首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polycyclic aromatic hydrocarbons (PAHs) such as benzo(a)pyrene (BP) are ubiquitous environmental carcinogenic contaminants exerting deleterious effects toward cells acting in the immune defense such as monocytic cells. To investigate the cellular basis involved, we have examined the consequences of PAH exposure on macrophagic differentiation of human blood monocytes. Treatment by BP markedly inhibited the formation of adherent macrophagic cells deriving from monocytes upon the action of either GM-CSF or M-CSF. Moreover, it reduced expression of macrophagic phenotypic markers such as CD71 and CD64 in GM-CSF-treated monocytic cells, without altering cell viability or inducing an apoptotic process. Exposure to BP also strongly altered functional properties characterizing macrophagic cells such as endocytosis, phagocytosis, LPS-triggered production of TNF-alpha and stimulation of allogeneic lymphocyte proliferation. Moreover, formation of adherent macrophagic cells was decreased in response to PAHs distinct from BP such as dimethylbenz(a)anthracene and 3-methylcholanthrene, which interact, like BP, with the arylhydrocarbon receptor (AhR) known to mediate many PAH effects. In contrast, benzo(e)pyrene, a PAH not activating AhR, had no effect. In addition, AhR was demonstrated to be present and functional in cultured monocytic cells, and the use of its antagonist alpha-naphtoflavone counteracted inhibitory effects of BP toward macrophagic differentiation. Overall, these data demonstrate that exposure to PAHs inhibits functional in vitro differentiation of blood monocytes into macrophages, likely through an AhR-dependent mechanism. Such an effect may contribute to the immunotoxicity of these environmental carcinogens owing to the crucial role played by macrophages in the immune defense.  相似文献   

2.
It is widely believed that generation of mature dendritic cells (DCs) with full T cell stimulatory capacity from human monocytes in vitro requires 5-7 days of differentiation with GM-CSF and IL-4, followed by 2-3 days of activation. Here, we report a new strategy for differentiation and maturation of monocyte-derived DCs within only 48 h of in vitro culture. Monocytes acquire immature DC characteristics by day 2 of culture with GM-CSF and IL-4; they down-regulate CD14, increase dextran uptake, and respond to the inflammatory chemokine macrophage inflammatory protein-1alpha. To accelerate DC development and maturation, monocytes were incubated for 24 h with GM-CSF and IL-4, followed by activation with proinflammatory mediators for another 24 h (FastDC). FastDC expressed mature DC surface markers as well as chemokine receptor 7 and secreted IL-12 (p70) upon CD40 ligation in the presence of IFN-gamma. The increase in intracellular calcium in response to 6Ckine showed that chemokine receptor 7 expression was functional. When FastDC were compared with mature monocyte-derived DCs generated by a standard 7-day protocol, they were equally potent in inducing Ag-specific T cell proliferation and IFN-gamma production as well as in priming autologous naive T cells using tetanus toxoid as a model Ag. These findings indicate that FastDC are as effective as monocyte-derived DCs in stimulating primary, Ag-specific, Th 1-type immune responses. Generation of FastDC not only reduces labor, cost, and time required for in vitro DC development, but may also represent a model more closely resembling DC differentiation from monocytes in vivo.  相似文献   

3.
Mature dendritic cells (DCs) are central to the development of optimal T cell immune responses. CD40 ligand (CD40L, CD154) is one of the most potent maturation stimuli for immature DCs. We studied the role of three signaling pathways, p38 mitogen-activated protein kinase (MAPK), extracellular signal-regulated kinase (ERK), and phosphoinositide-3-OH kinase (PI3K), in CD40L-induced monocyte-derived DC activation, survival, and expansion of virus-specific CD8(+) T cell responses. p38 MAPK pathway was critical for CD40L-mediated up-regulation of CD83, a marker of DC maturation. CD40L-induced monocyte-derived DC IL-12 production was mediated by both the p38 MAPK and PI3K pathways. CD40L-mediated DC survival was mostly mediated by the PI3K pathway, with smaller contributions by p38 MAPK and ERK pathways. Finally, the p38 MAPK pathway was most important in mediating CD40L-stimulated DCs to induce strong allogeneic responses as well as expanding virus-specific memory CD8(+) T cell responses. Thus, although the p38 MAPK, PI3K, and ERK pathways independently affect various parameters of DC maturation induced by CD40L, the p38 MAPK pathway within CD40L-conditioned DCs is the most important pathway to maximally elicit T cell immune responses. This pathway should be exploited in vivo to either completely suppress or enhance CD8(+) T cell immune responses.  相似文献   

4.
Polycyclic aromatic hydrocarbons (PAHs) such as benzo(a)pyrene (BP) are potent immunosuppressive environmental contaminants acting on lymphocytes and monocytes. To establish whether differentiated macrophages, which play a crucial role in innate and acquired immunity, can also constitute major cellular targets, we have characterized PAH effects towards primary human macrophages. BP-treatment was found to dramatically alter their functional capacities and to trigger a caspase- and mitochondrion-related apoptosis, associated with down-regulation of the survival factors c-FLIP(L) and Bcl-X(L) and up-regulation of the pro-apoptotic factor p53. Such deleterious effects were associated with BP metabolite production, whose inhibition by the cytochrome P-450 1A1 inhibitor alpha-naphthoflavone fully abolished BP toxicity. In contrast to BP, the related halogenated arylhydrocarbon 2,3,7,8-tetrachlorodibenzo-p-dioxin, known to be poorly metabolized if any, only minimally affected macrophages. Overall, these data provide evidence for a cytochrome P-450-dependent toxicity of PAHs towards human differentiated macrophages, which may contribute to their immunosuppressive effects.  相似文献   

5.
Activin A, a member of the transforming growth factor-beta superfamily, has a role in tissue repair and inflammation. In our previous studies, we identified by immunohistochemistry DC-SIGN(+) dendritic cells as a source of activin A in vivo. The present study was aimed at investigating activin A production by dendritic cells (DC) in vitro and its function. Here we demonstrate that monocyte-derived DC (Mo-DC) released abundant levels of activin A during the maturation process induced by TLR agonists, bacteria (B. henselae, S. thyphimurium), TNF and CD40L. Activin A was also induced in monocyte-derived Langerhans cells (LC) and in blood myeloid DC by LPS and/or CD40L stimulation, but not in blood plasmacytoid DC following stimulation with influenza virus. Activin A production by DC was selectively down-regulated by anti-inflammatory molecules such as dexamethasone or IL-10. Neutralization of endogenous activin A using its inhibitor follistatin, or the addition of exogenous activin A during LPS maturation did not affect Mo-DC maturation marker expression, cytokine release or allostimulatory function. However, Mo-DC matured with LPS in the presence of exogenous activin A displayed a higher FITC-dextran uptake, similar to that of immature DC. Moreover, activin A promoted monocyte differentiation to DC and reversed the inhibitory effects of IL-6 on DC differentiation of monocytes. These findings demonstrate that different subsets of DC release activin A, a cytokine that promotes DC generation, and affects the ability of mature DC to take up antigens (Ags).  相似文献   

6.
Low molecular weight dextran sulfate (DXS) has been reported to inhibit the classical, alternative pathway as well as the mannan-binding lectin pathway of the complement system. Furthermore, it acts as an endothelial cell protectant inhibiting complement-mediated endothelial cell damage. Endothelial cells are covered with a layer of heparan sulfate (HS), which is rapidly released under conditions of inflammation and tissue injury. Soluble HS induces maturation of dendritic cells (DC) via TLR4. In this study, we show the inhibitory effect of DXS on human DC maturation. DXS significantly prevents phenotypic maturation of monocyte-derived DC and peripheral myeloid DC by inhibiting the up-regulation of CD40, CD80, CD83, CD86, ICAM-1, and HLA-DR and down-regulates DC-SIGN in response to HS or exogenous TLR ligands. DXS also inhibits the functional maturation of DC as demonstrated by reduced T cell proliferation, and strongly impairs secretion of the proinflammatory mediators IL-1beta, IL-6, IL-12p70, and TNF-alpha. Exposure to DXS leads to a reduced production of the complement component C1q and a decreased phagocytic activity, whereas C3 secretion is increased. Moreover, DXS was found to inhibit phosphorylation of IkappaB-alpha and activation of NF-kappaB. These findings suggest that DXS prevents TLR-induced maturation of human DC and may therefore be a useful reagent to impede the link between innate and adaptive immunity.  相似文献   

7.
We investigated the effects of different neuropeptides on human dendritic cells (DC) maturation. Immature DC, derived from monocytes cultured for 6 days with IL-4 plus GM-CSF, have been exposed to somatostatin, substance P, or vasoactive intestinal peptide (VIP). Among these neuropeptides, only VIP induces the production of bioactive IL-12 and the neoexpression of CD83 on a fraction of the DC population, with an effect significant at 100 and 10 nM, respectively. These effects of VIP are dose-dependent, unaffected by polymixin B, and partly prevented by a VIP receptor antagonist. Although the effects of VIP alone remain modest, it synergizes with TNF-alpha to induce DC maturation. In the presence of a suboptimal concentration of TNF-alpha, which has no detectable effect on DC by itself, VIP induces the production of high levels of bioactive IL-12, the neoexpression of CD83 on almost all the DC population (with an effect significant at 10 and 0.1 nM, respectively), and the up-regulation of various adhesion and costimulatory molecule expression. Moreover, DC exposed to VIP plus a suboptimal concentration of TNF-alpha are as potent as mature DC obtained by treatment with an optimal concentration of TNF-alpha in stimulating allogenic T cell proliferation. Our data suggest that, in inflammatory sites, VIP may cooperate with proinflammatory mediators, such as TNF-alpha, to induce DC maturation.  相似文献   

8.
The interaction between immune complexes (IC) and the receptors for the Fc portion of IgG (FcgammaRs) triggers regulatory and effector functions in the immune system. In this study, we investigated the effects of IC on differentiation, maturation, and functions of human monocyte-derived dendritic cells (DC). When IC were added on day 0, DC generated on day 6 (IC-DC) showed lower levels of CD1a and increased expression of CD14, MHC class II, and the macrophage marker CD68, as compared with normally differentiated DC. The use of specific blocking FcgammaR mAbs indicated that the effect of IC was exerted mainly through their interaction with FcgammaRI and to a lesser extend with FcgammaRII. Immature IC-DC also expressed higher levels of CD83, CD86, and CD40 and the expression of these maturation markers was not further regulated by LPS. The apparent lack of maturation following TLR stimulation was associated with a decreased production of IL-12, normal secretion of IL-10 and CCL22, and increased production of CXCL8 and CCL2. IC-DC displayed low endocytic activity and a reduced ability to induce allogeneic T cell proliferation both at basal and LPS-stimulated conditions. Altogether, these data reveal that IC strongly affect DC differentiation and maturation. Skewing of DC function from Ag presentation to a proinflammatory phenotype by IC resembles the state of activation observed in DC obtained from patients with chronic inflammatory autoimmune disorders, such as systemic lupus erythematosus disease and arthritis. Therefore, the altered maturation of DC induced by IC may be involved in the pathogenesis of autoimmune diseases.  相似文献   

9.
Oligosaccharides of hyaluronan are potent activators of dendritic cells   总被引:21,自引:0,他引:21  
The extracellular matrix component hyaluronan (HA) exists physiologically as a high m.w. polymer but is cleaved at sites of inflammation, where it will be contacted by dendritic cells (DC). To determine the effects of HA on DC, HA fragments of different size were established. Only small HA fragments of tetra- and hexasaccharide size (sHA), but not of intermediate size (m.w. 80, 000-200,000) or high m.w. HA (m.w. 1,000,000-600,000) induced immunophenotypic maturation of human monocyte-derived DC (up-regulation of HLA-DR, B7-1/2, CD83, down-regulation of CD115). Likewise, only sHA increased DC production of the cytokines IL-1beta, TNF-alpha, and IL-12 as well as their allostimulatory capacity. These effects were highly specific for sHA, because they were not induced by other glycosaminoglycans such as chondroitin sulfate or heparan sulfate or their fragmentation products. Interestingly, sHA-induced DC maturation does not involve the HA receptors CD44 or the receptor for hyaluronan-mediated motility, because DC from CD44-deficient mice and wild-type mice both responded similarly to sHA stimulation, whereas the receptor for hyaluronan-mediated motility is not detectable in DC. However, TNF-alpha is an essential mediator of sHA-induced DC maturation as shown by blocking studies with a soluble TNFR1. These findings suggest that during inflammation, interaction of DC with small HA fragments induce DC maturation.  相似文献   

10.
Imidazoquinolone compounds, such as resiquimod are Toll-like receptor (TLR) 7/8 ligands representing novel immune response modifiers undergoing clinical testing. Resiquimod has been reported to modulate conventional human monocyte-derived DC (moDC) differentiation, but the role of TLR7 and TLR8 is unclear. We directly dissected the TLR7- and TLR8-dependency by employing selective TLR7 ligands and resiquimod-coculture experiments with inhibitory oligonucleotides (iODN) suppressing TLR7, TLR7+8 or TLR7+8+9. Selective TLR7 ligands did not affect conventional moDC differentiation as analyzed by CD14/CD1a expression. iODN experiments confirmed that resiquimod’s effects during DC differentiation were antagonized only with TLR8 iODNs. Direct comparison of resiquimod DC with TLR7- and control-DC revealed significantly higher T-cell costimulatory molecule and MHC class II expression. Resiquimod DC promoted significantly stronger allogeneic T-cell proliferation and stronger naïve CD4+ T-cell proliferation. These results indicate the relevance of TLR8 for human monocyte-derived DC differentiation and maturation and may be relevant for clinical trials employing resiquimod.  相似文献   

11.
Upon encounter with bacterial products, immature dendritic cells (iDCs) release proinflammatory cytokines and develop into highly stimulatory mature DCs. In the present study, we show that human monocyte-derived DCs functionally express the CD47 Ag, a thrombospondin receptor. Intact or F(ab')2 of CD47 mAb suppress bacteria-induced production of IL-12, TNF-alpha, GM-CSF, and IL-6 by iDCs. 4N1K, a peptide derived from the CD47-binding site of thrombospondin, also inhibits cytokine release. The inhibition of IL-12 and TNF-alpha is IL-10-independent inasmuch as IL-10 production is down-modulated by CD47 mAb and blocking IL-10 mAb fails to restore cytokine levels. CD47 ligation counteracts the phenotypic and functional maturation of iDCs in that it prevents the up-regulation of costimulatory molecules, the loss of endocytic activity, and the acquisition of an increased capacity to stimulate T cell proliferation and IFN-gamma production. Interestingly, regardless of CD47 mAb treatment during DC maturation, mature DC restimulated by soluble CD40 ligand and IFN-gamma, to mimic DC/T interaction, produce less IL-12 and more IL-18 than iDCs. Finally, CD47 ligation on iDCs does not impair their capacity to phagocytose apoptotic cells. We conclude that following exposure to microorganisms, CD47 ligation may limit the intensity and duration of the inflammatory response by preventing inflammatory cytokine production by iDCs and favoring their maintenance in an immature state.  相似文献   

12.
There is evidence for immune system involvement in atherogenesis. In the present study the effect of platelets on dendritic cells (DC), an important immunologic regulator, was examined in vitro. Platelet-rich plasma, after exposure to shear stress, was added to human monocyte-derived immature DC, which were then examined for surface Ag expression, allogeneic T lymphocyte stimulatory activity, and cytokine production. After exposure, the number of anti-CD40 ligand (anti-CD40L) and anti-P-selectin IgG molecules bound per platelet was increased. These activated platelets induced DC maturation, as revealed by significant up-regulation of CD83, CD80, and CD86 Ags. The addition of platelets in the presence of IFN-gamma plus LPS significantly enhanced IL-10 production from immature DC. After platelet addition, mature DC provoked a significant proliferation of allogeneic naive T lymphocytes. These activated T cells showed lower IFN-gamma production than those stimulated by LPS- and IFN-gamma-treated DC. CD40L on the platelet surface was not involved in maturation of DC, as mAb to CD40L failed to block maturation. The effect of platelets was observed even if platelets and DC were separated using large pore-sized membranes or when platelets were depleted from plasma by centrifugation. Furthermore, it was abrogated after the depletion of protein fraction. Thus, soluble protein factors excreted from activated platelets contribute to IL-10-producing DC maturation.  相似文献   

13.
Activation of immature CD83- dendritic cells (DC) in peripheral tissues induces their maturation and migration to lymph nodes. Activated DC become potent stimulators of Th cells and efficient inducers of Th1- and Th2-type cytokine production. This study analyzes the ability of human monocyte-derived CD1a+ DC at different stages of IL-1 beta and TNF-alpha-induced maturation to produce the major Th1-driving factor IL-12. DC at the early stages of maturation (2 and 4 h) produced elevated amounts of IL-12 p70 during interaction with CD40 ligand-bearing Th cells or, after stimulation with the T cell-replacing factors, soluble CD40 ligand and IFN-gamma. The ability to produce IL-12 was strongly down-regulated at later time points, 12 h after the induction of DC maturation, and in fully mature CD83+ cells, at 48 h. In contrast, the ability of mature DC to produce IL-6 was preserved or even enhanced, indicating their intact responsiveness to CD40 triggering. A reduced IL-12-producing capacity of mature DC resulted mainly from their impaired responsiveness to IFN-gamma, a cofactor in CD40-induced IL-12 p70 production. This correlated with reduced expression of IFN-gamma R (CD119) by mature DC. In addition, while immature DC produced IL-12 and IL-6 after stimulation with LPS or Staphylococcus aureus Cowan I strain, mature DC became unresponsive to these bacterial stimuli. Together with the previously described ability of IL-10 and PGE2 to stably down-regulate the ability to produce IL-12 in maturing, but not in fully mature, DC, the current data indicate a general resistance of mature DC to IL-12-modulating factors.  相似文献   

14.
CD40 ligand (CD40L) is a membrane-bound molecule expressed by activated T cells. CD40L potently induces dendritic cell (DC) maturation and IL-12p70 secretion and plays a critical role during T cell priming in the lymph nodes. IFN-gamma and IL-4 are required for CD40L-mediated cytokine secretion, suggesting that T cells are required for optimal CD40L activity. Because CD40L is rapidly up-regulated by non-T cells during inflammation, CD40 stimulation may also be important at the primary infection site. However, a role for T cells at the earliest stages of infection is unclear. The present study demonstrates that the innate immune cell-derived cytokine, IL-1beta, can increase CD40L-induced cytokine secretion by monocyte-derived DC, CD34(+)-derived DC, and peripheral blood DC independently of T cell-derived cytokines. Furthermore, IL-1beta is constitutively produced by monocyte-derived DC and monocytes, and is increased in response to intact Escherichia coli or CD40L, whereas neither CD34(+)-derived DC nor peripheral blood DC produce IL-1beta. Finally, DC activated with CD40L and IL-1beta induce higher levels of IFN-gamma secretion by T cells compared with DC activated with CD40L alone. Therefore, IL-1beta is the first non-T cell-derived cytokine identified that enhances CD40L-mediated activation of DC. The synergy between CD40L and IL-1beta highlights a potent, T cell-independent mechanism for DC activation during the earliest stages of inflammatory responses.  相似文献   

15.
We describe a phenotypically and functionally novel monocyte-derived dendritic cell (DC) subset, designated mDC2, that lacks IL-12 synthesis, produces high levels of IL-10, and directs differentiation of Th0/Th2 cells. Like conventional monocyte-derived DC, designated mDC1, mDC2 expressed high levels of CD11c, CD40, CD80, CD86, and MHC class II molecules. However, in contrast to mDC1, mDC2 lacked expression of CD1a, suggesting an association between cytokine production profile and CD1a expression in DC. mDC2 could be matured into CD83+ DC cells in the presence of anti-CD40 mAbs and LPS plus IFN-gamma, but they remained CD1a- and lacked IL-12 production even upon maturation. The lack of IL-12 and CD1a expression by mDC2 did not affect their APC capacity, because mDC2 stimulated MLR to a similar degree as mDC1. However, while mDC1 strongly favored Th1 differentiation, mDC2 directed differentiation of Th0/Th2 cells when cocultured with purified human peripheral blood T cells, further indicating functional differences between mDC1 and mDC2. Interestingly, the transfection efficiency of mDC2 with plasmid DNA vectors was significantly higher than that of mDC1, and therefore mDC2 may provide improved means to manipulate Ag-specific T cell responses after transfection ex vivo. Taken together, these data indicate that peripheral blood monocytes have the capacity to differentiate into DC subsets with different cytokine production profiles, which is associated with altered capacity to direct Th cell differentiation.  相似文献   

16.
Dendritic cells (DC) derived from plasmacytoid precursors depend on IL-3 for survival and proliferation in culture, and they induce preferentially Th2 responses. Monocytes express not only GM-CSF receptors, but also IL-3Rs. Therefore, we examined whether IL-3 had an effect on the functional plasticity of human monocyte-derived DC generated in a cell culture system that is widely used in immunotherapy. DC were generated with IL-3 (instead of GM-CSF) and IL-4. Yields, maturation, phenotype (surface markers and Toll-like receptors), morphology, and immunostimulatory capacity were similar. Only CD1a was differentially expressed, being absent on IL-3-treated DC. In response to CD40 ligation DC generated in the presence of IL-3 secreted significantly less IL-12 p70 and more IL-10 compared with DC grown with GM-CSF. Coculture of naive allogeneic CD4(+) T cells with DC generated in the presence of IL-3 induced T cells to produce significantly more IL-5 and IL-4 and less IFN-gamma compared with stimulation with DC generated with GM-CSF. These data extend the evidence that different cytokine environments during differentiation of monocyte-derived DC can modify their Th cell-inducing properties. A hitherto unrecognized effect of IL-3 on DC was defined, namely suppression of IL-12 secretion and a resulting shift from Th1 toward Th2.  相似文献   

17.
BACKGROUND: Recent reports have described a new strategy for differentiation and maturation of monocyte-derived DC within only 48 h of in vitro culture (fast-DC). We compared the ability of various maturation stimuli with the generation of Ag-specific T-cell responses and generation of functional fast-DC. METHODS: CD14+ cells were treated with GM-CSF and IL-4 for 1 day to generate immature DC, and were then matured with either inflammatory cytokines or a combination of lipopolysaccharide (LPS) and INF-gamma. Mature DC were then used to study the effect of prostaglandin E2 (PGE2) on the stimulatory function of fast-DC. RESULTS: fast-DC were CD14- and expressed mature DC surface markers, and maintained this phenotype after withdrawing the cytokine from culture. Treatment of fast-DC with a combination of LPS and INF-gamma promoted the maturation of highly uniform fast-DC. The T-cell proliferative response to DC was enhanced by inclusion of PGE2 in the MCM-mimic (TNF-a, IL-1 a, IL-6, PGE2) cocktail. DISCUSSION: fast-DC are very effective; they not only reduce the labor, cost and time required for in vitro DC development, but may also represent a model more closely resembling DC differentiation from monocytes in vivo.  相似文献   

18.
Innate immune recognition is an important early event in the host response to herpes simplex virus-1 (HSV-1) infection. Dendritic cells (DC) play an important sentinel role in this recognition. Previous studies have shown that monocyte-derived DC (MDDC) respond to HSV-1 by up-regulation of costimulatory molecules and type I IFN release, but the molecular targets on the virus recognized by the DC have not been defined. In this study we show that MDDC recognize and respond to the four essential viral glycoproteins, gB, gD, and gHgL, independent of other viral proteins or nucleic acids. DC recognition of these four glycoproteins leads to the up-regulation of CD40, CD83, CD86, and HLA-DR and to the production of IFN-alpha and IL-10, but not IL-12p70. Glutaraldehyde-fixation and nonfunctional gH mutants were used to show that recognition of glycoproteins does not require membrane fusion. The nature of the recognition event was probed further by transfecting glycoproteins individually or in combination, by blocking individual proteins with Abs, or by using mutant gD constructs unable to bind to their known cognate receptors. Unexpectedly, MDDC responses were found to require expression of all four glycoproteins. Furthermore, gD mutants that cannot bind nectin-1 and/or herpesvirus entry mediator can still induce DC maturation. Finally, although HSV-1 can signal via the TLR2 receptor, this receptor does not mediate recognition of glycoproteins. Thus, the complex of the four essential HSV-1 entry glycoproteins on the cell surface can provide a target for innate immune recognition of this virus.  相似文献   

19.
Mature dendritic cells (DC) are efficient, antigen-presenting cells required for the stimulation of naive T lymphocytes. Many members of the tumour necrosis factor (TNF) receptor family are involved in DC maturation, such as Fas, CD40, OX40L, LIGHT (homologous to lymphotoxins, exhibits inducible expression, and competes with HSV glycoprotein D for herpes virus entry mediator (HVEM), a receptor expressed by T lymphocytes) or RANK (receptor activator of NFkappaB), with different, but often overlapping effects. We focused our attention on RANK DC stimulation, since RANK ligand (RL) is expressed on activated T lymphocytes with different kinetic and expression patterns from the other members of TNF family previously cited. After culture with RL-transfected cells, a significant percentage of immature DC generated from monocytes (Mo-DC) acquired a typical, mature DC morphology and phenotype characterised by up-regulation of CD83, DC-LAMP (lysosome-associated membrane glycoprotein), HLA class I, CD86 and CD54. The functional RL-mediated maturation was demonstrated by a decrease in DC macropinocytosis and acquisition of the capacity to stimulate allogenic T-cells. Among the various cytokines tested, we detected only a weak up-regulation of IL-12p40. Our results show that ligation of RANK on DC cell surfaces is not only a survival stimulus, but also induces a partial and specific mature DC phenotype, the physiological significance of which is under investigation.  相似文献   

20.
We studied the effects of 1alpha,25-dihydroxyvitamin D3 (1alpha, 25-(OH)2D3) on differentiation, maturation, and functions of dendritic cells (DC) differentiated from human monocytes in vitro in the presence of GM-CSF and IL-4 for 7 days. Recovery and morphology were not affected by 1alpha,25-(OH)2D3 up to 100 nM. DC differentiated in the presence of 10 nM 1alpha,25-(OH)2D3 (D3-DC) showed a marked decrease in the expression of CD1a, while CD14 remained elevated. Mannose receptor and CD32 were significantly increased, and this correlated with an enhancement of endocytic activity. Costimulatory molecules such as CD40 and CD86 were slightly decreased or nonsignificantly affected (CD80 and MHC II). However, after induction of DC maturation with LPS or incubation with CD40 ligand-transfected cells, D3-DC showed marginal increases in MHC I, MHC II, CD80, CD86, CD40, and CD83. The accessory cell function of D3-DC in classical MLR was also inhibited. Moreover, allogeneic T cells stimulated with D3-DC were poor responders in a second MLR to untreated DC from the same or an unrelated donor, thus indicating the onset of a nonspecific hyporesponsivity. In conclusion, our data suggest that 1alpha,25-(OH)2D3 may modulate the immune system, acting at the very first step of the immune response through the inhibition of DC differentiation and maturation into potent APC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号