首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Testicular synthesis of (14C)cholesterol and (14C)testosterone from (14C)acetate were investigated in mice treated with 5-thio-D-glucose at a dose of 33 mg/kg body weight/day for 21 days. The testicular synthesis of free cholesterol as well as steroids were significantly decreased. The steroid synthesizing enzymes, cholesterol esterase, cholesterol side-chain cleaving enzyme, total alpha-hydroxysteroid dehydrogenase and total beta-hydroxysteroid dehydrogenase, were also analysed. Cholesterol esterase and total beta-hydroxysteroid dehydrogenase were significantly reduced whereas total alpha-hydroxysteroid dehydrogenase was unaffected. Hence, a decrease in free cholesterol for steroid synthesis and a decreased activity of the steroidogenic enzyme, beta-hydroxysteroid dehydrogenase, were responsible for the diminished synthesis of testosterone.  相似文献   

2.
M E Baker 《Prostaglandins》1991,42(5):391-410
The recent determination of the amino acid sequences of enzymes that metabolize prostaglandins and steroids has revealed interesting connections between some of these enzymes. Human placental 15-hydroxyprostaglandin dehydrogenase, which catalyzes the oxidation of the C15 alcohol on prostaglandins E2 and F2 alpha, is homologous to 11 beta-hydroxysteroid, 17 beta-hydroxysteroid, and 3 alpha, 20 beta-hydroxysteroid dehydrogenases. That is, these four enzymes are derived from a common ancestor. Moreover, enzymes important in synthesis of antibiotics and proteins synthesized by soil bacteria that form nitrogen-fixing nodules in alfalfa and soybeans are homologous to 15-hydroxyprostaglandin dehydrogenase. These homologies provide important insights into the origins of intercellular communication that is mediated by prostaglandins, steroids, and fatty acids.  相似文献   

3.
By selecting for growth on testosterone or estradiol-17 beta as the only source of organic carbon, we have isolated a number of soil microorganisms which contain highly active and novel, inducible, NAD-linked 3 alpha-, 3 beta-, and 17 beta-hydroxysteroid dehydrogenases. Such enzymes are suitable for the microanalysis of steroids and of steroid-transforming enzymes, as well as for performing stereoselective oxidations and reductions of steroids. Of particular interest among these organisms is a new species of Alcaligenes containing 17 beta-hydroxysteroid dehydrogenase, easily separable from 3 beta-hydroxysteroid dehydrogenase. Unlike any of the other isolated organisms, this Alcaligenes sp. contained no 3 alpha-hydroxysteroid dehydrogenase activity. A large-scale purification (763-fold) to homogeneity of the major induced 17 beta-hydroxysteroid dehydrogenase was achieved by ion-exchange, hydrophobic, and affinity chromatographies. The enzyme has high specific activity for the oxidation of testosterone (Vmax = 303 mumol/min/mg of protein; Km = 3.6 microM) and reacts almost equally well with estradiol-17 beta (Vmax = 356 mumol/min/mg; Km = 6.4 microM). It consists of apparently identical subunits (Mr = 32,000) and exists in polymeric form under nondenaturing conditions (Mr = 68,000 by gel filtration and 86,000 by polyacrylamide gel electrophoresis). The isoelectric point is pH 5.1. The enzyme is almost completely specific for 17 beta-hydroxysteroids which may be delta 5-olefins or ring A phenols or have cis or trans A/B ring fusions. Substituents at other positions are tolerated, although the presence of a 16 alpha- or 16 beta-hydroxyl group blocks the oxidation of the 17 beta-hydroxyl function. 3 beta-Hydroxysteroids (A/B ring fusion trans, but not cis, or delta 5-olefins) are very poor substrates. The application of this highly active, specific, and stable 17 beta-hydroxysteroid dehydrogenase to the microestimation of steroids by enzymatic cycling of nicotinamide nucleotides and for the stereospecific oxidation of steroids is demonstrated.  相似文献   

4.
The case of a true hermaphrodite, with a normal ovary and an ovotestis is presented. The ovotestis was removed and incubated in vitro with tritiated steroids (testosterone, dehydroepiandrosterone, pregnenolone and 17 alpha-hydroxyprogesterone). Labeled metabolites were isolated and identified. Based upon these findings, a pathway of steroid biogenesis in this abnormal gonadal tissue is suggested. The ovotestis studied did not contain all the enzymes involved in ovarian steroidogenesis: 3 beta-hydroxysteroid dehydrogenase, isomerase, 17--20 desmolase and 17 beta-hydroxysteroid dehydrogenase were present, but other important enzymes, such as 16 and 17-hydroxylases, and aromatizing enzyme systems, were deficient or absent.  相似文献   

5.
Skin, the largest organ of the human body, synthesizes active sex steroids from adrenal C19 precursor steroids. Normal human breast epidermal keratinocytes in primary culture were used to evaluate the enzymatic activities responsible for the formation and degradation of active androgens and estrogens during keratinocyte differentiation. Enzymatic activities, including 3beta-hydroxysteroid dehydrogenase/Delta5-Delta4 isomerase (3beta-HSD), 17beta-hydroxysteroid dehydrogenase (17beta-HSD), 5alpha-reductase and 3alpha-hydroxysteroid dehydrogenase (3alpha-HSD) were measured using [3H] steroids as substrates. After 10-60 days in culture, no 3beta-HSD activity was detected, but all other activities were measured, demonstrating the ability of keratinocytes to convert androstenedione (4-DIONE) into the potent androgen dihydrotestosterone (DHT). Furthermore, marked changes in enzymatic activity were observed during cell differentiation: 17beta-HSD was first detected during the third week of culture, the level of activity reaching a peak during the fourth week. This peak was followed by a progressive decrease during keratinization. On the other hand, 5alpha-reductase and 3alpha-HSD activities were first detected during the fourth week of culture. The enzymatic activities involved in the formation and degradation of sex steroids were also characterized in the immortalized human keratinocyte cell line HaCaT. It was then found that HaCaT cells possess a pattern of steroid metabolizing enzymes similar to that of human epidermal keratinocytes in culture. Since glucocorticoids are known to exert potent pharmacological effects on the skin, the effect of dexamethasone (DEX) on cell proliferation and enzymatic activities was determined using HaCaT cells. DEX causes a 55% decrease in HaCaT cell proliferation (IC50: 10nM) whereas DEX caused a three- to five-fold stimulation of oxidative 17beta-HSD activity in intact cells in culture (ED50: 30 nM) and this stimulatory effect was competitively blocked by the glucocorticoid antagonist RU486. A four-fold increase in type 2 17beta-HSD mRNA levels was also observed as measured by real-time PCR, correlating with the increase in oxidative activity. No effect of DEX on the other enzymatic activities (3beta-HSD, 5alpha-reductase, and 3alpha-HSD) was observed. Since increased levels of inflammatory cytokines have been detected in some skin diseases then these cytokines might play a role in the differentiation of keratinocytes. In this regard, we found that interleukin-4 (IL-4) induced the expression of 3beta-HSD in HaCaT cells, thus allowing the cells to produce a different set of sex steroids from adrenal C19 precursors. The present data thus indicate that HaCaT cells are a useful model to further study the regulation of the enzymes involved in the metabolism of sex steroids in keratinocytes.  相似文献   

6.
The enzyme 17beta-hydroxysteroid dehydrogenase is required for the synthesis and 11beta-hydroxysteroid dehydrogenase for the regulation of androgens in rat Leydig cells. This histochemical study describes ontogenetic changes in distribution and intensity of these enzymes in Leydig cells from postnatal day (pnd) 1-90. Using NAD or NADP as the cofactor, 17beta-hydroxysteroid dehydrogenase (substrate: 5-androstene-3beta,17beta-diol) peaks were observed on pnd 16 for fetal Leydig cells and on pnd 19 and 37 for adult Leydig cells. Between pnd 13 and 25 the fetal cells showed a higher intensity for the 17beta-enzyme than the adult cells; more fetal Leydig cells were stained with NADP, whereas more adult cells were positive with NAD on pnd 13 and 16. A nearly identical distribution of 11beta-hydroxysteroid dehydrogenase (substrate: corticosterone) was observed with NAD or NADP as the cofactor; the reaction was present from pnd 31 onwards, first in a few adult Leydig cells and later in almost all these cells homogeneously. The ontogenetic curves of the two enzymes show an inverse relationship. To conclude: (1) Generally, a stronger reaction for 17beta-hydroxysteroid dehydrogenase is shown with NAD as cofactor than with NADP; using NADP, fetal Leydig cells show a stronger staining than adult Leydig cells. (2) The data possibly support the notion of a new isoform of 11beta-hydroxysteroid dehydrogenase in addition to types 1 and 2.  相似文献   

7.
Three enzyme forms (CR1, CR2 and CR3) of carbonyl reductase were purified from chicken liver with using 4-benzoylpyridine as a substrate. CR1 was a dimeric enzyme composed of two identical 25-kD subunits. CR2 and CR3 were monomeric enzymes whose molecular weights were both 32 kD. CR1 exhibited 17 beta-hydroxysteroid dehydrogenase activity as well as carbonyl reductase activity in the presence of both NADP(H) and NAD(H). CR2 and CR3 had similar properties with regard to substrate specificity and inhibitor sensitivity. They could exhibit the activity only with NADPH and had no hydroxysteroid dehydrogenase activity. CR2 and CR3 cross-reacted with anti-chicken kidney carbonyl reductase antibody, though CR1 did not. The results suggest that CR1 is a hydroxysteroid dehydrogenase, and CR2 and CR3 are similar to each other and to the kidney enzymes.  相似文献   

8.
A NADP(+)-dependent 3 beta-hydroxysteroid dehydrogenase activity was localized in the microsomal fraction of rat liver. This enzyme was solubilized and separated completely from 3 alpha-hydroxysteroid dehydrogenase by Matrex red A column chromatography. Partially purified 3 beta-hydroxysteroid dehydrogenase catalyzed the oxidation and reduction between the 3 beta-hydroxyl and 3-ketonic group of steroids or bile acids having no double bond in the A/B ring, but was inactive toward 3 alpha-hydroxyl group. The enzyme required NADP+ for oxidation and NADPH for reduction. The activity was inhibited by p-chloromercuribenzoic acid or p-chloromercuribenzenesulfonic acid at the concentration of 10(-4) M. The molecular weight of the enzyme was estimated to be about 43,000 by Sephadex G-200 column chromatography. From these results, it is concluded that the enzyme is a new type of microsomal NADP+:3 beta-hydroxysteroid dehydrogenase.  相似文献   

9.
W Gibb 《Steroids》1981,37(1):23-31
Recent kinetic studies on the placental microsomal 3 beta-hydroxysteroid dehydrogenase have shown that apparent Km values for 3 beta-hydroxy-5-androsten-17-one (dehydroepiandrosterone) and 3 beta-hydroxy-5-pregnen-20-one (pregnenolone) are 15nM and 40nM respectively, which are orders of magnitude lower than found in earlier studies. The purpose of this study was to investigate the substrate and nucleotide specificity of the 3 beta-hydroxysteroid dehydrogenase, and the ability of various steroids to inhibit the reaction at these lower steroid concentrations. Each steroid inhibited the metabolism of the other competitively, and the Ki values obtained were not significantly different from their respective Km values. The ability of various steroids to inhibit the reaction at concentrations of 100nM was usually less than that found at micromolar concentrations. However, certain steroids showed marked inhibition. For example, estrone and estradiol-17 beta inhibit the oxidation of both substrates competitively with Ki values of between 15 and 24nM. The Km values of dehydroepiandrosterone and pregnenolone with NADP+ as cofactor are higher than those with NAD+ as cofactor and the V values are much lower. These data indicate that in human placental microsomes a single 3 beta-hydroxysteroid dehydrogenase, essentially NAD+ specific, metabolizes dehydroepiandrosterone and pregnenolone.  相似文献   

10.
Patients with Smith-Lemli-Opitz syndrome have impaired ability to synthesize cholesterol due to attenuated activity of 7-dehydrosterol-delta(7)-reductase which catalyses the final step in cholesterol synthesis. Accumulation of 7- and 8-dehydrocholesterol is a result of the disorder and potentially these sterols could be used as precursors of a novel class of delta(7) and delta(8) unsaturated adrenal steroids and their metabolites. In this study, we have analyzed urine from SLOS patients in the anticipation of characterizing such metabolites. Gas chromatography/mass spectrometry (GC/MS) was used in the identification of two major metabolites as 7- and 8-dehydroversions of the well-known steroid pregnanetriol. Other steroids, such as 8-dehydro dehydroepiandrosterone (8-dehydro DHEA) and 7- or 8-dehydroandrostenediol were also identified, and several more steroids are present in urine but remain uncharacterized. As yet, the study provides no evidence for the production of ring-B unsaturated metabolites of complex steroids, such as cortisol. We believe that the following transformations can utilize ring-B dehydroprecursors: StAR transport of cholesterol, p450 side chain cleavage, 17-hydroxylase/17,20-lyase, 3beta-hydroxysteroid dehydrogenase, 3alpha-hydroxysteroid dehydrogenase, 17beta-hydroxysteroid dehydrogenase, 20alpha-hydroxysteroid dehydrogenase and 5beta-reductase. We have yet to prove the activity of adrenal 21-hydroxylase, 11beta-hydroxylase or 5alpha-reductase towards 7- or 8-dehydroprecursors.  相似文献   

11.
Chalcones were tested for estimating anti-aromatase, anti-3beta-hydroxysteroid dehydrogenase delta5/delta4 isomerase (3beta-HSD) and anti-17beta-hydroxysteroid dehydrogenase (17beta-HSD) activities in human placental microsomes. In the present study, we have demonstrated for the first time that chalcones are potent inhibitors of aromatase and 17beta-hydroxysteroid dehydrogenase activities: these enzymes being considered as important targets in the metabolic pathways of human mammary hormone-dependent cells. Our results showed that naringenin chalcone and 4-hydroxychalcone were the most effective aromatase and 17beta-hydroxysteroid dehydrogenase inhibitors with IC50 values of 2.6 and 16 microM respectively. In addition, inhibitory effects of some flavones and flavanones were compared to those of the corresponding chalcones. A structure-activity relationship was established and regions or/and substituents essential for these inhibitory activities were determined.  相似文献   

12.
M Zachmann 《Hormone research》1992,38(5-6):211-216
Recent discoveries in molecular biology have much clarified the regulation and function of steroid-converting enzymes. Most progress has been made in the area of cytochromes, which regulate the side chain cleavage of cholesterol (P-450 SCC) and the 17 alpha-hydroxylase and 17,20-desmolase (or 17,20-lyase) activities (P-450 17 alpha), as well as in 3 beta-hydroxysteroid dehydrogenase. Nevertheless, there are some discrepancies between fundamental knowledge and clinical experience, which are difficult to understand: why is it for example possible that cases with 'pure' 17 alpha-hydroxylase or 17,20-desmolase deficiency exist, when there is only one cytochrome regulating both steps? After a brief review of clinical and biochemical findings in the various defects of testosterone biosynthesis, a case is discussed, which is of interest in this respect. This XY patient with female external genitalia, who has been shown to have compound heterozygous mutations, had 'pure' 17,20-desmolase deficiency up to adolescence, but additional 17 alpha-hydroxylase deficiency with hypertension developed thereafter. From this observation, it has to be concluded that as yet unknown, possibly age-dependent modulating factors exist, which influence the activity of the cytochrome. Also the estrogen replacement given to the patient might have played a role in this change.  相似文献   

13.
Developmental endocrinology of the reproductive axis in the chicken embryo   总被引:6,自引:0,他引:6  
In mammals, the phenotype of the homogametic sex develops in the (relative) absence of steroids and the phenotype of the heterogametic sex is imposed by the early action of steroids. In contrast, the heterogametic sex in avian species is the female and the presence of estrogens and their receptors plays a crucial role in female sexual differentiation. The time- and sex-dependent expression of enzymes involved in steroidogenesis which determine the ratio of androgens/estrogens produced by the gonads has been extensively investigated during the last 5-6 years. These results all show that the lack of estrogen synthesis in the male appears to be due to the extremely low levels of 17beta-hydroxysteroid dehydrogenase and P450aromatase expression. In females, extensive expression of the aromatase gene (around day 5-6 of incubation), leading to estrogen synthesis, and specific expression of the estrogen receptor-mRNA in the left gonad results in the development of a functional left ovary. Other sex differences can be found in the expression of the inhibin subunit genes in gonads of chicken embryos and in circulating concentrations of inhibin, follicle stimulating hormone (FSH) and steroids. Sex reversal attempts have been made by varying incubation temperatures, by using anti-estrogens, androgens, aromatase inhibitors and synthetic steroids. In ovo administration of a sex steroid hormone or an inhibitor of endogenous sex steroid synthesis can cause phenotypical sex reversal. All these experiments show that the development of gonads in birds is very sensitive to changes in the embryonic hormonal environment, sometimes resulting in changes of postnatal reproduction and even growth.  相似文献   

14.
Steroid metabolism in hepatoma tissue culture (HTC) cells derived from a male rat was investigated. Steroids in ethanol were incubated with the cells for various lengths of time. Volume of ethanol never exceeded 1% of incubation volume. Thin-layer and paper chromatography were used. Incubation was with tritiated steroids. It was demonstrated that testosterone as well as dihydrotestosterone is transformed. The main enzyme activities detected were 5alpha-reduction and 3alpha-, 3beta, and 17beta-hydroxysteroid dehydrogenation. The pattern of metabolism was reproducible and varied with time, substrate concentration, and number of cells incubated. Some steroids interfered with androgen metabolism. 17beta-estradiol, 17-epitestosterone, and progesterone competed for the 17beta-hydroxyprogesterone dehydrogenase. it is concluded that 3beta and 17beta reduction in the HTC cells may be catalyzed by the same enzyme which might differ considerably from the 3beta-hydroxysteroid dehydrogenase assayed in intact liver cells. A hepatoma derived from a female rat also produced considerable amounts of 3beta-derivatives of testosterone.  相似文献   

15.
Streptomyces hydrogenans 3 alpha,20 beta-hydroxysteroid dehydrogenase reduces the C20 ketone on glucocorticoids and progestins. We find that two licorice-derived compounds, glycyrrhizic acid and carbenoxolone, inhibit this enzyme with microM Kis. Inhibition is competitive, indicating that these compounds are binding at or close to the catalytic site. Carbenoxolone's high aqueous solubility and affinity for 3 alpha,20 beta-hydroxysteroid dehydrogenase enabled us to prepare crystals of a carbenoxolone-NADH-enzyme ternary complex, which preliminary X-ray analysis indicates has a crystal structure that is significantly different from that of the 3 alpha,20 beta-hydroxysteroid dehydrogenase-NADH complex. A comparison of the tertiary structures of these two complexes should prove useful in understanding this enzyme's catalytic mechanism, as well as those of two homologous enzymes, mammalian 11 beta-hydroxysteroid dehydrogenase and 15-hydroxyprostaglandin dehydrogenase that also are inhibited by carbenoxolone.  相似文献   

16.
The histochemical activities of the enzymes alcohol dehydrogenase with propanol (A-D I) and isopropanol (A-D II) as substrates, 3- beta-hydroxysteroid dehydrogenase (3 beta .OHST-D), nicotinamideadenine dinucleotide phosphate (reduced form)-tetrazolium reductase (NADPH2-TR) and glucose-6-phosphate dehydrogenase (G6P-D) were studied in the testis of 6 cats daily injected with 20 micrograms/kg of the LHRH-analogue DTRP6-DGLY-10, LHRH-ethylamide (LHRH-A Group) and 3 cats injected with saline during 67 days. A morphometric analysis was done to evaluate the activity of the enzymes, its distribution and volume fractions of the Leydig cells with every activity. A-D II displayed a significant inhibition in the Leydig cells of the LHRH-A Group. There were no changes in the activities of G6P-D, 3 beta .OHST-D and NADPH2-TR, but it was possible to disclose some reduction of the volume fraction of the Leydig cells when the first two enzymes were used as its marker. This study corroborates that A-D II is a reaction in the pathway of steroidogenesis but does not explain whether it corresponds actually to 20-22 desmolase as proposed in the work by Hardonk (1965) or to another reaction linked to the activities of the cytochromes P450.  相似文献   

17.
11beta-hydroxysteroid dehydrogenase 1 regulates the tissue availability of cortisol by interconverting cortisone and cortisol. It is capable of functioning as both a reductase and a dehydrogenase depending upon the surrounding milieu. In this work, we have studied the reaction mechanism of a soluble form of human 11beta-hydroxysteroid dehydrogenase 1 and its mode of inhibition by potent and selective inhibitors belonging to three different structural classes. We found that catalysis follows an ordered addition with NADP(H) binding preceding the binding of the steroid. While all three inhibitors tested bound to the steroid binding pocket, they differed in their interactions with the cofactor NADP(H). Compound A, a pyridyl amide bound more efficiently to the NADPH-bound form of 11beta-hydroxysteroid dehydrogenase 1. Compound B, an adamantyl triazole, was unaffected by NADP(H) binding and the sulfonamide, Compound C, showed preferential binding to the NADP+ -bound form of 11beta-hydroxysteroid dehydrogenase 1. These differences were found to augment significant selectivity towards inhibition of the reductase reaction versus the dehydrogenase reaction. This selectivity may translate to differences in the in vivo effects of 11beta-hydroxysteroid dehydrogenase 1 inhibitors.  相似文献   

18.
An NAD+-linked 17 beta-hydroxysteroid dehydrogenase was purified to homogeneity from a fungus, Cylindrocarpon radicicola ATCC 11011 by ion exchange, gel filtration, and hydrophobic chromatographies. The purified preparation of the dehydrogenase showed an apparent molecular weight of 58,600 by gel filtration and polyacrylamide gel electrophoresis. SDS-gel electrophoresis gave Mr = 26,000 for the identical subunits of the protein. The amino-terminal residue of the enzyme protein was determined to be glycine. The enzyme catalyzed the oxidation of 17 beta-hydroxysteroids to the ketosteroids with the reduction of NAD+, which was a specific hydrogen acceptor, and also catalyzed the reduction of 17-ketosteroids with the consumption of NADH. The optimum pH of the dehydrogenase reaction was 10 and that of the reductase reaction was 7.0. The enzyme had a high specific activity for the oxidation of testosterone (Vmax = 85 mumol/min/mg; Km for the steroid = 9.5 microM; Km for NAD+ = 198 microM at pH 10.0) and for the reduction of androstenedione (Vmax = 1.8 mumol/min/mg; Km for the steroid = 24 microM; Km for NADH = 6.8 microM at pH 7.0). In the purified enzyme preparation, no activity of 3 alpha-hydroxysteroid dehydrogenase, 3 beta-hydroxysteroid dehydrogenase, delta 5-3-ketosteroid-4,5-isomerase, or steroid ring A-delta-dehydrogenase was detected. Among several steroids tested, only 17 beta-hydroxysteroids such as testosterone, estradiol-17 beta, and 11 beta-hydroxytestosterone, were oxidized, indicating that the enzyme has a high specificity for the substrate steroid. The stereospecificity of hydrogen transfer by the enzyme in dehydrogenation was examined with [17 alpha-3H]testosterone.  相似文献   

19.
Estrogens and androgens are steroids that act as reproductive hormones in vertebrates. These compounds have also been detected in reef-building corals and other invertebrates, where they are hypothesized to act as bioregulatory molecules. Experiments were conducted using labeled steroid substrates to evaluate metabolism of estrogens and androgens by coral homogenates. GC-MS analysis of 13C-labeled steroids showed that Montipora capitata coral homogenates or fragments could convert estradiol to estrone and testosterone to androstenedione and androstanedione, evidence that M. capitata contains 17beta-hydroxysteroid dehydrogenase and 5alpha-reductase. When homogenates from three coral species and symbiotic dinoflagellates (zooxanthellae) were incubated with tritiated steroid substrates, metabolites separated by thin-layer chromatography confirmed that 17beta-hydroxysteroid dehydrogenase activity occurred in all species tested. NADP+ was the preferred cofactor in dehydrogenation reactions with coral homogenates. Reduction of estrone and androstenedione occurred at lower rates and aromatization of androgens was not observed. It is unclear whether estrogens detected previously in coral tissues are produced endogenously or sequestered in coral tissue from dietary or environmental sources. Previous studies have demonstrated that corals can take up estrogens from the water column overlying coral reefs. Considered in total, these observations suggest corals could alter the concentration or form of steroids available to reef organisms.  相似文献   

20.
The role of membrane phospholipids in testicular androgen biosynthesis was investigated by monitoring the effects of phospholipase treatments on the activities of the steroid transforming enzymes. Androgen biosynthesis in untreated rat testicular microsomes was examined by monitoring the temporal appearance of pregnenolone metabolites and was found to proceed through the 4-ene route. When phospholipase A2 was included, the 5-ene steroids 17-hydroxypregnenolone and dehydroepiandrosterone (DHEA) were formed in greater quantities, and the production of 4-ene steroids was reduced indicating that the conversion of 5-ene steroids to the 4-ene configuration was inhibited by phospholipase A2 treatment. Phospholipase C, in addition to inhibiting this step, also inhibited the conversion of C21 steroids to C19 steroids. When the enzymatic steps were measured individually, phospholipase A2 inhibited 3 beta-hydroxysteroid dehydrogenase-isomerase (3 beta-HSD-Isomerase) with an ED50 of 73 mU/ml but had no effect on the activities of 17-hydroxylase, C-17, 20 lyase, or 17 beta-hydroxysteroid dehydrogenase (17 beta-HSD). However, though phospholipase C treatment inhibited 3 beta-HSD-Isomerase, it caused less inhibition (the ED50 value was 149 mU/ml). Furthermore, 17-hydroxylase and C-17, 20 lyase activities were also inhibited by phospholipase C treatment (ED50 values were 410 and 343 mU/ml, respectively), but no effect on 17 beta-HSD was observed. The differences in the apparent phospholipid requirements of the steroidogenic enzymes provides the possibility that the metabolic fate of pregnenolone may be regulated by changes in the phospholipid composition of the microenvironment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号