首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aminoacyl tRNA synthetases (aaRSs) catalyze the first step in protein biosynthesis, establishing a connection between codons and amino acids. To maintain accuracy, aaRSs have evolved a second active site that eliminates noncognate amino acids. Isoleucyl tRNA synthetase edits valine by two tRNA(Ile)-dependent pathways: hydrolysis of valyl adenylate (Val-AMP, pretransfer editing) and hydrolysis of mischarged Val-tRNA(Ile) (posttransfer editing). Not understood is how a single editing site processes two distinct substrates--an adenylate and an aminoacyl tRNA ester. We report here distinct mutations within the center for editing that alter adenylate but not aminoacyl ester hydrolysis, and vice versa. These results are consistent with a molecular model that shows that the single editing active site contains two valyl binding pockets, one specific for each substrate.  相似文献   

2.
Several analogues of valine, leucine, and isoleucine carrying hydroxyl groups in the gamma- or delta-position have been tested in the aminoacylation of tRNA by valyl-tRNA synthetases from Saccharomyces cerevisiae and Escherichia coli. Results of the ATP/PPi exchange and of the aminoacylation reactions indicate that the amino acid analogues not only can form the aminoacyl adenylate intermediate but are also transferred to tRNA. However, the fact that the reaction consumes an excess of ATP indicates that the misactivated amino acid analogue is hydrolytically removed. Thus, valyl-tRNA synthetase from S. cerevisiae shows a high fidelity in forming valyl-tRNA. Although the much bulkier amino acid analogues allo- and iso-gamma-hydroxyvaline and allo- and iso-gamma-hydroxyisoleucine are initially charged to tRNA, the misaminoacylated tRNA(Val) is enzymatically deacylated. This cleavage reaction is mediated by the hydroxyl groups of the amino acid analogues which are converted into the corresponding lactones.  相似文献   

3.
A Théobald  D Kern  R Giegé 《Biochimie》1988,70(2):205-213
Essential lysine residues were sought in the catalytic site of baker's yeast aspartyl-tRNA synthetase (an alpha 2 dimer of Mr 125,000) using affinity labeling methods and periodate-oxidized adenosine, ATP, and tRNA(Asp). It is shown that the number of periodate-oxidized derivatives which can be bound to the synthetase via Schiff's base formation with epsilon-NH2 groups of lysine residues exceeds the stoichiometry of specific substrate binding. Furthermore, it is found that the enzymatic activities are not completely abolished, even for high incorporation levels of the modified substrates. The tRNA(Asp) aminoacylation reaction is more sensitive to labeling than is the ATP-PPi exchange one; for enzyme preparations modified with oxidized adenosine or ATP this activity remains unaltered. These results demonstrate the absence of a specific lysine residue directly involved in the catalytic activities of yeast aspartyl-tRNA synthetase. Comparative labeling experiments with oxidized ATP were run with several other aminoacyl-tRNA synthetases. Residual ATP-PPi exchange and tRNA aminoacylation activities measured in each case on the modified synthetases reveal different behaviors of these enzymes when compared to that of aspartyl-tRNA synthetase. When tested under identical experimental conditions, pure isoleucyl-, methionyl-, threonyl- and valyl-tRNA synthetases from E. coli can be completely inactivated for their catalytic activities; for E. coli alanyl-tRNA synthetase only the tRNA charging activity is affected, whereas yeast valyl-tRNA synthetase is only partly inactivated. The structural significance of these experiments and the occurrence of essential lysine residues in aminoacyl-tRNA synthetases are discussed.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Nordin BE  Schimmel P 《Biochemistry》2003,42(44):12989-12997
The genetic code depends on amino acid fine structure discrimination by aminoacyl-tRNA synthetases. For isoleucyl- (IleRS) and valyl-tRNA synthetases (ValRS), reactions that hydrolyze misactivated noncognate amino acids help to achieve high accuracy in aminoacylation. Two editing pathways contribute to aminoacylation fidelity: pretransfer and post-transfer. In pretransfer editing, the misactivated amino acid is hydrolyzed as an aminoacyl adenylate, while in post-transfer editing a misacylated tRNA is deacylated. Both reactions are dependent on a tRNA cofactor and require translocation to a site located approximately 30 A from the site of amino acid activation. Using a series of 3'-end modified tRNAs that are deficient in either aminoacylation, deacylation, or both, total editing (the sum of pre- and post-transfer editing) was shown to require both aminoacylation and deacylation activities. These and additional results with IleRS are consistent with a post-transfer deacylation event initiating formation of an editing-active enzyme/tRNA complex. In this state, the primed complex processively edits misactivated valyl-adenylate via the pretransfer route. Thus, misacylated tRNA is an obligatory intermediate for editing by either pathway.  相似文献   

5.
Accurate translation of mRNA into protein is a fundamental biological process critical for maintaining normal cellular functions. To ensure translational fidelity, aminoacyl-tRNA synthetases (aaRSs) employ pre-transfer and post-transfer editing activities to hydrolyze misactivated and mischarged amino acids, respectively. Whereas post-transfer editing, which requires either a specialized domain in aaRS or a trans-protein factor, is well described, the mechanism of pre-transfer editing is less understood. Here, we show that yeast mitochondrial threonyl-tRNA synthetase (MST1), which lacks an editing domain, utilizes pre-transfer editing to discriminate against serine. MST1 misactivates serine and edits seryl adenylate (Ser-AMP) in a tRNA-independent manner. MST1 hydrolyzes 80% of misactivated Ser-AMP at a rate 4-fold higher than that for the cognate threonyl adenylate (Thr-AMP) while releasing 20% of Ser-AMP into the solution. To understand the mechanism of pre-transfer editing, we solved the crystal structure of MST1 complexed with an analog of Ser-AMP. The binding of the Ser-AMP analog to MST1 induces conformational changes in the aminoacylation active site, and it positions a potential hydrolytic water molecule more favorably for nucleophilic attack. In addition, inhibition results reveal that the Ser-AMP analog binds the active site 100-fold less tightly than the Thr-AMP analog. In conclusion, we propose that the plasticity of the aminoacylation site in MST1 allows binding of Ser-AMP and the appropriate positioning of the hydrolytic water molecule.  相似文献   

6.
The order of interaction of substrates and products with human placental glutaminyl-tRNA synthetase was investigated in the aminoacylation reaction by using the steady-state kinetic methods. The initial velocity patterns obtained from both the glutamine-ATP and glutamine-tRNA substrate pairs were intersecting, whereas ATP and tRNA showed double competitive substrate inhibition. Dead-end inhibition studies with an ATP analog, tripolyphosphate, showed uncompetitive inhibition when tRNA was the variable substrate. The product inhibition studies revealed that PPi was an uncompetitive inhibitor with respect to tRNA. The noncompetitive inhibition by AMP versus tRNA was converted to uncompetitive by increasing the concentration of glutamine from 0.05 to 0.5 mM. These and other kinetic patterns obtained from the present study, together with our earlier finding that this human enzyme catalyzed the ATP-PPi exchange reaction in the absence of tRNA, enable us to propose a unique two-step, partially ordered sequential mechanism, with tRNA as the leading substrate, followed by random addition of ATP and glutamine. The products may be released in the following order: AMP, PPi and then glutaminyl-tRNA. The proposed mechanism involves both a quarternary complex including all three substrates and the intermediary formation of an enzyme-bound aminoacyl adenylate, common to the usual sequential and ping-pong mechanisms, respectively, for other aminoacyl-tRNA synthetases.  相似文献   

7.
Ewalt KL  Yang XL  Otero FJ  Liu J  Slike B  Schimmel P 《Biochemistry》2005,44(11):4216-4221
In cellular environments, coupled hydrolytic reactions are used to force efficient product formation in enzyme-catalyzed reactions. In the first step of protein synthesis, aminoacyl-tRNA synthetases react with amino acid and ATP to form an enzyme-bound adenylate that, in the next step, reacts with tRNA to form aminoacyl-tRNA. The reaction liberates pyrophosphate (PP(i)) which, in turn, can be hydrolyzed by pyrophosphatase to drive efficient aminoacylation. A potential polymorphic variant of human tryptophanyl-tRNA synthetase is shown here to sequester tryptophanyl adenylate. The bound adenylate does not react efficiently with the liberated PP(i) that normally competes with tRNA to resynthesize ATP and free amino acid. Structural analysis of this variant showed that residues needed for binding ATP phosphates and thus PP(i) were reoriented from their conformations in the structure of the more common sequence variant. Significantly, the reorientation does not affect reaction with tRNA, so that efficient aminoacylation is achieved.  相似文献   

8.
Phosphonomethyl analogues of glycyl phosphate and valyl phosphate, i.e. NH2-CHR-CO-CH2-PO(OH)2, were synthesized and esterified with adenosine to give analogues of aminoacyl adenylates. The interaction of these adenylate analogues with valyl-tRNA synthetase from Escherichia coli was studied by fluorescence titration. The analogue of valyl phosphate has an affinity for the enzyme comparable with that of valine, but that of valyl adenylate is bound much less tightly than either valyl adenylate or corresponding derivative of valinol. The affinity of the analogue of glycyl adenylate was too low to be measured. We conclude that this enzyme interacts specifically with both the side chain and the anhydride linkage of the adenylate intermediate.  相似文献   

9.
N-Acetylglycyl adenylate anhydride has been shown to be readily converted in high yield to N-acetylglycyl imidazolide in the presence of excess imidazole at pH 7. The aminoacyl group can then be transferred from the imidazolide to become esters of mono- or polynucleotides. These observations suggest that histidine may be in the active site of the aminoacyl-tRNA synthetases, catalyzing the transfer of aminoacyl groups from the adenylate to tRNA.  相似文献   

10.
Changes in the activity of aminoacyl tRNA synthetases during growth of tobacco XD cells in suspension culture have been determined by the pyrophosphate exchange assay. Alanyl, arginyl, glutamyl, glutaminyl and seryl tRNA synthetases showed the lowest activity, whilst lysyl, histidyl, leucyl, isoleucyl, phenylalanyl threonyl and valyl tRNA synthetases were most active. Most synthetases, and total protein, increased to a maximum, at around 7 days, just before mid-exponential phase, and then fell.  相似文献   

11.
Valyl-tRNA, tryptophanyl-tRNA, and seryl-tRNA synthetases from yellow lupin seeds Lupinus luteus were purified to homogeneity by ammonium sulfate fractionation, hydrophobic chromatography on aminohexyl-Sepharose column and affinity chromatography on tRNA-Sepharose column. Valyl-tRNA synthetase consists of one polypeptide chain of molecular weight 125000 as judged by Sephadex G-200 gel filtration and dodecylsulfate-polyacrylamide gel electrophoresis in the presence of reducing agent. Seryl-tRNA synthetase, Mr equals 110000, is composed of two 55000-Mr subunits. Tryptophanyl-tRNA synthetase exhibits molecular weight of 200000 on Sephadex G-200 and 37000 in dodecylsulfate-polyacrylamide gel electrophoresis. This indicates that tryptophanyl-tRNA synthetase consists of several subunits (probably four). Since the seryl-tRNA synthetase exhibits the same mobility on dodecylsulfate-polyacrylamide gels both in the presence and absence of reducing agent it is concluded that there is no covalent bond(s) between the subunits of the enzyme. There is also no covalent bond(s) between the subunits of tryptophanyl-tRNA synthetase. Effect of anti-sulfhydryl reagents, monovalent salts, pH and different buffers on activity of the three synthetases is described. Kinetic constants for the substrates of the synthetases are also given. dATP is a substrate for seryl-tRNA synthetase but not for valyl-tRNA and tryptophanyl-tRNA synthetases.  相似文献   

12.
The present study shows unilateral aminoacylation specificity between bovine mitochondria and eubacteria (Escherichia coli and Thermus thermophilus) in five amino acid-specific aminoacylation systems. Mitochondrial synthetases were capable of charging eubacterial tRNA as well as mitochondrial tRNA, whereas eubacterial synthetases did not efficiently charge mitochondrial tRNA. Mitochondrial phenylalanyl-, threonyl-, arginyl-, and lysyl-tRNA synthetases were shown to charge and discriminate cognate E. coli tRNA species from noncognate ones strictly, as did the corresponding E. coli synthetases. By contrast, mitochondrial seryl-tRNA synthetase not only charged cognate E. coli serine tRNA species but also extensively misacylated noncognate E. coli tRNA species. These results suggest a certain conservation of tRNA recognition mechanisms between the mitochondrial and E. coli aminoacyl-tRNA synthetases in that anticodon sequences are most likely to be recognized by the former four synthetases, but not sufficiently by the seryl-tRNA synthetase. The unilaterality in aminoacylation may imply that tRNA recognition mechanisms of the mitochondrial synthetases have evolved to be, to some extent, simpler than their eubacterial counterparts in response to simplifications in the species-number and the structural elements of animal mitochondrial tRNAs.  相似文献   

13.
Transfer RNAs in dry lupin seeds are aminoacylated to a low extent (Kedzierski, W. and Pawe?kiewicz, J. (1977) Phytochemistry 16, 503-504) and are partly degraded at the acceptor terminus (Dziegielewski, T. and Pawe?kiewicz, J. (1977) Bull. Acad. Polon. Sci. Ser. Biol. 7, 4oo-435). Increase in the levels of tRNA aminoacylation and disappearance of defective tRNA molecules during seed germination are not accompanied by significant changes in the levels of phenylalanyl-, arginyl-, valyl-tRNA synthetases and tRNA nucleotidyltransferase. Additionally, no inhibitor of aminoacylation of valine tRNA has been detected in dry seeds. However, dry seeds contain very low ATP amounts, which increase dramatically during germination. The above results suggest that a very low ATP level is a factor limiting the aminoacylation and reparation of tRNA molecules at early stages of seed germination.  相似文献   

14.
Like arginyl-tRNA synthetases from other organisms, human placental arginyl-tRNA synthetase catalyzes the arginine-dependent ATP-PPi exchange reaction only in the presence of tRNA. We have investigated the order of substrate addition and product release of this human enzyme in the tRNA aminoacylation reaction by using initial velocity experiments and dead-end product inhibition studies. The kinetic patterns obtained are consistent with a random Ter Ter sequential mechanism, instead of the common Bi Uni Uni Bi ping-pong mechanism for all other human aminoacyl-tRNA synthetases so far investigated in this respect.  相似文献   

15.
Abstract

The genetic code is based on the aminoacylation of tRNA with amino acids catalyzed by the aminoacyl-tRNA synthetases. The synthetases are constructed from discrete domains and all synthetases possess a core catalytic domain that catalyzes amino acid activation, binds the acceptor stem of tRNA, and transfers the amino acid to tRNA. Fused to the core domain are additional domains that mediate RNA interactions distal to the acceptor stem. Several synthetases catalyze the aminoacylation of RNA oligonucleotide substrates that recreate only the tRNA acceptor stems. In one case, a relatively small catalytic domain catalyzes the aminoacylation of these substrates independent of the rest of the protein. Thus, the active site domain may represent a primordial synthetase in which polypeptide insertions that mediate RNA acceptor stem interactions are tightly integrated with determinants for aminoacyl adenylate synthesis. The relationship between nucleotide sequences in small RNA oligonucleotides and the specific amino acids that are attached to these oligonucleotides could constitute a second genetic code.  相似文献   

16.
A R Fersht  M M Kaethner 《Biochemistry》1976,15(15):3342-3346
Valyl-tRNA synthetase from Bacillus stearothermophilus activates thereonine and forms a 1:1 complex with threonyl adenylate, but it does not catalyze the net formation of threonyl-tRNAVal at pH 7.78 and 25 degrees C in the quenched flow apparatus it decomposes at a rate constant of 36s-1. During this process there is a transient formation of Thr-tRNAVal reaching a maximum at 25 ms and rapidly falling to zero after 150 ms. At the peak, 22% of the (14C) threonine from the complex is present as (14C) Thr-tRNA. The reaction may be quenched with phenol and the partially mischarged tRNA isolated. The enzyme catalyzes its hydrolysis with a rate constant of 40s-1. The data fit a kinetic scheme in which 62% of the threonine from the threonyl adenylate is transferred to the tRNA. This may be compared with the rate constant of 12s-1 at which 84% of the valine is transferred to tRNAVal from the enzyme-bound valyl adenylate, and the rate constant of 0.015s-1 for the subsequent hydrolysis of Val-tRNAVal. Inhibition studies indicate a distinct second site for hydrolysis. The translocation of the aminoacyl moiety between the two sites could be mediated by a transfer between the 2'-and 3'-OH groups of the terminal adenosine fo the tRNA. The hyperspecificity of the enzyme is based on discriminating between the two competing substrates twice: once against the undesired substrate in the synthetic step, and once against the desired substrate in the destructive step.  相似文献   

17.
Pyridoxal 5'-triphospho-5'-adenosine (AP3-PL), the affinity labeling reagent specific for lysine residues in the nucleotide-binding site of several enzymes [Tagaya, M., & Fukui, T. (1986) Biochemistry 25, 2958-2964; Yagami, T., Tagaya, M., & Fukui, T. (1988) FEBS Lett. 229, 261-264], was used to identify the ATP-binding site of Escherichia coli methionyl-tRNA synthetase (MetRS). Incubation of this enzyme with AP3-PL followed by reduction with sodium borohydride resulted in a rapid inactivation of both the tRNA(Met) aminoacylation and the methionine-dependent ATP-PPi exchange activities. Complete inactivation corresponded to the incorporation of 0.98 mol of AP3-PL/mol of monomeric trypsin-modified MetRS. ATP or MgATP protected the enzyme from inactivation. The labeling with AP3-PL was also applied to E. coli valyl-tRNA synthetase (ValRS). Both the tRNA(Val) aminoacylation and the valine-dependent ATP-PPi exchange activities were abolished by the incorporation of 0.91 mol of AP3-PL/mol of monomeric ValRS. AP3-PL was found attached to lysine residues 335, 402, and 528 in the primary structure of MetRS. In the case of ValRS, the AP3-PL-labeled residues corresponded to lysines 557, 593, and 909. We therefore conclude that these lysines of MetRS and ValRS are directed toward the ATP-binding site of these synthetases, more specifically at or close to the subsite for the gamma-phosphate of ATP. AP3-PL-labeled Lys-335 of MetRS and Lys-557 of ValRS belong to the consensus tRNA CCA-binding Lys-Met-Ser-Lys-Ser sequence [Hountondji, C., Dessen, P., & Blanquet, S. (1986) Biochimie 68, 1071-1078].(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Threonyl-tRNA synthetase, a class II synthetase, uses a unique zinc ion to discriminate against the isosteric valine at the activation step. The crystal structure of the enzyme with an analog of seryl adenylate shows that the noncognate serine cannot be fully discriminated at that step. We show that hydrolysis of the incorrectly formed ser-tRNA(Thr) is performed at a specific site in the N-terminal domain of the enzyme. The present study suggests that both classes of synthetases use effectively the ability of the CCA end of tRNA to switch between a hairpin and a helical conformation for aminoacylation and editing. As a consequence, the editing mechanism of both classes of synthetases can be described as mirror images, as already seen for tRNA binding and amino acid activation.  相似文献   

19.
Aminoacyl-tRNA synthetases of bakers' yeast (Saccharomyces cerevisiae) were adsorbed to a phosphocellulose (P-cellulose) column, and those specific for tyrosine [EC 6.1.1.1], threonine [EC 6.1.1.3], valine [EC 6.1.1.9], and isoleucine [EC 6.1.1.5] were eluted with several specific tRNAs. Elutions of these synthetases were affected by ATP and/or MgCl2. The effects of ATP and MgCl2 differ with synthetases. Elutions of tyrosyl- and valyl-tRNA synthetases with their cognate tRNAs were more specific in the presence of MgCl2. Isoleucyl-tRNA synthetase was eluted with its cognate tRNA in the presence of both ATP and MgCl2. On the other hand, threonyl-tRNA synthetase was eluted in the absence of ATP and MgCl2 with unfractionated tRNA but not with some non-cognate tRNAs. This suggests that elution of threonyl-tRNA synthetase is highly specific. The present data on the effects of ATP or MgCl2 or both on this affinity elution will be useful for simple and rapid purification of the synthetases.  相似文献   

20.
The substrate specificity of isoleucyl-tRNA synthetase from Escherichia coli MRE 600 with regard to ATP analogs has been compared with the results obtained with isoleucyl-tRNA synthetase from yeast. The enzyme from E. coli is less specific, the two enzymes exhibit different topographies of their active centres. The order of substrate addition to isoleucyl-tRNA synthetase from E. coli MRE 600 has been investigated by bisubstrate kinetics, product inhibition and inhibition by substrate analogs. The inhibition studies were done in the aminoacylation and in the pyrophosphate exchange reaction, the aminoacylation was investigated in the absence and presence of inorganic pyrophosphatase. As found for isoleucyl-tRNA synthetase from yeast, the results of the pyrophosphate exchange studies indicate the possibility of formation of E . Ile-AMP . ATP complexes by random addition of one ATP and one isoleucine molecule, followed by adenylate formation, release of pyrophosphate and subsequent addition of a second molecule of ATP. For the aminoacylation in the absence of pyrophosphatase, a rapid-equilibrium random ter addition of the substrates is found whereas the enzyme from yeast exhibits a steady-state ordered ter-ter mechanism; in the presence of pyrophosphatase the mechanism is bi-uni uni-bi ping-pong similarly as observed for the yeast enzyme. A comparison of inhibition patterns obtained with N(6)-benzyladenosine 5'-triphosphate under different assay conditions (spermine or magnesium ions, addition of pyrophosphatase) indicates that even more than two pathways of the aminoacylation may exist. The catalytic cycles of the two mechanisms derived from the observed orders of substrate addition and product release include the same enzyme substrate complex (E . tRNA . Ile-AMP) for the aminoacyl transfer reaction. The kcat values, however, are considerably different: kcat of the sequential pathway is about 40% lower than kcat of the ping-pong mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号