首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary InCryptomonas ovata, long, dorsal flagella are produced which transform during the following cell division into short, ventral flagella. At division there is a reorientation in cell polarity, and the parental basal apparatus, which comprises the basal bodies and associated roots, is distributed to the daughter cells via a complex sequence of events. Flagellar apparatus development includes the transformation of a four-stranded microtubular root into a mature root of different structure and function. Each newly formed basal body nucleates new microtubular roots, but receives a striated fibrous root from a parental basal body. The striated roots are originally produced on the transforming basal body and are transferred to the new basal bodies at each successive division. The development of the asymmetric flagellar apparatus throughout the cell cycle is described.  相似文献   

2.
Summary The dynamics of the cytoskeletal proteins centrin, actin, and tubulin were followed during cell division in the unicellular phytoflagellateApedinella radians (Pedinellophyceae). Three centrin, or centrin-like, components appear to coordinate independent developmental events during cell division. The first component, basal body centrin, maintains a physical link between basal bodies and the anterior nuclear membrane. Basal body centrin divides in two at metaphase, and each portion segregates with two basal bodies at anaphase. As the positioning of basal bodies defines the anterior region of the cell, basal body centrin appears to play a role in maintaining cell polarity throughout the cell cycle. The second centrin component consists of an array of filamentous bundles arranged as a six-pointed star. During cell division, the star undergoes a conformational change resulting in two distinct centrin triangles, one distributed to each daughter cell, suggesting that centrin filamentous bundles are involved in maintaining cell (radial) symmetry. The third centrin component is transient and associates with the spindle poles, emerging prior to mitosis and remaining until late anaphase/early telophase. Spindle pole centrin establishes temporary horizontal bipolarity, thereby establishing the spindle axis. Unlike centrin filamentous bundles, actin filamentous bundles depolymerize prior to mitosis, indicating they do not influence cell symmetry during cell division. Mitosis is described for the first time in a pedinellid and features a closed spindle, the absence of rhizoplasts and a persistent spindle.  相似文献   

3.
Summary The periplast ofHemiselmis brunnescens Butcher is a complex cell covering comprised of the plasma membrane (PM) sandwiched between a surface periplast component (SPC) and an inner periplast component (IPC). The SPC is revealed by deep-etching, and consists of hexagonal plates composed of tripartite subunits that appear to self-assemble into a crystalline layer with a hexagonal symmetry. Small scales (termed fibrillar scales) accumulate on the crystalline plates during cell growth, eventually forming a carpet that itself may appear crystalline when fully formed. Heptagonal rosette scales are occasionally observed on the surface as well. The position of the crystalline plates is precisely mirrored by both the E and P fracture faces of the PM. The plate proper is underlain by membrane with a high concentration of intramembrane particles (IMPs) while the bands of membrane underlying the plate borders lack IMPs. Access of subunits and fibrillar scales to the cell surface following initial plate formation appears to be at the plate boundaries. This study suggests that cryptomonad flagellates may provide model systems for studying the self-assembly of cell surface components, and for relating membrane structure to function, as evidence suggests a major role for the PM in mediating periplast assembly and development.  相似文献   

4.
Elongation and division of Bdellovibrio bacteriovorus were studied in axenic synchronous cultures. The cells elongate unidirectionally from one end attaining a length of several unit cells, and then divide into the corresponding number of cells. The length of the filament and, consequently, the progeny number, vary within the range of two to several dozen cells, according to the conditions used. A protein and a low molecular weight component are required for normal division.  相似文献   

5.
Summary The structure and development of the complex periplast, or cell covering, of cryptomonads is reviewed. The periplast consists of the plasma membrane (PM) plus an associated surface periplast component (SPC) and cytoplasmic or inner periplast component (IPC). The structure of the SPC and IPC, and their association with the PM, varies considerably between genera. This review, which concentrates on cryptomonads with an IPC of discrete plates, discusses relationships between periplast components and examines the development of this unique cell covering. Formation and growth of inner plates occurs throughout the cell cycle from specialized regions termed anamorphic zones. Crystalline surface plates, which comprise the SPC in many cryptomonad species, appear to form by self-assembly of disorganized subunits. InKomma caudata the subunits are composed of a high molecular weight glycoprotein that is produced within the endomembrane system and deposited onto the cell surface within anamorphic zones. The self-assembly of subunits into highly ordered surface plates appears closely associated with developmental changes in the underlying IPC and PM.  相似文献   

6.
R. J. A. Connett  D. E. Hanke 《Planta》1987,170(2):161-167
A method is described for preparing fully viable, cytokinin-starved soybean (Glycine max (L.) Merr. cv. Acme) cells from a suspension-culture of callus tissue. The cells respond to kinetin treatment by re-initiating cell division. We present evidence, from the pattern of incorporation of 32P-labelled inorganic phosphate into individual phospholipids during the first hour of this response, that the synthesis of phosphatidylinositol (PI) and of phosphatidic-acid head-groups is affected within 15 min. The polyphosphoinositide phosphatidylinositol 4-phosphate, but not phosphatidylinositol 4,5-bisphosphate, was detected in the tissue. The characteristics of cytokinin-induced PI synthesis in cytokinin-starved soybean cells appear to resemble the PI response of animal cells.Abbreviations DPG diphosphatidylglycerol - PA phosphatidic acid - PC phosphatidylcholine - PE phosphatidylethanolamine - PG phosphatidylglycerol - PI phosphatidylinositol - PIP phosphatidylinositol 4-phosphate - PIP2 phosphatidylinositol 4,5-bisphosphate - PS phosphatidylserine - Pi inorganic phosphate - TLC thin-layer chromatography  相似文献   

7.
The roles of cell division and cell elongation in the growth of sections excised from hypocotyls of lettuce (Lactuca sativa L. cv. Arctic) were investigated. Elongation of sections incubated in the light is inhibited compared to dark-grown sections and this inhibition is reversed by gibberellic acid (GA3). The elongation of both dark-grown and GA3-treated, light-grown sections can be enhanced by 10mM KCl. Under all conditions of incubation, elongation growth is greatest in the uppermost quarter of the hypocotyl section while the basal quarter does not elongate. In darkness the two apical segments of sections marked into four equal parts grow at the same rate, while in light, growth of the apical segment exceeds that of the second segment. Cell division in cortical or epidermal cells, as measured by mitotic index or cell number, is not affected by illumination conditions nor by GA3 or KCl treatments. Although -irradiation and FUDR pretreatment eliminate or cause a marked reduction in cell division in the excised hypocotyl, sections from seeds irradiated with -rays or incubated in 5-fluorodeoxyuridine elongate in response to GA3 and KCl treatment as do sections from non-pretreated controls. Therefore, since neither GA3 nor darkness affect celldivision activity and since treatments which eliminate or significantly reduce cell division do not affect growth, we conclude that the effect of GA3 and darkness in this material is to increase cell elongation.Abbreviations FUDR 5-fluorodeoxyuridine - GA(s) gibberellin(s) - GA3 gibberellic acid  相似文献   

8.
D. Francis  R. F. Lyndon 《Planta》1978,139(3):273-279
The changes in cell number, the relative proportions of interphase nuclei with different amounts of DNA, mitotic index and labelling index have been investigated in the shoot apex of Silene coeli-rosa L. (a long-day plant) during the first long day of photoinduction, and compared with the corresponding changes in plants in short days. 3 h after the start of induction the proportion of nuclei in the G2 phase of the cell cycle had increased, the mitotic index tended to be higher, and the labelling index was lower than in plants in short days. 8–9 h later the values for plants in the long day had become similar to those for plants in short days. No evidence was obtained for a synchronisation of cells in one phase of the cell cycle as a result of photoinduction. The results obtained were consistent with a temporary shortening of the cell cycle in the induced apices over the first long day which resulted in a greater increase in cell number by the end of the first day of photoinduction than in plants in short days.Abbreviations LD long day - SD short day  相似文献   

9.
Summary Mitosis in the marine red algaLomentaria baileyana (Rhodymeniales, Rhodophyta) was studied with the electron microscope. Nucleus associated organelles known as polar rings (PRs) migrate to establish the division poles at prophase. At prometaphase, shallow invaginations in the nuclear envelope (NE) form on two sides of each PR and soon rupture. The gaps that are consequently formed contain several small fragments of NE. A larger region of NE remains intact between the two gaps. By metaphase several cisternae of perinuclear endoplasmic reticulum (PER) have enclosed most of the nucleus but remain absent from the polar regions. The nucleolus disperses partially and a typical metaphase plate of chromosomes is formed. Each PR has disjoined into separate proximal and distal portions. MTs converge widely on all regions of the polar area, but do not extend into the cytoplasm. Some MTs end near or at the chromosomes while others extend slightly farther past the chromosomes or diagonally to the NE. As chromosomes move to opposite poles at anaphase, they are accompanied by nucleolar material. An interzonal midpiece (IZM) is created as the pole to pole distance increases and the NE remains intact except for the polar gaps. Following detachment from the IZM, the daughter nuclei are separated by a large central vacuole as a cleavage furrow develops and eventually constricts to form two cells following pit connection formation. It is suggested that mitosis inLomentaria represents an evolutionary intermediate between that seen in the higher and lower groups of red algae. This conclusion is in agreement with conventional morphological and light microscopic criteria used to placeLomentaria in theRhodymeniales, which is considered to be the next to most advanced order in theRhodophyta.  相似文献   

10.
Bacterial cell growth and cell division are highly complicated and diversified biological processes. In most rod-shaped bacteria, actin-like MreB homologues produce helicoidal structures along the cell that support elongation of the lateral cell wall. An exception to this rule is peptidoglycan synthesis in the rod-shaped actinomycete Corynebacterium glutamicum, which is MreB-independent. Instead, during cell elongation this bacterium synthesizes new cell-wall material at the cell poles whereas the lateral wall remains inert. Thus, the strategy employed by C. glutamicum to acquire a rod-shaped morphology is completely different from that of Escherichia coli or Bacillus subtilis. Cell division in C. glutamicum also differs profoundly by the apparent absence in its genome of homologues of spatial or temporal regulators of cell division, and its cell division apparatus seems to be simpler than those of other bacteria. Here we review recent advances in our knowledge of the C. glutamicum cell cycle in order to further understand this very different model of rod-shape acquisition.  相似文献   

11.
Summary The cell covering (or periplast) of many cryptomonads consists of discrete plate areas precisely arranged over most of the cell periphery. Developmental changes in periplast arrangement that occur throughout the cell cycle are examined here forKomma caudata andProteomonas sulcata [haplomorph]. In both cryptomonads, pole reversal occurs during cytokinesis, necessitating major realignment of the plate areas. Growth of the periplast occurs by addition of new plate areas to specialized regions (termed anamorphic zones) located around the vestibular margins and along the mid-ventral line of cells. Development of the periplast from these regions enables elongation and lateral expansion of cryptomonads throughout cell growth. Observed differences in cell division and periplast development between these genera are closely associated with variations in the arrangement of anamorphic zones.  相似文献   

12.
Production and localization of endogenous hydrogen peroxide (H2O2) were investigated in strains of Xanthomonas by histochemical analysis under electron microscopy. Even though the levels of endogenous H2O2 production were different among various strains, the produced H2O2 was localized in the cell wall of all Xanthomonas strains tested. The impairment of the level of endogenous H2O2 accumulation resulted in a significantly decreased growth rate of bacteria, regardless if the difference of the H2O2 level is originally present between wild type strains or caused by mutation of the ahpC gene of Xanthomonas. The endogenous accumulation of H2O2 positively correlates with the cell division. Interestingly, the accumulated H2O2 was also localized in the mesosome-like structure and nucleoids during the cell division cycle. Furthermore, results revealed quantitative and dimensional changes of H2O2 accumulation in the two additional locations. These findings indicated that the additional locations of the accumulated H2O2 were closely associated with the process of cell division. Together, these results suggest that the endogenous H2O2 production plays an important role in cell proliferation of Xanthomonas.  相似文献   

13.
Summary Shortly before and during division, the generative cell of barley (Hordeum vulgare L.) is located near the vegetative nucleus, in the peripheral layer of the highly vacuolated vegetative cell at the aperture pole. This position is also characteristic of the two resulting sperm cells. Conventional mitosis of the generative cell is followed by cytokinesis through cell plate formation. Just after division, the two sperm cells are enclosed together within a common inner vegetative cell plasma membrane, and they gradually separate from each other only during pollen maturation. The space between the generative or sperm cell plasma membrane and the vegetative cell plasma membrane is very thin and appears to be devoid of a cell wall. Both the generative cell and the young sperm cells contain a normal set of organelles; plastids devoid of starch are only sporadically observed. Our data indicate that in Hordeum vulgare the generative cell divides after migrating inside the pollen grain. This follows the pattern of development well established for several species with tricellular pollen.  相似文献   

14.
A new cell division operon in Escherichia coli   总被引:37,自引:0,他引:37  
Summary At 76 min on theE. coli genetic map there is a cluster of genes affecting essential cellular functions, including the heat shock response and cell division. A combination ofin-vivo andin-vitro genetic analysis of cell division mutants suggests that the cell division genefts E is the second gene in a 3 gene operon. A cold-sensitive mutant, defective in the third gene, is also unable to divide at the restrictive temperature, and we designate this new cell division genefts X. Another cell division gene,fts S, is very close to, but distinct from, the 3 genes of the operon. Thefts E product is a 24.5 Kd polypeptide which shows strong homology with a small group of proteins involved in transport. Both thefts E product and the protein coded by the first gene (fts Y) in the operon have a sequence motif found in a wide range of heterogeneous proteins, including the Ras proteins of yeast. This common domain is indicative of a nucleotide-binding site.  相似文献   

15.
J. Scott  Sharon Broadwater 《Protoplasma》1989,152(2-3):112-122
Summary Uniseriate filaments of the freshwater red algaCompsopogon coeruleus were examined by transmission electron microscopy for details of vegetative organization and cell division with the goal of providing useful taxonomic characters. Each cell's single, complex chloroplast contains a peripheral encircling thylakoid, and unlike the vast majority of red algae, the cis-regions of dictyosomes are not consistently juxtaposed with mitochondria. These subcellular features, which are present in all examined genera in theCompsopogonales, Erythropeltidales, andRhodochaetales, along with certain unique reproductive characteristics, unify these three orders. During mitosis in uncorticated axial cells, a small, ring-shaped nucleus associated organelle (NAO) is located at each division pole, an intranuclear spindle comes to a moderately acute focus at the flattened, fenestrated metaphase-anaphase division poles and perinuclear ER partially encloses dividing nuclei, including a well-developed interzonal midpiece. The cleavage furrow penetrates the large, central vacuolar region to separate daughter nuclei. These cell division features most closely resemble the pattern described for the orderCeramiales. Our observations of vegetative and dividing cells ofC. coeruleus supplement the growing volume of evidence in favour of uniting all red algae into a single class without subclass designations.Abbreviations ER endoplasmic reticulum - IZM interzonal midpiece - MT microtubule - MTOC microtubule organizing center - NAO nucleus associated organelle - NE nuclear envelope - PER perinuclear endoplasmic reticulum  相似文献   

16.
J. W. Vos  P. K. Hepler 《Protoplasma》1998,201(3-4):158-171
Summary Because the activity of calmodulin (CaM) may be dependent upon its structural distribution, we have examined its spatial localization in living cells. We have focused on cell division and cell plate formation, where conventional immunofluorescence studies report that CaM is specifically associated with microtubules (MTs) of the spindle and the phragmoplast. In dividing stamen hair cells ofTradescantia virginiana that were injected with fluorescently labeled CaM and examined by confocal laser scanning microscopy (CLSM), we found that the labeled protein is uniformly distributed throughout the cell and is not localized with the phragmoplast MTs or any other obvious structure. To explore why these images from live cells differ from those prepared by immunolabeling, we investigated the fate of CaM during fixation and compared it with the localization of fixable dextran and tubulin. The results show that fixation causes severe changes in cell morphology and in the distribution of CaM and dextran in three quarters of the cells. Conversely, injected rhodamine-tubulin did not show redistribution after fixation. We conclude that in the live cell, CaM is largely uniformly distributed throughout the cytoplasm, and secondly that conventional chemical fixation does not preserve CaM, and probably many other soluble proteins, in its in vivo distribution. The role postulated for CaM in mitosis, solely based on indirect immunofluorescence microscopy, has to be re-evaluated.Abbreviations BSA bovine serum albumin - CaM calmodulin - CLSM confocal laser scanning microscopy - Cy3 indocarbocyanine - EDTA ethylenediamine-tetraacetic acid - EGTA ethylene glycol bis (-aminoethyl ether)-N,N,NN-tetraacetic acid - FITC fluoresceinisothiocyanate - IAF 5-iodoacetamido-fluorescein - MT microtubule - PBS phosphate-buffered saline - TBS Tris-buffered saline  相似文献   

17.
Summary We studied the basal body cycle (including basal body segregation, duplication, migration, and reorientation) in dividing cells of the colonial coccoid green algaChlorosarcina stigmatica using serial thin sections. Although flagella are lacking, all cells examined possess a rudimentary flagellar apparatus composed of two basal bodies linked by a distal striated fibre, two probasal bodies, and four cruciately arranged microtubular roots (2-4-2-4 type). Basal body segregation occurs at preprophase, during which two half-basal apparatuses (each consisting of one basal body, one probasal body, and a left and a right root) migrate into opposite directions. The segregation axis is defined by the two left roots which remain closely associated during segregation and slide along each other. The segregation axis is parallel to the axis of chromosome separation, and perpendicular to the plane of subsequent cell division. Duplication of basal apparatus components does not occur until telophase when daughter basal apparatuses migrate towards the plane of division. At cytokinesis which is effected by the unilateral ingrowth of a septum, each daughter basal apparatus rotates 90° and becomes associated with the new septum.Abbreviations BA basal (body) apparatus - NBBC nucleus-basal body connector  相似文献   

18.
The sphere-rod-sphere morphology cycle of Arthrobacter crystallopoietes was accompanied by changes in the rate of growth and the rates of DNA, RNA and protein synthesis. The patterns of macromolecule synthesis resembled those found in other bacteria during a step-up followed by a step-down in growth rate. During the step-up in growth spherical cells grew into rods and macromolecules were synthesized in the absence of cell division. During stepdown, successive rounds of septation produced progressively smaller cells which did not separate and remained in chains. The morphology of the cells was dependent on the growth rate and could be altered by changing the dilution rate in a malate-limited chemostat. Gradual transitions in morphology and gradual increases in macromolecule content of the cells occurred as the growth rate was increased in the chemostat. Sphere to rod morphogenesis occurred when DNA synthesis was inhibited by treatment with mitomycin C or by thymine starvation. The DNA-deficient rods did not divide and eventually lysed. DNA, RNA and protein synthesis were continuously required for the reductive division of rods to spheres.Abbreviations MS mineral salts - GS mineral salts plus glucose - CA casamino acids - GSCA mineral salts plus glucose plus casamino acids - cAMP cyclic adenosine-3,5-monophosphate - RNA ribonucleic acid - DNA deoxyribonucleic acid  相似文献   

19.
Thirty-nine cell division mutants were isolated in Escherichia coli K-12 and were mapped in the terminus region of the chromosome, between 33.5 and 36 min. They were obtained by two different approaches involving specific mutagenesis of the terC region. The mutants could be divided into eight classes (I to VIII) based on their map position and phenotype at the restrictive temperature, and constitute a new cell division gene cluster.  相似文献   

20.
Susan Grose  R. F. Lyndon 《Planta》1984,161(4):289-294
When plants of Silene coeli-rosa (L.) Godron were induced by seven long days, then exposed to darkness for 48 h before being returned to short days, they went on to initiate flowers with a delay of about 2 d. The synchronisation of cell division which normally occurs before flower initiation was suppressed, showing that it is not essential for flowering. Periods of darkness of up to 240 h inhibited apical growth and leaf initiation but did not prevent eventual flowering in short days. The commitment of the apex to flower was therefore maintained while apical growth was inhibited.Abbreviations SD short day(s) - LD long day(s)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号