首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The objective of this research was to investigate how ferulic and p-coumaric acids affect lipid and fatty acid composition during canola (Brassica napus L.) seed germination. Data showed that both compounds increased total lipid and fatty acid contents in the cotyledons during germination. The largest accumulation in lipids occurred at 1.0 mM p-coumaric acid with an increase in all unsaturated fatty acids. The results suggest that allelochemicals interfere in canola seed germination by reducing lipid mobilization.  相似文献   

2.
The present study was conducted to investigate the cell wall properties in two wheat (Triticum aestivum L.) cultivars differing in their sensitivity to Al stress. Seedlings of Al-resistant, Inia66 and Al-sensitive, Kalyansona cultivars were grown in complete nutrient solutions for 4 days and then subjected to treatment solutions containing Al (0, 50 microM) in a 0.5 mM CaCl(2) solution at pH 4.5 for 24 h. Root elongation was inhibited greatly by the Al treatment in the Al-sensitive cultivar compared to the Al-resistant cultivar. The Al-resistant cultivar accumulated less amount of Al in the root apex than in the Al-sensitive cultivar. The contents of pectin and hemicellulose in roots were increased with Al stress, and this increase was more conspicuous in the Al-sensitive cultivar. The molecular mass of hemicellulosic polysaccharides was increased by the Al treatment in the Al-sensitive cultivar. The increase in the content of hemicellulose was attributed to increase in the contents of glucose, arabinose and xylose in neutral sugars. Aluminum treatment increased the contents of ferulic acid and p-coumaric acid especially in the Al-sensitive cultivar by increasing the activity of phenylalanine ammonia lyase (PAL, EC 4.3.1.5). Aluminum treatment markedly decreased the beta-glucanase activity in the Al-sensitive cultivar, but did not exert any effect in the Al-resistant cultivar. These results suggest that the modulation of the activity of beta-glucanase with Al stress may be involved in part in the alteration of the molecular mass of hemicellulosic polysaccharides in the Al-sensitive cultivar. The increase in the molecular mass of hemicellulosic polysaccharides and ferulic acid synthesis in the Al-sensitive cultivar with Al stress may induce the mechanical rigidity of the cell wall and inhibit the elongation of wheat roots.  相似文献   

3.
Using the whole plant and model systems, we demonstrate that the aluminum ions (Al3+) stimulate phenolic-dependent lipid peroxidation. Lipid peroxidation in barley (Hordeum vulgare L. cv. Donor) roots was 30 % higher under AlCl3 treatment than without Al. Major decomposition product of lipid peroxidation was 4-hydroxynonenal (4-HNE) but not thiobarbituric acid reactive substances (TBARS), a widely used markers for lipid peroxidation. Similarly, AlCl3 stimulated lipid peroxidation of soybean liposomes in the presence of chlorogenic acid (CGA) and H2O2/horseradish peroxidase system which can oxidize phenolics. Al3+ was found to enhance lipid peroxidation induced by oxidized CGA. Intermediates of lignin biosynthesis in plants, including p-coumaric acid, ferulic acid, sinapic acid and coniferyl alcohol, also showed similar effects. These results suggest that Al3+ has a potential to induce oxidative stress in plants by stimulating the prooxidant nature of endogenous phenolic compounds.  相似文献   

4.
The roots of date palm contain four cell wall‐bound phenolic acids identified as p‐hydroxybenzoic, p‐coumaric, ferulic and sinapic acids. The ferulic acid represents the major phenolic compound since it constitutes 48.2–55.8% of cell wall‐bound phenolic acids. All these phenolic acids were present in the resistant cultivar (BSTN) and the susceptible cultivar (JHL). However, the pre‐infection contents of p‐coumaric, ferulic and sinapic acids were greater in the resistant cultivar than in the susceptible one. For the contents of p‐hydroxybenzoic acid, there was no significant difference between the resistant cultivar and the susceptible cultivar. Similarly, the pre‐infection contents of lignin were approximately equal for both cultivars. Inoculation of the date palm roots by Fusarium oxysporum f. sp. albedinis induced important modifications to the contents of the cell wall‐bound phenolic compounds and lignin, which made it possible to distinguish between resistant and susceptible cultivars. The post‐infection contents of cell wall‐bound phenolic compounds underwent a rapid and intense increase with a maximum accumulation on the tenth day for p‐hydroxybenzoic acid (1.54 μmol/g), p‐coumaric acid (2.77 μmol/g) and ferulic acid (2.64 μmol/g) and on the fifteenth day for sinapic acid (1.85 μmol/g). The maximum contents accumulated in the resistant cultivar were greater than those in the susceptible cultivar, namely, 11 times for p‐hydroxybenzoic acid, 2.6 times for p‐coumaric acid, 1.8 times for ferulic acid and 12.3 times for sinapic acid. In the susceptible cultivar, p‐coumaric acid and ferulic acid contents also increased after inoculation although they did not reach the pre‐infection contents of the resistant cultivar. The contents of p‐hydroxybenzoic acid in the susceptible cultivar roots did not present post‐infection modification and those of sinapic acid decreased instead. The lignin contents increased in both cultivars with a maximum accumulation on the fifteenth day. However, the maximum contents accumulated in the resistant cultivar roots were 1.5 times greater than those of the susceptible cultivar. These results showed clear differences between the resistant BSTN and the susceptible JHL cultivars. The implication of cell wall‐bound phenolic compounds and lignin in the resistance of date palm to F. oxysporum f. sp. albedinis appears to be dependent on the speed and intensity of their accumulation with greater contents in the first stage of infection.  相似文献   

5.
以黑龙江省大豆重茬 5年与正茬土壤和根系为主要研究对象 ,采用高效液相色谱法 ,研究土壤和根系浸提液中的酚酸物质的含量及其生物学效应 .结果表明 ,重茬土壤中对羟基苯甲酸和香草酸的含量 (1mol·L-1NaOH提取 )大于正茬土壤 ,且差异达到极显著水平 ,香草醛含量差异不显著 ;重茬大豆根系水提液中对羟基苯甲酸、香草酸、阿魏酸、香草醛、香豆素含量均高于正茬 .大豆连作条件下土壤多酚氧化酶活性高于正茬土壤 .重茬大豆根系水提液及在水培条件下外加对羟基苯甲酸对大豆幼苗生长发育有一定的抑制作用 ;酚酸物质加入土壤 1周后 ,对羟基苯甲酸、香草酸、香草醛、阿魏酸、苯甲酸、香豆素残留率分别为 10 .4%、15 .3 %、4.1%、2 .3 %、5 .0 %、17.5 % ;且外加酚酸浓度与土壤中真菌数量呈极显著指数相关 .  相似文献   

6.
Alkaline hydrolysis of cell wall material of tomato hairy roots yielded ferulic acid as the major phenolic compound. Other phenolics were 4-hydroxybenzoic acid, vanillic acid, 4-hydroxybenzaldehyde, vanillin and 4-coumaric acid. The content of phenolics was much higher at the early stage of hairy root growth. The ferulic acid content decreased up to 30 days and then sharply increased to 360 microg/g at 60 days of growth. Elicitation of hairy root cultures with Fusarium mat extract (FME) increased ferulic acid content 4-fold after 24 h. As the pathogen-derived elicitors have specific receptors in plants, FME may thus be used for inducing resistance against Fusarium oxysporum f. sp. lycopersici.  相似文献   

7.
为了解新鲜川芎采后干燥过程中阿魏酸和阿魏酸松柏酯含量的动态变化规律,采用高效液相色谱法测定了川芎晒干过程中总阿魏酸、游离阿魏酸和阿魏酸松柏酯的含量。结果显示,在整个晒干过程中(30 d),总阿魏酸、游离阿魏酸和阿魏酸松柏酯含量呈先升高后下降的变化趋势,晾晒第3 d时总阿魏酸含量最高(0.23%),因此在晾晒的第3 d利用快速干燥技术能较好地保留川芎药材中总阿魏酸含量,使其发挥更佳的药效。川芎药材中的阿魏酸松柏酯能水解产生阿魏酸,因此研究川芎干燥过程中的生理响应与含水量的关系对阿魏酸积累有重要意义。由于川芎在用药过程中是以总阿魏酸含量发挥药效的,所以以总阿魏酸含量作为川芎药材质量控制指标更加科学。  相似文献   

8.
Summary Cucumber seedlings were grown in a Portsmouth soil-sand system to study how varying soil clay and organic matter content might modify cucumber seedling response to ferulic acid, a reported allelopathic agent. Leaf area expansion of cucumber seedlings, soil respiration, and soil solution concentrations of ferulic acid were monitored. Leaf area, mean absolute rates of leaf expansion, and shoot dry weight of cucumber seedlings were significantly reduced by ferulic acid concentrations ranging from 10 to 70 μg/g dry soil. Ferulic acid was applied every other day, since it rapidly disappeared from soil solution as a result of retention by soil particles, utilization by microbes and/or uptake by roots. The amount of ferulic acid retained (i.e., adsorbed, polymerized,etc.) by soil particles appeared to be secondary to microbial utilization and/or uptake by roots. Varying clay (5.3 to 9.8 g/cup) and organic matter (2.0 to 0.04g/cup) contents of the soil appeared to have little impact on the disappearance of ferulic acid from soil solution under “ideal” growth conditions for cucumber seedlings unless larger amounts of ferulic acid were added to the soil; in this case 200 μg/g. The addition of ferulic acid to the soil materials substantially increased the activity of the soil microbes. This latter conclusion is based on recovery of ferulic acid from soil solution and soil respiration measurements. Paper No. 10347 of the Journal Series of the North Carolina Agricultural Research Service, Raleigh, N C 27695-7601. The use of trade names in this publication does not imply endorsement by the North Carolina Agricultural Research Service of the product named, nor criticism of similar ones not mentioned.  相似文献   

9.
The root cell walls of the resistant cultivars of the date palm were more resistant to the action of the cell wall-degrading enzymes (CWDE) of Fusarium oxysporum f. sp. albedinis than those of the susceptible cultivars. Date palm roots contain four cell wall-bound phenolics identified as p-hydroxybenzoic acid, p-coumaric acid, ferulic acid and sinapic acid. The contents of p-coumaric acid and ferulic acid in the resistant cultivars (IKL, SLY, BSTN) were about 2 times higher than those in the susceptible cultivars (BFG, JHL, BSK). The contents of p-hydroxybenzoic acid and sinapic acid in the resistant cultivars were 8.4 and 4.5 times, respectively, higher than those in the susceptible cultivars. The lignin contents in roots of the resistant cultivars were 1.8 times higher than those of the susceptible cultivars. The cell wall-bound phenols accumulated particularly in resistant cultivars reduced strongly the mycelial growth and the CWDE production in vitro.  相似文献   

10.
High performance liquid chromatography analysis of different parts of Sclerotium rolfsii-infected and healthy seedlings of chickpea (Cicer arietinum) was carried out to examine the status of phenolic compounds. Three major peaks that appeared consistently were identified as gallic, vanillic and ferulic acids. Gallic acid concentrations were increased in the leaves and stems of infected plants compared to healthy ones. Vanillic acid detected in stems and leaves of healthy seedlings was not detected in infected seedlings. There was a significant increase of ferulic acid in those stem portions located above the infected collar region compared to minimal amounts in the roots of healthy seedlings. In vitro studies of ferulic acid showed significant antifungal activity against S. rolfsii. Complete inhibition of mycelial growth was observed with 1000 g of ferulic acid/ml. Lower concentrations (250, 500 and 750 g/ml) were also inhibitory and colony growth was compact in comparison with the fluffy growth of normal mycelium. Higher amounts of phenolics were found in the stems and leaves of S. rolfsii-infected seedlings in comparison to the healthy ones. A role for ferulic acid in preventing infections by S. rolfsii in the stems and leaves of chickpea plants above the infection zone is therefore feasible.  相似文献   

11.
The question of whether membrane expansion, which is caused by anesthetics in animal systems, alters the lipid composition of plant cell membranes was investigated. We have measured the effects of several anesthetics on the relative amounts of the principal fatty acids from the polar lipids of barley (Hordeum vulgare L.) root membranes. Procaine, dibucaine, tetracaine, chloroform and, to a lesser degree, methanol increased the proportions of palmitic, stearic and oleic acids and decreased the proportions of linoleic and linolenic acids. Ethanol had no significant effect. Total amounts of the fatty acids from the polar lipids of roots in procaine solution decreased markedly so that all of the acids decreased in amount. The anesthetic was effective as soon as the roots were introduced to the solution and the changes progressed at constant rates for 6 h. Only the polar membrane lipids were altered; other lipids were not affected. Increased hydrostatic pressure of about 1.0 MPa largely prevented the anesthetic effects, including the decrease in the total amounts of the fatty acids. Hydrostatic pressure as high as 2 MPa had no effect per se on the membrane lipid composition. These results indicate that anesthetics cause expansion of the root membranes which results in the lipid changes. That a compositional change in the membrane lipids involves a conformational change such as expansion is an indication of the nature of the link between changes in the membrane lipids and changes in function of areas where hydrophilic ions permeate.Abbreviations 16:0 palmitic acid - 18:0 stearic acid - 18:1 oleic acid - 18:2 linoleic acid - 18:3 linolenic acid  相似文献   

12.
In this study, free radical scavenging abilities of ferulic acid in relation to its structural characteristics were evaluated in solution, cultured neurons, and synaptosomal systems exposed to hydroxyl and peroxyl radicals. Cultured neuronal cells exposed to the peroxyl radical initiator AAPH die in a dose-response manner and show elevated levels of protein carbonyls. The presence of ferulic acid or similar phenolic compounds, however, greatly reduces free radical damage in neuronal cell systems without causing cell death by themselves. In addition, synaptosomal membrane systems exposed to oxidative stress by hydroxyl and peroxyl radical generators show elevated levels of oxidation as indexed by protein oxidation, lipid peroxidation, and ROS measurement. Ferulic acid greatly attenuates these changes, and its effects are far more potent than those obtained for vanillic, coumaric, and cinnamic acid treatments. Moreover, ferulic acid protects against free radical mediated changes in conformation of synaptosomal membrane proteins as monitored by EPR spin labeling techniques. The results presented in this study suggest the importance of naturally occurring antioxidants such as ferulic acid in therapeutic intervention methodology against neurodegenerative disorders such as Alzheimer's disease in which oxidative stress is implicated.  相似文献   

13.
从蹄叶橐吾根乙醇提取物中分离得到11种化合物,经理化和波谱分析分别鉴定为原儿茶醛(1)、7-羟基-色原酮(2)、咖啡酸(3)、阿魏酸(4)、1,5-二咖啡酰奎宁酸(5)、当归酸(6)、β-谷甾醇(7)、胡萝卜苷(8)、蜂斗菜素(9)、异蜂斗菜素(10)及正三十五烷(11)。其中酚类化合物1~5、倍半萜类化合物9~10及脂烃11为首次从该植物中分离得到。  相似文献   

14.
Cu2+胁迫对丹参生长及有效成分积累的影响   总被引:1,自引:0,他引:1  
研究了土壤Cu2+胁迫对丹参(Salvia miltiorrhiza Bunge)的生长和有效成分积累的影响。结果表明,与对照相比,Cu2+胁迫下丹参的生长受到抑制,土壤和丹参体内Cu2+残留量、膜脂过氧化程度增加,而叶绿素含量降低。此外,与对照相比,Cu2+胁迫下丹参地上部分中水溶性酚酸类成分咖啡酸、丹参素和原儿茶酸含量增加,迷迭香酸、原儿茶醛和丹酚酸B含量显著降低,而根系中这6种酚酸类成分和4种脂溶性丹参酮类成分二氢丹参酮、隐丹参酮、丹参酮Ⅰ、丹参酮ⅡA的含量均降低。表明铜胁迫抑制了丹参的生长,影响了有效成分的积累。  相似文献   

15.
The changes of lignin and wall-bound ferulic acid induced by wounding were quantitatively and histochemically investigated in the phloem of Chamaecyparis obtusa. Histochemical staining of lignin was first observed in the necrotic region of the phloem 7 days after wounding and developed in 14 days. Increases of the wall-bound ferulic acid and lignin concentrations were detected in the necrotic tissue at 7 and 14 days, respectively. The concentrations continued to increase until 28 days. The lignin concentration of the callus tissue was observed to be lower than that of the healthy tissue at 14 days, and reached a similar level after 28 days. No quantitative changes of lignin and wall-bound ferulic acid were observed in other tissues. The results indicated that lignin synthesis could be maintained after the phloem cells were discolored and seemed to be necrotic. Distribution and timing of the wall-bound ferulic acid and lignin accumulation suggested that the increased wall-bound ferulic acid was involved in the lignin synthesis after wounding.  相似文献   

16.
Major cell wall-bound phenolic compounds were detected and identified in roots of tomato at different stages of growth. Alkaline hydrolysis of the cell wall material of the root tissues yielded ferulic acid as the major bulk of the phenolic compounds. Other phenolic compounds identified were 4-hydroxybenzoic acid, vanillic acid, 4-hydroxybenzaldehyde, vanillin and 4-coumaric acid. All the six phenolic acids were higher in very early stage of plant growth. Ferulic acid, 4-hydroxybenzoic acid and 4-coumaric acid exhibited a decreasing trend up to 60 days and then the content of these phenolic acids increased somewhat steadily towards the later stage of growth. Total phenolics, phenylalanine ammonia-lyase (PAL) activity and peroxidase (POD) activity were in tandem match with the occurrence pattern of the phenolic acids. Ferulic acid showed highest antifungal activity against tomato wilt pathogen Fusarium oxysporum f. sp. lycopersici. The results of this study may be interpreted to seek an explanation for high susceptibility of tomato plants at flowering stage to Fusarium wilt. It may also be concluded that greater amounts of ferulic acid in combination with other phenolics and higher level of PAL and POD activities after 60 days of growth may have a role in imparting resistance against Fusarium wilt at a late stage of plant growth.  相似文献   

17.
董鲜  郑青松  王敏  周金燕  沈其荣  郭世伟 《生态学报》2015,35(10):3309-3319
为阐明香蕉枯萎病发病机制,研究了尖孢镰刀菌侵染后,香蕉植株中几种对尖孢镰刀菌生长有显著作用的物质(氨基酸、有机羧酸、酚酸)种类和含量的变化。结果表明:(1)病原菌侵染后,伤害逐渐加剧,株高和生物量显著下降。(2)病原菌侵染后,叶片氨基酸总量显著升高,其中丝氨酸、缬氨酸、组氨酸、异亮氨酸和亮氨酸增幅较大,病原菌侵染16 d,其含量分别为侵染前的7.1、6.2、4.4、3.5和2.3倍;而根氨基酸总量开始显著降低,差异逐渐变小。(3)叶片有机羧酸酸含量在病原菌侵染后显著增加,而在根中显著降低。侵染植株叶片中草酸、柠檬酸、苹果酸、琥珀酸和延胡索酸含量分别是未侵染植株叶片的2.6、1.6、1.9、1.8和2.3倍;根中草酸、柠檬酸、苹果酸、琥珀酸和延胡索酸含量分别是未侵染植株的81%、42%、44%、28%和59%。(4)病原菌侵染后,植株叶片和根中酚酸含量都显著升高。叶片中阿魏酸、肉桂酸和水杨酸含量分别是未侵染叶片的2.9、1.7和2.9倍;而根中对羟基苯甲酸和丁香酸含量分别是未侵染根的4.3和1.5倍。研究结果表明,尖孢镰刀菌侵染后,植物与病原菌的相互作用使得植物体内抑菌物质和促菌物质都会相应的增加,植株对病害有一定的抗性,但促菌物质种类和含量较高最终使得感病植株发病。  相似文献   

18.
儿茶素是一种可以短时间内杀死植物细胞的植物毒素,由于具有强的植物毒性,儿茶素是开发除草剂的理想化合物,它可以诱导植物根系统的死亡。为了研究植物根细胞膜脂对化学胁迫的响应规律,我们运用高通量的脂类组学方法检测了拟南芥根中膜脂分子的组成,比较了儿茶素处理下拟南芥野生型(WS)及磷脂酶Dδ缺失突变体(PLDδ KO)根中膜脂分子的组成情况、膜脂含量、双键指数及碳链长度值。结果发现,儿茶素处理拟南芥根90min后,二半乳糖基二酰甘油(DGDG)、单半乳糖基二酰甘油(MGDG)、磷脂酰甘油(PG)、磷脂酰胆碱(PC)及磷脂酰肌醇(PI)的总含量在WS与PLDδ KO植株根中都显著下降,磷脂酰乙醇胺(PE)和磷脂酰丝氨酸(PS)在WS中下降,在PLDδ KO中上升。儿茶素处理导致PLDδ KO植株的PC/PE比值显著下降,WS植株PS碳链长度显著增加。上述结果说明儿茶素处理后,磷脂酶Dδ缺失突变体膜不稳定性增加,PLDδ KO植株对儿茶素胁迫更加敏感。  相似文献   

19.
The presence of aluminum (Al) in acidic soils is a major abiotic stress limiting the production of cultivated plants. Cell membranes are the main targets of environmental stresses and there is growing evidence for the involvement of membrane lipids in plant adaptation. The aim of this study was to evaluate the mid-long effects of Al on membrane lipid content and composition in the roots and shoots of rice plants grown under hydroponic conditions. Four rice cultivars were compared: two acknowledged as Al-resistant (Koshihikari) and Al-sensitive (Kasalath), respectively, and two Vietnamese cultivars, OM6073 and OM1490. Al treatment inhibited root and shoot growth in the sensitive cultivars and the observed changes in root and shoot lipid and fatty acid composition revealed patterns associated with Al sensitivity: larger decreases in lipid content and decreases in fatty acid unsaturation. In the roots, phospholipids, and particularly phosphatidylcholine (PC), decreased dramatically in the susceptible cultivars whereas the amount of lipid classes remained unchanged in the tolerant ones. In the shoots, the glycolipids monogalactosyldiacylglycerol and digalactosyldiacylglycerol as well as PC were mostly affected by Al treatment in the susceptible varieties. mRNA accumulation corresponding to genes coding for galactolipid synthases, enzymes of the PC and phosphatidylethanolamine biosynthetic pathways and fatty acid desaturases correlated well with changes in lipid contents in roots and partly explained lipid changes in leaves. The results suggested that the capacity to maintain the proper functioning of some lipid biosynthetic activities and hence the stability of lipid composition may help the rice plant to withstand Al stress.  相似文献   

20.
Grapevine seedlings Vitis vinifera L. were grown in a greenhouse under optimum conditions (soil moisture ca 70 %) and under drought stress (soil moisture ca 30 %). Drought stress caused reduction in total phenolic compounds in grapevine leaves and roots, where were identified tree phenolic acids: caffeic acid, p-coumaric acid and ferulic acid. All acids found in leaves and roots occurred in the ester-bound form. Only caffeic acid in leaves appeared in the free and ester-bound form. Caffeic acid was present in the highest concentrations. The content of ferulic acid was the lowest in both tissues. The levels of all phenolic acids in leaves and roots decreased significantly under the drought stress. All the extracts from grapevine leaves and roots had antioxidative properties, but the antiradical activity of the extracts obtained from roots subjected to drought stress was lower to the control. The results of the analysis revealed that long-term drought stress caused a decrease in selected elements of secondary metabolism in such a different plant tissues that are the leaves and roots of the grapevine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号