首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Summary A technique for the short-term culture of pure populations of rabbit corneal endothelial and epithelial cells has been developed. Rabbit corneas were placed on concave agarose surfaces, treated briefly with a solution of trypsin and ethylenediamine tetracetic acid, and transferred, either epithelial cell surface or endothelial cell surface down, to microscope slide culture chambers. Within 6 to 12 h the epithelial cells or endothelial cells attached to the slide chamber surface and the cornea was removed, leaving behind a pure population of cells which spread out and grew to fill the surface of the slide chamber. This technique provides a simple and economic means for the reproducible initiation of primary cultures of rabbit corneal epithelial and endothelial cells for us in a variety of experiments. This study was supported in part by Public Health Service grants EY03150, EY02580, and EY02377 from the National Eye Institute, National Institutes of Health, Bethesda, MD, and a Foreign Fellowship (Dr. Xie) from Research to Prevent Blindness, Inc., New York, NY.  相似文献   

2.
In this paper we examine the use of a symmetric binary random stimulus for eliciting the ERG, and for calculating the first-order and second-order kernels of a nonlinear functional expansion of the response. We show that if the stimulus is represented in a non-dimensional form, then the units in which all kernels are measured are the same as the units used to measure the response, microvolts in the case of the ERG: further, contributions from all kernels to the response can be added without scale factors. We present the first-order and second-order kernels measured for a population of 15 normal subjects in a clinical setting. The measurements were made at various levels of adaptation ranging from photopic to scotopic conditions. The second-order kernels illustrate the processes of rapid adaptation (<100 ms) in the retina.This research was supported in part by Grants No. EY01526, EY01774, EY01775, and RR07003 from the National Institutes of Health  相似文献   

3.
When maintained in long-term cell culture in the presence of ascorbic acid and organic phosphate, single cell suspensions isolated from fetal rat calvaria form discrete, three-dimensional bone nodules. We have used limiting dilution analysis in microtiter wells to determine the number of osteoprogenitor cells expressing the capacity to form bone in the isolated mixed population, to examine the possibility of cooperativity among cell types in bone nodule formation, and to determine the effects of dexamethasone on osteoprogenitor cells. Cells plated at very low densities and screened for the presence or absence of bone nodules revealed a linear relationship (r = -00.997) between the number of cells plated and the number of bone nodules formed. The complete limiting dilution analyses showed that 1 of every 335 plated cells (0.30% of the cell population) has the capacity to form a bone nodule under standard culture conditions and when the actual numbers of nodules were quantitated from the same plated cell populations the ratio of nodules formed to plated cells was similar. Comparison of data from 13 different isolates of cells in which cells were plated into 35-mm dishes and number of nodules were determined indicated a mean +/- 95% confidence interval of one nodule for every 301 +/- 61 plated cells, consistent with the data obtained from the limiting dilution experiments. Dexamethasone increased the number of bone-forming cells to 1 in 225 cells, in contrast to 1 in 340 cells in the same population grown without added dexamethasone. The results suggest that approximately 0.30% of the cells in isolated rat calvaria populations are osteoprogenitor cells, that one osteoprogenitor cell gives rise to one bone nodule, that cooperativity between different cells in vitro is not necessary for bone formation, and that dexamethasone stimulates the expression of osteoprogenitor cells.  相似文献   

4.
Although there is currently no doubt that regulatory lymphocytes represent a master player in the immune system, a major unresolved problem is the accurate quantitation of these cells among unfractionated cell populations. This difficulty mainly arises because there are no specific immunophenotypic markers that can reliably discriminate between effector and regulatory lymphocytes. To face this problem, we have developed computational models of limiting dilution analyses addressing the question of the accurate estimation of the frequencies of effector and regulatory cells functionally engaged in an immune response. A set of generic equations were provided to form a framework for modeling limiting dilution data, enabling discrimination between qualitatively different models of suppression. These models include either one or two subpopulations of regulatory cells, featured by either low or potent regulatory activity. The potential of this modeling approach was illustrated by the accurate determination of the frequencies of effector and regulatory T lymphocytes in one real limiting dilution experiment of CD4+ CD25+ T lymphocytes performed in the context of an allogeneic response in the human system. The crucial advantage of the limiting dilution method over the "static, phenotype-based" method is the dynamic evaluation of effector and regulatory T cell biology through their actual functional activity.  相似文献   

5.
Summary Epithelial cells can be cultured from the urine of newborn infants, providing a simple, noninvasive biopsy method. We established such cultures by standard techniques from 44% of uncontaminated, specimens obtained from newborn infants up to 1 week of age. There was an average of three colonies per milliliter of urine. Many cultures accomplished 15 to 25 population doublings in as many as five subcultures and yielded total potential culture sizes of 104 to 6×108 cells. Plating efficiency was high at each passage. The cultures displayed two morphologically distinct epithelial cell types. Immunofluorescent staining of keratin fibers in most of these cells further, identified them as epithelial. This work was supported by NIH grants, CA16754 (J. S. F., J. W. L.) and EY02472, AM25140, AM21358, and a Research Career Development Award (EY00125) to T.-T. S.  相似文献   

6.
The nature of the in vitro human cytotoxic T-cell responder population to HSV type 1 (HSV-1) was studied. In 5-day HSV-1-stimulated cultures that contained MHC-restricted activity, two phenotypically distinct populations of cells were present that were capable of lysing HSV-1-infected B cell lines in a 5-h 51Cr-release assay. The first was CD4+, CD8-, CD16- cell typical of class II-restricted T cells, whereas the other population bore a CD4-, CD8-, CD16+ NK-cell phenotype. Elimination of the NK cell fraction from bulk cultures by using anti-CD16 plus C frequently resulted in cell populations that killed in an Ag-specific, HLA-DR-restricted fashion. In some cases the anti-CD16-pretreated cultures retained a killing population that was unrestricted to MHC products. In no instance were any cytotoxic T cells that were restricted to class I Ag in evidence. Limiting dilution analysis of precursor frequency indicated that about 1 in 4000 to 1 in 8000 cells from peripheral blood are specific for HSV-1 in seropositive individuals. Comparisons of HLA class I-matched and HLA class II-matched targets with the autologous target by using limiting dilution analysis yielded results entirely consistent with those obtained in the bulk culture assay system.  相似文献   

7.
Summary The choriocapillaris is the fenestrated capillary network that supplies a large portion of the nutrients required by the retinal pigment epithelium, photoreceptor cells, and other cells of the outer neural retina. The permeability of these capillaries was investigated in the rat by the use of ferritin (mol. wt. approx. 480,000; mol. diam. 110Å) as a tracer. Ninety minutes after intravascular ferritin administration, a high concentration of tracer particles was distributed uniformly in the capillary lumina but few particles were present in Bruch's membrane, the multilayered basement membrane that separates the choriocapillary endothelium from the retinal pigment epithelium. The bulk of the tracer remained in the capillary lumina with a definite blockage seen at fenestral, channel, and vesicle diaphragms. These results indicate that the rat choriocapillary endothelium, unlike the fenestrated endothelia lining other capillary beds, constitutes an important barrier to the passage of ferritin and presumably of circulating native molecules of similar size.Supported by NIH grants EY 01889 and EY 07034 from the National Eye Institute and a grant-in-aid from Fight for Sight, Inc., of New York City  相似文献   

8.
A limiting dilution culture system was developed for the primary in vitro detection of human minor histocompatibility antigens by cytotoxic T lymphocytes (CTL). CTL were generated in primary in vitro culture between two HLA-identical sibling pairs and propagated as stable CTL lines. Population and family studies indicate that these CTL lines recognize minor histocompatibility antigens in an HLA-restricted manner. The antigen recognized by one CTL line is detected on six (out of 37) HLA-B7-positive donors but not on 32 HLA-B7-negative donors. The cytotoxicity of this CTL line is mediated by T3+, T8+ effector cells. The antigen detected by this CTL population is different from all known human minor histocompatibility antigens. The data of this study, like those in the mouse system, suggest that a suppressor cell is diluted out in a limiting dilution culture, which allows the activation of the CTL precursors.  相似文献   

9.
The estimate of the frequency of suppressor T lymphocytes in unfractionated cell populations remains challenging, mainly because these regulatory cells do not display specific immunophenotypic markers. In this paper, we describe a novel theoretical approach for quantifying the frequency of suppressor cells. This method is based on limiting dilution data modeling, and allows the simultaneous estimation of the frequencies of both proliferating and suppressor cells. We used previously published biological data, characterizing the inhibiting activity of suppressor T cell clones. Starting from these data, we propose a mathematical model describing the interaction between suppressor and proliferating T cells, and applied to a Poisson process. Limiting dilution data corresponding to this non-single-hit, suppressor two-target Poisson model were artificially generated, then modeled according to a generalized linear regression procedure. Deviation from the single-hit Poisson model was revealed by a statistical slope test, and a stepwise analysis of the regression appeared to be an efficient method that strongly argued in favor of the presence of suppressor cells. By using the frequency of proliferating T cells calculated in the first step of the regression, we demonstrated the possibility to provide a reasonable estimate of the frequency of suppressor T cells. Based on these findings, a practical decision-making procedure is given to perform standard analyses of limiting dilution data.  相似文献   

10.
Age-dependent metabolic changes in cultured human fibroblasts   总被引:1,自引:0,他引:1  
Summary The effects of metabolic poisons on the ATP content of cultured human skin fibroblasts at selected in vitro and in vivo ages were studied. Potassium cyanide, iodacetemide, and Arsenate were used to inhibit ATP restoration by glycolysis and oxidative phosphorylation. Cells treated with these metabolic poisons showed an age-dependent change in their ATP content. The decrease in cellular ATP content after exposure to these drugs was taken as an estimate of ATP turnover. It was found that there was a decrease in the ATP turnover with increasing population doubling level (i.e. in vitro age), and cells cultured from a 68-yr-old donor had a lower ATP turnover than those cultured from a neonatal donor. This decreased ATP turnover correlates with a previous finding of a decreased ability of “older” cells to be stimulated to migrate in culture and suggests that there is a metabolic component to this age-related functional deficiency. This work was supported by National Institutes of Health grants 2, RO1 EY02523 and 1 RO1 1, AGO 1212 awarded to A.L. Muggleton-Harris.  相似文献   

11.
Continuous cultures in which a high-pressure chemostat was used were employed to study the growth responses of (i) deep-sea microbial populations with the naturally occurring carbon available in seawater and with limiting concentrations of supplemental organic substrates and (ii) pure cultures of copiotrophic barophilic and barotolerant deep-sea isolates in the presence of limiting carbon concentrations at various pressures, dilution rates, and temperatures. We found that the growth rates of natural populations could not be measured or were extremely low (e.g., a doubling time of 629 h), as determined from the difference between the dilution rate and the washout rate. A low concentration of supplemental carbon (0.33 mg/liter) resulted in positive growth responses in the natural population, which resulted in an increase in the number of cells and eventually a steady population of cells. We found that the growth responses to imposed growth pressure by barophilic and barotolerant pure-culture isolates that were previously isolated and characterized under high-nutrient-concentration conditions were maintained under the low-nutrient-concentration limiting conditions (0.33 to 3.33 mg of C per liter) characteristic of the deep-sea environment. Our results indicate that deep-sea microbes can respond to small changes in substrate availability. Also, barophilic microbes that are copiotrophic as determined by their isolation in the presence of high carbon concentrations and their preference for high carbon concentrations are versatile and are able to compete and grow as barophiles in the low-carbon-concentration oligotrophic deep-sea environment in which they normally exist.  相似文献   

12.
Continuous cultures in which a high-pressure chemostat was used were employed to study the growth responses of (i) deep-sea microbial populations with the naturally occurring carbon available in seawater and with limiting concentrations of supplemental organic substrates and (ii) pure cultures of copiotrophic barophilic and barotolerant deep-sea isolates in the presence of limiting carbon concentrations at various pressures, dilution rates, and temperatures. We found that the growth rates of natural populations could not be measured or were extremely low (e.g., a doubling time of 629 h), as determined from the difference between the dilution rate and the washout rate. A low concentration of supplemental carbon (0.33 mg/liter) resulted in positive growth responses in the natural population, which resulted in an increase in the number of cells and eventually a steady population of cells. We found that the growth responses to imposed growth pressure by barophilic and barotolerant pure-culture isolates that were previously isolated and characterized under high-nutrient-concentration conditions were maintained under the low-nutrient-concentration limiting conditions (0.33 to 3.33 mg of C per liter) characteristic of the deep-sea environment. Our results indicate that deep-sea microbes can respond to small changes in substrate availability. Also, barophilic microbes that are copiotrophic as determined by their isolation in the presence of high carbon concentrations and their preference for high carbon concentrations are versatile and are able to compete and grow as barophiles in the low-carbon-concentration oligotrophic deep-sea environment in which they normally exist.  相似文献   

13.
Standardized statistical and graphical methods for analysis of limiting dilution assays are highly desirable to enable investigators to compare and interpret results and conclusions with greater accuracy and precision. According to these requirements, we present in this work a powerful statistical slope test that estimates the fit of the single-hit Poisson model to limiting dilution experiments. This method is readily amenable to a graphical representation. This slope test is obtained by modeling limiting dilution data according to a linear log-log regression model, which is a generalized linear model specially designed for modeling binary data. The result of the statistical slope test can then be graphed to visualize whether the data are compatible or not with the single-hit Poisson model. We demonstrate this statistical test and its graphical representation by using two examples: a real limiting dilution experiment evaluating the growth frequency of IL-2-responsive tumor-infiltrating T cells in a malignant lymph node involved by a B cell non-Hodgkin's lymphoma, and a simulation of a limiting dilution assay corresponding to a theoretical non-single-hit Poisson model, suppressor two-target Poisson model.  相似文献   

14.
Treatment with nerve growth factor (NGF) produces a marked decrease of cyclin F levels in PC12EY cells. This decrease is prevented by the simultaneous addition of K-252a. A smaller decrease is observed when the cells are treated with fibroblast growth factor, but the addition of epidermal growth factor has no comparable effect. Time course studies show that the decrease in cyclin F precedes the changes produced by NGF in the distribution of cells within the cell cycle. The data suggest that cyclin F is involved in NGF-mediated cell cycle events during the differentiation of PC12EY cells.  相似文献   

15.
Self-renewing cancer cells are the only cell types within a tumor that have an unlimited ability to promote tumor growth, and are thus known as tumor-propagating cells, or tumor-initiating cells. It is thought that targeting these self-renewing cells for destruction will block tumor progression and stop relapse, greatly improving patient prognosis. The most common way to determine the frequency of self-renewing cells within a tumor is a limiting dilution cell transplantation assay, in which tumor cells are transplanted into recipient animals at increasing doses; the proportion of animals that develop tumors is used the calculate the number of self-renewing cells within the original tumor sample. Ideally, a large number of animals would be used in each limiting dilution experiment to accurately determine the frequency of tumor-propagating cells. However, large scale experiments involving mice are costly, and most limiting dilution assays use only 10-15 mice per experiment. Zebrafish have gained prominence as a cancer model, in large part due to their ease of genetic manipulation and the economy by which large scale experiments can be performed. Additionally, the cancer types modeled in zebrafish have been found to closely mimic their counterpart human disease. While it is possible to transplant tumor cells from one fish to another by sub-lethal irradiation of recipient animals, the regeneration of the immune system after 21 days often causes tumor regression. The recent creation of syngeneic zebrafish has greatly facilitated tumor transplantation studies. Because these animals are genetically identical, transplanted tumor cells engraft robustly into recipient fish, and tumor growth can be monitored over long periods of time. Syngeneic zebrafish are ideal for limiting dilution transplantation assays in that tumor cells do not have to adapt to growth in a foreign microenvironment, which may underestimate self-renewing cell frequency. Additionally, one-cell transplants have been successfully completed using syngeneic zebrafish and several hundred animals can be easily and economically transplanted at one time, both of which serve to provide a more accurate estimate of self-renewing cell frequency. Here, a method is presented for creating primary, fluorescently-labeled T-cell acute lymphoblastic leukemia (T-ALL) in syngeneic zebrafish, and transplanting these tumors at limiting dilution into adult fish to determine self-renewing cell frequency. While leukemia is provided as an example, this protocol is suitable to determine the frequency of tumor-propagating cells using any cancer model in the zebrafish.  相似文献   

16.
This report describes a method of cloning Giardia lamblia by limiting dilution which is simpler than the previously described semisolid agar technique and which may also be applied as an assay of cell viability. A discussion of the basic statistics of limiting dilution, which is applicable to any cell type, and a method of statistically comparing colony-forming efficiencies from different cell populations are included. The colony-forming efficiency (CFE) of this method, when applied to late log-phase cultures, is 72.1 +/- 10.05%. When only cells adherent to the sides of culture vials are cloned, the CFE is 87.1 +/- 9.85%.  相似文献   

17.
In this paper, we describe the use of a combination of cell culture techniques and limiting dilution analysis to determine the number of oligodendrocyte progenitor cells and the oligodendrocyte clone size in primary dispersed cultures of 20- to 21-day-old fetal rat brain. Single-cell suspensions (1,2,3 × 106 cells/ml) were plated in either microwell or 100 mm dishes. After 22 days in culture the number of differentiated oligodendrocytes was ascertained by determining the amount of myelin basic protein by radioimmunoassay. The total amount of myelin basic protein was the same in the two types of dish, indicating that proliferation and differentiation were unaffected when oligodendrocytes were grown in microwells. The fraction (F0) of microwells containing no oligodendrocytes was determined at each cell dilution. F0 decreased exponentially with increasing total cell concentration. The linearity of the plot of ln F0 versus cell number indicates that the number of oligodendrocyte progenitor cells is limiting. From the equation describing the Poisson distribution of progenitor cells in microwells we calculated that, at the time of plating, primary cultures of fetal rat brain contain one oligodendrocyte progenitor cell per 1.3 × 105 brain cells, or a total population of 300–500 progenitor cells per brain. The mean oligodendrocyte clone size was determined to be approximately 825 at 22 days and close to 2000 by 35 days in culture. Therefore, each progenitor cell must undergo approximately 11 divisions, on the average, during postnatal development.  相似文献   

18.
We have applied limiting dilution methods suitable for the estimation of mitogen-reactive helper (pHTL) and cytotoxic (pCTL) T cell frequencies to the analysis of immune function in patients 1 mo to 6 yr after allogeneic bone marrow transplantation (BMT). Although the majority of these patients have regained normal levels of Leu-3+ (helper) and Leu-2+ (killer/suppressor) cells by 6 to 12 mo after BMT as assessed by cytofluorimetry, the fraction of these cells that can function in limiting dilution cultures is substantially below normal levels in nearly all patients. Although some BMT patients eventually recover normal frequencies of pCTL and pHTL, values typically remain greatly depressed even in patients transplanted as many as 4 to 6 yr previously. In contrast, recovery of precursors able to proliferate (without expressing either helper or cytotoxic function) in response to phytohemagglutinin (PHA) and interleukin 2 occurs in many patients by 1 yr after transplant. In spite of the decreased frequency of functional precursor cells found after BMT, each precursor is capable of giving rise to the same amount of function at limiting dilutions as that produced by cells from normal controls. In many BMT patients, proliferation in conventional PHA-stimulated cultures returns to near-normal levels even though precursor frequencies remain low. The limiting dilution method is sensitive to residual immune dysfunction in BMT recipients not easily quantitated by other, more conventional techniques.  相似文献   

19.
Clonally derived recombinant cell lines are highly desired to achieve consistent production of recombinant biotherapeutics. Despite repeated rounds of cloning by limiting dilution or single cell cloning, the resulting cell lines have often been observed to diverge, becoming a heterogeneous population and losing productivity over long-term sub-culturing. To understand the underlying molecular mechanisms, we developed quantitative polymerase chain reaction (qPCR) assays for the analysis of transgene copy number distribution in single recombinant cells isolated from Chinese hamster ovary (CHO) cell lines. Single cells were obtained by fluorescence activated cell sorting (FACS) technology and lysed directly in 96-well plates. qPCR assays were then applied to analyze the quantity and distribution of transgenes in those single cells. Results revealed multiple types of transgene copy number distribution profiles from those clonally derived CHO cell lines. The cell lines that maintained productivity over time displayed relatively constant and homogeneous transgene copy number distributions; while most of those cell lines exhibiting a loss of productivity over time showed varying degrees of transgene copy number heterogeneity and distribution drift with passaging. Some cell lines showed the existence of a significant portion of cells lacking the transgenes (referred to as negative cells in this study) and the percentage of those negative cells increased with subsequent generations. Criteria based on transgene copy number distribution profiles were developed to assess cell line suitability for clinical applications, which include (i) percentage of negative cells; (ii) standard deviation of qPCR threshold cycle (C(t) ) value, a measure of population heterogeneity; (iii) mean C(t) changes during aging, a measure of population drift. By implementing these criteria, undesirable cell lines were eliminated for further clinical and commercial applications.  相似文献   

20.
To analyze functional mitogen recognition by reactive B lymphocytes, we studied the effects of bacterial lipopolysaccharide (LPS) on the growth of the WEHI 279.1 B lymphoma line (W279). We found that LPS inhibits, in a dose-dependent manner, the growth of W279 cells in culture and that it reduces the frequency of cells growing as clones under limiting dilution conditions. Furthermore, we show that differential reactivity of "wild-type" cells to increasing LPS concentrations reflects the heterogeneity in the lymphoma cell population and the frequencies of "resistant" variants to each mitogenic concentration. This allowed us to derive variant tumor cell lines and clones, no longer LPS sensitive, either from mass cultures or, in a single-step selection, under limiting dilution conditions in the presence of low and high concentrations of LPS. Although mitogen reactivity is progressively lost upon prolonged culture, resistance to LPS was found to be a stable trait in selected variants, suggesting that it results from loss of functional mitogen recognition by the reactive cells. The specificity of mitogen reactivity or resistance was shown by the fact that some of the variant clones are still reactive to T helper cell-derived factors and others are not. Thus reactivity to LPS and to T cell factors can be separated, suggesting that the cell lines described here provide new tools for the biochemical analysis of B cell activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号