首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ellis PJ  Carlow CK  Ma D  Kuhn P 《Biochemistry》2000,39(3):592-598
The resistance of the human parasite Brugia malayi to the antiparasitic activity of cyclosporin A (CsA) may arise from the presence of cyclophilins with relatively low affinity for the drug. The structure of the complex of B. malayi cyclophilin (BmCYP-1) and CsA, with eight independent copies in the asymmetric unit, has been determined at a resolution of 2.7 A. The low affinity of BmCYP-1 for CsA arises from incomplete preorganization of the binding site so that the formation of a hydrogen bond between His132 of BmCYP-1 and N-methylleucine 9 of CsA is associated with a shift in the backbone of approximately 1 A in this region.  相似文献   

2.
3.
The NMR structure of cyclosporin A bound to cyclophilin in aqueous solution   总被引:7,自引:0,他引:7  
Cyclosporin A bound to the presumed receptor protein cyclophilin was studied in aqueous solution at pH 6.0 by nuclear magnetic resonance spectroscopy using uniform 15N- or 13C-labeling of cyclosporin A and heteronuclear spectral editing techniques. Sequence-specific assignments were obtained for all but one of the cyclosporin A proton resonances. With an input of 108 intramolecular NOEs and four vicinal 3JHN alpha coupling constants, the three-dimensional structure of cyclosporin A bound to cyclophilin was calculated with the distance geometry program DISMAN, and the structures resulting from 181 converged calculations were energy refined with the program FANTOM. A group of 120 conformers was selected on the basis of the residual constraint violations and energy criteria to represent the solution structure. The average of the pairwise root-mean-square distances calculated for the backbone atoms of the 120 structures was 0.58 A. The structure represents a novel conformation of cyclosporin A, for which the backbone conformation is significantly different from the previously reported structures in single crystals and in chloroform solution. The structure has all peptide bonds in the trans form, contains no elements of regular secondary structure and no intramolecular hydrogen bonds, and exposes nearly all polar groups to its environment. The root-mean-square distance between the backbone atoms of the crystal structure of cyclosporin A and the mean of the 120 conformers representing the NMR structure of cyclosporin A bound to cyclophilin is 2.5 A.  相似文献   

4.
The structure of the complex between cyclophilin and cyclosporin A is predicted by combining X-ray crystallographic and NMR spectroscopic data using molecular modeling. The drug was placed at the receptor site using a directed docking procedure in which an impulse is imparted to a pre-oriented ligand along an established path. Both ligand and receptor atoms are flexible during the procedure. Two conformers of the MeBMT side chain are shown to result in similar ligand-receptor interaction energies. The models for the drug-receptor complex appear consistent with known experimental data and provide a significant opportunity for the design of compounds with enhanced therapeutic value.  相似文献   

5.
Phosphoethanolamine N-methyltransferase (PMT) is essential for phospholipid biogenesis in the malarial parasite Plasmodium falciparum. PfPMT catalyzes the triple methylation of phosphoethanolamine to produce phosphocholine, which is then used for phosphatidylcholine synthesis. Here we describe the 2.0? resolution X-ray crystal structure of PfPMT in complex with amodiaquine. To better characterize inhibition of PfPMT by amodiaquine, we determined the IC(50) values of a series of aminoquinolines using a direct radiochemical assay. Both structural and functional analyses provide a possible approach for the development of new small molecule inhibitors of PfPMT.  相似文献   

6.
Plasmodium falciparum is the causative agent of the most severe type of malaria, a life-threatening disease affecting the lives of over three billion people. Factors like widespread resistance against available drugs and absence of an effective vaccine are seriously compounding control of the malaria parasite. Thus, there is an urgent need for the identification and validation of new drug targets. The enzymes of the polyamine biosynthesis pathway have been suggested as possible targets for the treatment of malaria. One of these enzymes is spermidine synthase (SPDS, putrescine aminopropyltransferase), which catalyzes the transfer of an aminopropyl moiety from decarboxylated S-adenosylmethionine (dcAdoMet) to putrescine, leading to the formation of spermidine and 5'-methylthioadenosine. Here we present the three-dimensional structure of P. falciparum spermidine synthase (pfSPDS) in apo form, in complex with dcAdoMet and two inhibitors, S-adenosyl-1,8-diamino-3-thio-octane (AdoDATO) and trans-4-methylcyclohexylamine (4MCHA). The results show that binding of dcAdoMet to pfSPDS stabilizes the conformation of the flexible gatekeeper loop of the enzyme and affects the conformation of the active-site amino acid residues, preparing the protein for binding of the second substrate. The complexes of AdoDATO and 4MCHA with pfSPDS reveal the mode of interactions of these compounds with the enzyme. While AdoDATO essentially fills the entire active-site pocket, 4MCHA only occupies part of it, which suggests that simple modifications of this compound may yield more potent inhibitors of pfSPDS.  相似文献   

7.
The plastid in Plasmodium falciparum asexual stages is a tubular structure measuring about 0.5 micron x 0.15 micron in the merozoite, and 1.6 x 0.35 microns in trophozoites. Each parasite contains a single plastid until this organelle replicates in late schizonts. The plastid always adheres to the (single) mitochondrion, along its whole length in merozoites and early rings, but only at one end in later stages. Regions of the plastid are also closely related to the pigment vacuole, nuclear membrane and endoplasmic reticulum. In merozoites the plastid is anchored to a band of 2-3 subpellicular microtubules. Reconstructions show the plastid wall is characteristically three membranes thick, with regions of additional, complex membranes. These include inner and outer membrane complexes. The inner complex in the interior lumen is probably a rolled invagination of the plastid's inner membrane. The outer complex lies between the outer and middle wall membranes. The interior matrix contains ribosome-like granules and a network of fine branched filaments. Merozoites of P. berghei and P. knowlesi possess plastids similar in structure to those of P. falciparum. A model is proposed for the transfer of membrane lipid from the plastid to other organelles in the parasite.  相似文献   

8.
V L Hsu  I M Armitage 《Biochemistry》1992,31(51):12778-12784
A simple strategy involving 1H nuclear magnetic resonance (NMR) spectroscopy and complete protein deuteration was used to determine the structures of two receptor-bound drugs. A potent immunosuppressive, cyclosporin A (CsA) binds tightly to the ubiquitous and highly conserved 17.7-kDa immunophilin, cyclophilin (CyP). Fully deuterated CyP was produced by overexpressing the human CyP gene in Escherichia coli grown on deuterated algal hydrolysate in 98% D2O. As only the CsA molecule is protonated in the CsA-CyP complex, we were able to make a complete sequential assignment of the bound drug using standard two-dimensional proton NMR experiments. The structure determination was accomplished using dynamical simulated annealing calculations with a total of 124 NMR-derived distance and torsion angle restraints. Aside from binding CsA, CyP also acts as a peptidyl-prolyl cis-trans isomerase. Thus, much importance had been ascribed to the cis peptide bond present in the structures reported for free CsA in organic solvents and in crystal studies. Interestingly, CyP-bound CsA exists in an all-trans conformation with no detectable elements of regular secondary structure and no intramolecular hydrogen bonds. A nonactive CsA analog, MeAla6-CsA, was studied using the same CyP deuteration strategy. In addition to structural elucidation of the two bound drugs, we were able to differentiate between the bound and surface-exposed residues of the drugs and also validate our previous hypothesis that the single CyP tryptophan is located in the CsA-binding site.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
SIAP-1 and SIAP-2 are proteins which are implicated in early events involving Plasmodium falciparum infection of the Anopheles mosquito vector and the human host. High affinity HeLa and HepG2 cell binding conserved peptides have been previously identified in these proteins, i.e. SIAP-1 34893 ((421)KVQGLSYLLRRKNGTKHPVY(440)) and SIAP-1 34899 ((541)YVLNSKLLNSRSFDKFKWIQ(560)) and SIAP-2 36879 ((181)LLLYSTNSEDNLDISFGELQ(200)). When amino acid sequences have been properly modified (replacements shown in bold) they have induced high antibody titres against sporozoites in Aotus monkeys (assessed by IFA) and in the corresponding recombinant proteins (determined by ELISA and Western blot). (1)H NMR studies of these conserved native and modified high activity binding peptides (HABPs) revealed that all had α-helical structures in different locations and lengths. Conserved and corresponding modified HABPs displayed different lengths between the residues fitting into MHCII molecule pockets 1-9 and different amino acid orientation based on their different HLA-DRβ1(?) binding motifs and binding registers, suggesting that such modifications were associated with making them immunogenic. The results suggested that these modified HAPBs could be potential targets for inclusion as components of a fully-effective, minimal sub-unit based, multi-epitope, and multistage anti-malarial vaccine.  相似文献   

10.
Two potent inhibitors (compounds 1 and 2) of malarial aspartyl protease, plasmepsin-II, were evaluated against wild type (NL4-3) and multidrug-resistant clinical isolate 769 (MDR) variants of human immunodeficiency virus type-1 (HIV-1) aspartyl protease. Enzyme inhibition assays showed that both 1 and 2 have better potency against NL4-3 than against MDR protease. Crystal structures of MDR protease in complex with 1 and 2 were solved and analyzed. Crystallographic analysis revealed that the MDR protease exhibits a typical wide-open conformation of the flaps (Gly48 to Gly52) causing an overall expansion in the active site cavity, which, in turn caused unstable binding of the inhibitors. Due to the expansion of the active site cavity, both compounds showed loss of direct contacts with the MDR protease compared to the docking models of NL4-3. Multiple water molecules showed a rich network of hydrogen bonds contributing to the stability of the ligand binding in the distorted binding pockets of the MDR protease in both crystal structures. Docking analysis of 1 and 2 showed a decrease in the binding affinity for both compounds against MDR supporting our structure-function studies. Thus, compounds 1 and 2 show promising inhibitory activity against HIV-1 protease variants and hence are good candidates for further development to enhance their potency against NL4-3 as well as MDR HIV-1 protease variants.  相似文献   

11.
Isothermal titration calorimetry (ITC) was used to investigate thermodynamic parameters of the cyclosporin A (CsA)-cyclophilin 18 (hCyp18) association reaction. We have calculated the thermodynamic parameters (enthalpy, entropy, heat capacity, and free energy of binding) of the CsA/hCyp18 complexation. All but two methods described in the literature underestimate the affinity to hCyp18 of CsA. We found that the association constant (1.1·108 M−1 at 10 °C) of CsA to hCyp18 is in close agreement with the reciprocal of the reported inhibitory constant of the peptidylprolyl cis/trans isomerase activity of hCyp18. Interpretation of the thermodynamic parameters in buffered solution of water, 30% glycerol and D2O leads to the conclusion that the highly specific binding of CsA to hCyp18 is mainly mediated through hydrogen bonding and to a lesser degree through hydrophobic interaction. Furthermore, the pH dependence of the association constant was determined and analyzed according to a single proton linkage model, resulting in a pKa value of 5.7 in free hCyp18 and below 4.5 in the CsA complexed form. Titration experiments using different single component buffers possessing different heats of ionization allowed us to estimate that statistically half a proton is transferred upon CsA binding from the binding interface of hCyp18 to the buffer at pH 5.5. No proton transfer was detected at pH 7.5. The thermodynamic results are discussed in relation to the published X-ray and NMR structure of the free and CsA complexed hCyp18.  相似文献   

12.
Cyclophilin (163 residues, Mr 17737), a peptidyl prolyl cis-trans isomerase, is a cytosolic protein that specifically binds the potent immunosuppressant cyclosporin A (CsA). The native form of the major bovine thymus isoform has been analyzed by 2D NMR methods, COSY, HOHAHA, and NOESY, in aqueous media. The 156 main-chain amides in CyP yield 126 observable NH/alpha CH couplings (81%, Gly pairs counted as 1). Following exhaustive D2O exchange, 44 amide resonances remain visible. Further analysis of the NH/NH, NH/alpha CH, and alpha CH/alpha CH regions of the COSY and NOESY data sets indicates that the residual amides in D2O form a coherent hydrophobic domain which yields 2D NMR features suggestive of a beta-sheet. Many (43/126) of the amide resonances have been classified according to amino acid type. In the aromatic region of the spectra, the assignment of the ring spin systems is nearly complete (12/15 Phe, 2/2 Tyr, 1/1 Trp, and 3/4 His). This has successfully lead to the complete assignment of all of their beta CH's, main-chain alpha CH resonances, and many of the backbone amide resonances (8/12 Phe, 2/2 Tyr, 1/1 Trp, and 2/3 His). In other regions of the spectrum, the side-chain and main-chain resonances for 10/23 Gly, 9/9 Ala, 5/11 Thr, 5/9 Val, and 1/6 Leu have been completely assigned. The drug-free cyclophilin and CsA-bound cyclophilin form two discrete protein structures that are in slow exchange on the NMR time scale. Comparison of the fingerprint regions from the COSY spectra obtained from the two forms of the protein reveals a minimum of 16 cross-peaks which are clearly shifted upon complexation. In fact, on the basis of chemical shift changes observed in assigned side-chain and main-chain resonances, only a relatively few of the amino acid residues identified to date are perturbed by complex formation. These include 3 Phe (8, 12, and 14) and the Trp in the aromatic region and 2 Ala (7 and 8) in the Ala/Thr region. In the upfield-shifted methyl region, an assigned Leu and Val spin system and a spin system labeled X10 (an Ile or Leu) are affected by complex formation. In addition, a new aliphatic spin system, labeled X11, which shows a close spatial relationship to the perturbed Phe12, is observed in this region of the spectrum. In summary, the regions of the protein altered by complex formation can be divided into two categories: a hydrophobic and a H2O-accessible domain.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
Kotaka M  Ye H  Alag R  Hu G  Bozdech Z  Preiser PR  Yoon HS  Lescar J 《Biochemistry》2008,47(22):5951-5961
The emergence of multi-drug-resistant strains of Plasmodium parasites has prompted the search for alternative therapeutic strategies for combating malaria. One possible strategy is to exploit existing drugs as lead compounds. FK506 is currently used in the clinic for preventing transplant rejection. It binds to a alpha/beta protein module of approximately 120 amino acids known as the FK506 binding domain (FKBD), which is found in various organisms, including human, yeast, and Plasmodium falciparum (PfFKBD). Antiparasitic effects of FK506 and its analogues devoid of immunosuppressive activities have been demonstrated. We report here the crystallographic structure at 2.35 A resolution of PfFKBD complexed with FK506. Compared to the human FKBP12-FK506 complex reported earlier, the structure reveals structural differences in the beta5-beta6 segment that lines the FK506 binding site. The presence in PfFKBD of Cys-106 and Ser-109 (substituting for His-87 and Ile-90, respectively, in human FKBP12), which are 4-5 A from the nearest atom of the FK506 compound, suggests possible routes for the rational design of analogues of FK506 with specific antiparasitic activity. Upon ligand binding, several conformational changes occur in PfFKBD, including aromatic residues that shape the FK506 binding pocket as shown by NMR studies. A microarray analysis suggests that FK506 and cyclosporine A (CsA) might inhibit parasite development by interfering with the same signaling pathways.  相似文献   

14.
15.
Comparative protein modeling, active site analysis and binding site specificity for the homologous series of plasmepsins (PM's), present in food vacuole of Plasmodium falciparum, are carried out. Four loops (L1, L2, L3 and L4), which show maximum structural deviations irrespective of type of inhibitor, have been identified. Comparison of the crystal structures of ligand complexes reveal that residues belonging to these loops have negligible coulomb and VDW interactions with the inhibitor but play major role in determining the openness of the binding cavity. The coulomb and VDW interactions between the PMII subsite pockets and inhibitors, which play a major role in determining the inhibition constants, are delineated. Besides small displacements, the catalytic residues D32 of PMII undergoes rotation around the Cgamma-Cbeta single bond to assist catalysis whereas side chain conformational deviations are not observed in D214 on plasmepsin activation. The mutant S79D of PMII (and the corresponding residues of PMI and PMIV) which helps in recognizing and cleaving substrates containing lysine at P1 position is surrounded by highly polar atmosphere stabilized by lysine. However, in PMIII significantly lower polar atmosphere around the mutant A78S/A78D is observed. Large buried side chain area of residues located at M15 and I289 of PMII (and corresponding residues of PMI and PMIV) corroborates well with increase in specificity constant for hydrophobic substrates.  相似文献   

16.
Reddy DM 《Bioinformation》2006,1(8):310-313
Malaria, caused by protozoan parasites of the genus Plasmodium, affects up to 500 million individuals and kills over 1 million people every year. The increasing resistance of the malaria parasites has enforced strategies for finding new drug targets. In recent years, enzymes associated with the polyamine metabolism have attracted attention as drug targets. Cytosolic Plasmodium falciparum spermidine synthase (PfPAPT) is a potential target for antimalarial chemotherapy. Contrasting with the other enzymes involved in the parasite polyamine amine biosynthesis, little information is available about this enzyme, and its crystallographic structure is unknown yet. In this paper I propose a theoretical low-resolution 3D model for PfPAPT based on crystal structure of the Arabidopsis thaliana, by multiple alignment followed by intensive optimization; validation and dynamic simulations in water. Comparison between the active sites of PfPAPT and human PAPT revealed key differences that could be useful for the design of new selective inhibitors of Plasmodium PAPT.  相似文献   

17.

Background  

Superoxide dismutases (SODs) are important enzymes in defence against oxidative stress. In Plasmodium falciparum, they may be expected to have special significance since part of the parasite life cycle is spent in red blood cells where the formation of reactive oxygen species is likely to be promoted by the products of haemoglobin breakdown. Thus, inhibitors of P. falciparum SODs have potential as anti-malarial compounds. As a step towards their development we have determined the crystal structure of the parasite's cytosolic iron superoxide dismutase.  相似文献   

18.
Calcium-dependent protein kinases (CDPKs) of Apicomplexan parasites are crucial for the survival of the parasite throughout its life cycle. CDPK1 is expressed in the asexual blood stages of the parasite, particularly late stage schizonts. We have identified two substrates of Plasmodium falciparum CDPK1: myosin A tail domain-interacting protein (MTIP) and glideosome-associated protein 45 (GAP45), both of which are components of the motor complex that generates the force required by the parasite to actively invade host cells. Indirect immunofluorescence shows that CDPK1 localizes to the periphery of P. falciparum merozoites and is therefore suitably located to act on MTIP and GAP45 at the inner membrane complex. A proportion of both GAP45 and MTIP is phosphorylated in schizonts, and we demonstrate that both proteins can be efficiently phosphorylated by CDPK1 in vitro. A primary phosphorylation of MTIP occurs at serine 47, whereas GAP45 is phosphorylated at two sites, one of which could also be detected in phosphopeptides purified from parasite lysates. Both CDPK1 activity and host cell invasion can be inhibited by the kinase inhibitor K252a, suggesting that CDPK1 is a suitable target for antimalarial drug development.  相似文献   

19.
Orotidine 5'-monophosphate decarboxylase from Plasmodium falciparum (PfOMPDC) catalyses the final step in the de novo synthesis of uridine 5'-monophosphate (UMP) from orotidine 5'-monophosphate (OMP). A defective PfOMPDC enzyme is lethal to the parasite. Novel in silico screening methods were performed to select 14 inhibitors against PfOMPDC, with a high hit rate of 9%. X-ray structure analysis of PfOMPDC in complex with one of the inhibitors, 4-(2-hydroxy-4-methoxyphenyl)-4-oxobutanoic acid, was carried out to at 2.1 ? resolution. The crystal structure revealed that the inhibitor molecule occupied a part of the active site that overlaps with the phosphate-binding region in the OMP- or UMP-bound complexes. Space occupied by the pyrimidine and ribose rings of OMP or UMP was not occupied by this inhibitor. The carboxyl group of the inhibitor caused a dramatic movement of the L1 and L2 loops that play a role in the recognition of the substrate and product molecules. Combining part of the inhibitor molecule with moieties of the pyrimidine and ribose rings of OMP and UMP represents a suitable avenue for further development of anti-malarial drugs.  相似文献   

20.
Plasmodium falciparum, the causative agent of malaria, is sensitive to oxidative stress and therefore the family of antioxidant enzymes, peroxiredoxins (Prxs) represent a target for antimalarial drug design. We present here the 1.8 A resolution crystal structure of P.falciparum antioxidant protein, PfAOP, a Prx that in terms of sequence groups with mammalian PrxV. The structure is compared to all 11 known Prx structures to gain maximal insight into its properties. We describe the common Prx fold and show that the dimeric PfAOP can be mechanistically categorized as a 1-Cys Prx. In the active site the peroxidatic Cys is over-oxidized to cysteine sulfonic acid, making this the first Prx structure seen in that state. Now with structures of Prxs in Cys-sulfenic, -sulfinic and -sulfonic acid oxidation states known, the structural steps involved in peroxide binding and over-oxidation are suggested. We also describe that PfAOP has an alpha-aneurism (a one residue insertion), a feature that appears characteristic of the PrxV-like group. In terms of crystallographic methodology, we enhance the information content of the model by identifying bound water sites based on peak electron densities, and we use that information to infer that the oxidized active site has suboptimal interactions that may influence catalysis. The dimerization interface of PfAOP is representative of an interface that is widespread among Prxs, and has sequence-dependent variation in geometry. The interface differences and the structural features (like the alpha-aneurism) may be used as markers to better classify Prxs and study their evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号