation, although to a slightly lesser extent than 1,25(OH)2D3. The possibility that the effect of 25(OH)D3 is mediated through binding to the 1,25(OH)2D3 receptor can be excluded, since a competitive binding assay revealed that the affinity of 25(OH)D3 for the 1,25(OH)2D3 receptor in a cytosolic extract of keratinocytes was 100-times lower than that of 1,25(OH)2D3. Thus, these results suggest that 1,25(OH)2D3 endogenously produced in keratinocytes from 25(OH)D3 is involved in the regulation of their growth and differentiation in vitro. 相似文献
10.
Nancy M. Hanafin Kelly Scott Persons Michael F. Holick 《In vitro cellular & developmental biology. Animal》1994,30(3):187-191
Summary The human vitamin D receptor mRNA expression in preconfluent human cultured keratinocytes was upregulated by treatment of
these cells with 10−8
M 1,25(OH)2D3 for 24 hours. Additionally, human c-myc mRNA expression was decreased in a dose dependent manner by 1,25(OH)2D3 in both preconfluent and confluent cultured human keratinocytes. 相似文献
11.
4-Hydroxynonenal (HNE) has been demonstrated to exert its antiproliferative effect by up-regulating the c-Jun-N-terminal kinase (JNK), a member of the mitogen-activated protein kinase family (MAPKs). Transforming growth factor-beta1 (TGF-beta1) is the major negative regulatory factor in controlling cell proliferation, and Smads are its intracellular transducers. Recent data on human colon adenocarcinoma has shown a low HNE content paralleled by a marked alteration of TGF-beta1 levels within the tumor mass. The two events appear related because of the demonstrated marked ability of HNE to up-regulate expression and synthesis of TGF-beta1; the combined decreases of HNE and TGF-beta1 found in cancer cells provide a favorable condition for neoplastic progression. Furthermore, HNE is likely able to interact with the cytokine to enhance apoptosis and increase intracellular reactive oxygen species (ROS) formation in the CaCo-2 colon carcinoma cell line. The probable mechanism whereby HNE and TGF-beta1 interact to induce apoptosis is through cross-talk between the main signaling pathways of the two molecules (JNK and Smads), and the observed ROS production might only contribute to amplifying the apoptotic pathways. The network between the two signaling pathways here involved is now under investigation. 相似文献
12.
13.
The effect of 1,25(OH)(2)D(3) on the intracellular calcium, (Ca(+2))i, in both cultured human keratinocytes and in cultured human dermal fibroblasts was investigated. When the intracellular calcium (Ca(+2))i in cultured human keratinocytes, grown in a serum-free medium containing 1.8 mM calcium, was measured by the fluorescent calcium-indicator, Furu-2, the (Ca(+2)i increased 154%, 202%, and 409% over the control value after incubation with 1,25(OH)(2)D(3) at 10(-10) m, 10(-8) m, and 10(-6) m, respectively. This response was immediate (15 seconds), specific (no effect with either 25(OH)D(3) at 10(-8) m or vitamin D(3) at 10(-8) m), and occurred with or without EGTA in the medium. In contrast, 1,25(OH)(2)D(3) did not increase the (Ca(2+))i in either cultured human keratinocytes that were grown in low calcium (0.05 mm), serum-free medium or in cultured human dermal fibroblasts that were grown in medium containing 0.05 mm calcium and 1% serum. The effect of 1,25(OH)(2)D(3) on the the turnover of phosphatidylinositol was investigated as a possible cause for the observed increase in (Ca(+2)i. Cultured human keratinocytes that were incubated with (3)H-inositol demonstrated a 50 % +/- 10% increase in the triphosphated, plasma membrane-bound metabolite of phosphatidylinositol, PIP(2), by 15 seconds, followed by a rapid decrease at 30 seconds, then a return toward basal levels by 1 minute. Lysophosphatidylinositol, which results from the sn-2 deacylation of phosphatidylinositol by phospholipase A(2), decreased 20% +/- 8% within 30 seconds, then increased to 200% +/- 10% of the control value by 5 minutes. The accumulation of IP(3) was increased 50% to 100% above the control value within 30 seconds and this increase was substained during the 5-minute incubation period. Stimulation of phosphatidylinositol turnover by 1,25(OH)(2)D(3) was not detected in either cultured human keratinocytes that were grown in serum-free, low calcium medium or in cultured human dermal fibroblasts that were grown in 1% serum. 相似文献
14.
15.
16.
C M Terpening M R Haussler 《Biochemical and biophysical research communications》1990,173(3):1129-1136
A fragment of the complementary deoxyribonucleic acid to the human 1,25-dihydroxyvitamin D3 receptor protein containing essentially the entire open reading frame was transcribed and translated in vitro. The resulting protein was then demonstrated to exhibit the physical and functional features, i.e. molecular weight, immunoreactivity, 1,25-dihydroxyvitamin D3 binding, and DNA-cellulose binding, of the native human receptor from the T47D cell line. This validates the authenticity of the cDNA in a cell free system and provides a biochemical means of generating this rare and labile macromolecule to use in heretofore difficult structure/function studies. 相似文献
17.
18.
19.
20.
1,25-Dihydroxyvitamin D production and receptor binding in human keratinocytes varies with differentiation 总被引:6,自引:0,他引:6
Human foreskin keratinocytes in culture produce 1,25-dihydroxycholecalciferol (1,25-(OH)2D3) and 24,25-dihydroxycholecalciferol (24,25-(OH)2D3) from 25-hydroxycholecalciferol (25-(OH)D3). The production of 1,25-(OH)2D3 by these cells correlated with the early events of differentiation such as expression of transglutaminase activity and the levels of a precursor protein for the cornified envelopes, involucrin. In contrast, the increased production of 24,25-(OH)2D3, as 1,25-(OH)2D3 production declined, correlated with the terminal differentiation marker, cornified envelope formation. Exogenous 1,25-(OH)2D3 (10(-11)-10(-9) M) inhibited the 1-alpha-hydroxylase at all stages of growth of these cells. Keratinocytes in culture expressed receptors for 1,25-(OH)2D3 which had similar sedimentation behavior in sucrose density gradients as chick intestinal cytosol receptors. Cells in early stages of growth (preconfluent and confluent) contained higher numbers of receptors (26-27 fmol/mg protein) than post-confluent cells. The dissociation constant (237-278 pM) of these receptors for 1,25-(OH)2D3 was not consistently altered by differentiation. Since 1,25-(OH)2D3 is a potent stimulator of cell differentiation in a variety of systems including the epidermis, our results suggest the possibility that endogenous 1,25-(OH)2D3 production may participate in the differentiation of keratinocytes in culture and, perhaps, in vivo. 相似文献