首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

The frequencies of “words”, oligonucleotides within nucleotide sequences, reflect the genetic information contained in the sequence “texts”. Nucleotide sequences are characteristically represented by their contrast word vocabularies. Comparison of the sequences by correlating their contrast vocabularies is shown to reflect well the relatedness (unrelatedness) between the sequences. A single value, the linguistic similarity between the sequences, is suggested asa measure of sequence relatedness. Sequences as short as 1000 bases can be characterized and quantitatively related to other sequences by this technique. The linguistic sequence similarity value is used for analysis of taxonomically and functionally diverse nucleotide sequences. The similarity value is shown to be very sensitive to the relatedness of the source species, thus providing a convenient tool for taxonomic classification of species by their sequence vocabularies. Functionally diverse sequences appear distinct by their linguistic similarity values. This can be a basis for a quick screening technique for functional characterization of the sequences and for mapping functionally distinct regions in long sequences.  相似文献   

2.
A detailed restriction endonuclease map was prepared for the cloned 5.8 S ribosomal RNA (rRNA) gene region of the brine shrimp Artemia. The nucleotide sequence of the 5.8 S rRNA gene and its flanking nucleotides was determined. This sequence differs in two positions from that of the previously reported 5.8 S rRNA. The primary structure of the Artemia 5.8 S rRNA gene, which, unlike in dipteran insects, is shown to contain no insertion sequence, is conserved according to the relatedness of the species compared. The 5.8 S rRNA gene flanking nucleotides, which were sequenced 176 nucleotide pairs upstream and 70 nucleotide pairs downstream from the gene, show no evidence of sequence conservation between evolutionarily diverse species by computer analysis. Direct nucleotide repeats are present within the flanking sequences at both ends of the gene at about the same distance upstream and downstream, which could serve as processing signals.  相似文献   

3.
There is increasing demand for efficient methods to relate genomic information from model organisms to other species of interest. Comparative genetic analyses are particularly valuable to identify functionally important sequence features on the basis of their evolutionary conservation. We demonstrate here how a single segment of just 32 or less conserved coding nucleotide positions can be used to isolate homologous gene sequences from large numbers of species using a single-sided PCR technique. The method was used to isolate and determine the 3'-untranslated sequence of the somatostatin gene from vertebrate species ranging from human to hagfish. Two sequence motifs centered an average 40-145 nucleotides downstream of the translational stop codon have remained conserved for up to 350 million years. One of the conserved tetrapod segments was used to select a primer for amplification of so-called comparative anchor tagged sequences (CATS) in regular PCR, and shown to amplify homologous sequences from DNA samples from 30 out of 33 tetrapods. In conclusion, we present a useful procedure to reveal functionally relevant sequence elements, and to select primers for amplification of homologous sequences from a wide range of species.  相似文献   

4.
Understanding regulatory mechanisms of protein synthesis in eukaryotes is essential for the accurate annotation of genome sequences. Kozak reported that the nucleotide sequence GCCGCC(A/G)CCAUGG (AUG is the initiation codon) was frequently observed in vertebrate genes and that this 'consensus' sequence enhanced translation initiation. However, later studies using invertebrate, fungal and plant genes reported different 'consensus' sequences. In this study, we conducted extensive comparative analyses of nucleotide sequences around the initiation codon by using genomic data from 47 eukaryote species including animals, fungi, plants and protists. The analyses revealed that preferred nucleotide sequences are quite diverse among different species, but differences between patterns of nucleotide bias roughly reflect the evolutionary relationships of the species. We also found strong biases of A/G at position -3, A/C at position -2 and C at position +5 that were commonly observed in all species examined. Genes with higher expression levels showed stronger signals, suggesting that these nucleotides are responsible for the regulation of translation initiation. The diversity of preferred nucleotide sequences around the initiation codon might be explained by differences in relative contributions from two distinct patterns, GCCGCCAUG and AAAAAAAUG, which implies the presence of multiple molecular mechanisms for controlling translation initiation.  相似文献   

5.
The 16S rDNA sequences of nine strains of green sulfur bacteria (Chlorobiaceae) were determined and compared to the four known sequences of Chlorobiaceae and to sequences representative for all eubacterial phyla. The sequences of the Chlorobiaceae strains were consistent with the secondary structure model proposed earlier for Chlorobium vibrioforme strain 6030. Similarity values > 90.1% and Knuc values < 0.11 indicate a close phylogenetic relatedness among the green sulfur bacteria. As a group, these bacteria represent an isolated branch within the eubacterial radiation. In Chlorobiaceae, a similar morphology does not always reflect a close phylogenetic relatedness. While ternary fission is a morphological trait of phylogenetic significance, gas vesicle formation occurs also in distantly related species. Pigment composition is not an indicator of phylogenetic relatedness since very closely related species contain different bacteriochlorophylls and carotenoids. Two different molecular fingerprinting techniques for the rapid differentiation of Chlorobiaceae species were investigated. The 16S rDNA fragments of several species could not be separated by denaturing gradient gel electrophoresis. In contrast, all strains investigated during the present work gave distinct banding patterns when dispersed repetitive DNA sequences were used as targets in PCR. The latter technique is, therefore, well suited for the rapid screening of isolated pure cultures of green sulfur bacteria. Received: 26 August 1996 / Accepted: 8 January 1997  相似文献   

6.
7.
The major histocompatibility complex (MHC) is a cornerstone in the study of adaptive genetic diversity. Intriguingly, highly polymorphic MHC sequences are often not more similar within species than between closely related species. Divergent selection of gene duplicates, balancing selection maintaining trans‐species polymorphism (TSP) that predate speciation and parallel evolution of species sharing similar selection pressures can all lead to higher sequence similarity between species. In contrast, high rates of concerted evolution increase sequence similarity of duplicated loci within species. Assessing these evolutionary models remains difficult as relatedness and ecological similarities are often confounded. As sympatric species of flamingos are more distantly related than allopatric species, flamingos represent an ideal model to disentangle these evolutionary models. We characterized MHC Class I exon 3, Class IIB exon 2 and exon 3 of the six extant flamingo species. We found up to six MHC Class I loci and two MHC Class IIB loci. As all six species shared the same number of MHC Class IIB loci, duplication appears to predate flamingo speciation. However, the high rate of concerted evolution has prevented the divergence of duplicated loci. We found high sequence similarity between all species regardless of codon position. The latter is consistent with balancing selection maintaining TSP, as under this mechanism amino acid sites under pathogen‐mediated selection should be characterized by fewer synonymous codons (due to their common ancestry) than under parallel evolution. Overall, balancing selection maintaining TSP appears to result in high MHC similarity between species regardless of species relatedness and geographical distribution.  相似文献   

8.
Baculoviruses infect larval lepidopterans, and thus have potential value as microbial controls of agricultural and forest pests. Understanding their genetic relatedness and host specificity is relevant to the risk assessment of viral insecticides if non-target impacts are to be avoided. DNA polymerase gene sequences have been demonstrated to be useful for inferring genetic relatedness among dsDNA viruses. We have adopted this approach to examine the relatedness among natural isolates of two uncharacterized caterpillar-infecting baculoviruses, Malacosoma californicum pluviale nucleopolyhedrovirus (McplMNPV) and Malacosoma disstria nucleopolyhedrovirus (MadiMNPV), which infect two closely related host species with little to no cross-infectivity. We designed two degenerate primers (BVP1 and BVP2) based on protein motifs conserved among baculoviruses. McplMNPV and MadiMNPV viral DNA was obtained from naturally infected caterpillars collected from geographically distinct sites in the Southern Gulf Islands and Prince George regions of British Columbia, Canada. Sequencing of 0.9 kb PCR amplicons from six McplMNPV and six MadiMNPV isolates obtained from a total of eight sites, revealed very low nucleotide variation among McplMNPV isolates (99.2-100% nucleotide identity) and among MadiMNPV isolates (98.9-100% nucleotide identity). Greater nucleotide variation was observed between viral isolates from the two different caterpillar species (only 84.7-86.1% nucleotide identity). Both maximum parsimony and maximum likelihood phylogenetic analyses support placement of McplMNPV and MadiMNPV in a clade that is distinct from other groups of baculoviruses.  相似文献   

9.
A novel approach for evaluation of sequence relatedness via a network over the sequence space is presented. This relatedness is quantified by graph theoretical techniques. The graph is perceived as a flow network, and flow algorithms are applied. The number of independent pathways between nodes in the network is shown to reflect structural similarity of corresponding protein fragments. These results provide an appropriate parameter for quantitative estimation of such relatedness, as well as reliability of the prediction. They also demonstrate a new potential for sequence analysis and comparison by means of the flow network in the sequence space.  相似文献   

10.
Summary The nucleotide sequence of cloned DNA corresponding to full-length mouse muscle creatine kinase mRNA has been determined. This 1415 base pair DNA sequence and the deduced 381 amino acid sequence of the protein have been compared to creatine kinase sequences from other vertebrate species and to invertebrate guanidino kinase sequences. These comparisons show that the vertebrate muscle creatine kinases constitute a remarkably conserved protein family with a unit evolutionary period of 30. The creatine kinases also retain marked sequence similarity with the more distantly related invertebrate guanidino kinases. A portion of the sequence, presumably part of the ATP binding site, shows similarity to other nucleotide binding proteins with diverse functions. Comparisons of the untranslated regions of the creatine kinase cDNA sequences show that the 5 untranslated regions are more highly conserved than are the 3 untranslated regions; this may point to some regulatory function in the 5 region.  相似文献   

11.
The complete nucleotide sequence of Rhesus monkey (Macaca mulatta) pepsinogen A (PGA) cDNA was determined from two partially overlapping cDNA clones, covering the whole coding sequence and part of the flanking sequences. The nucleotide and deduced amino acid sequences were compared to known PGA sequences from other species. The degree of similarity with human PGA appeared to be 96% at the nucleotide sequence level and 94% at the amino acid sequence level. In the coding region the divergence was highest in the activation peptide. The amino acid sequence similarity between Japanese monkey (Macaca fuscata) PGA and Rhesus monkey PGA was shown to be 99%. Using the cDNA as probe in Southern hybridization of EcoRI-digested human and Rhesus monkey genomic DNAs, PGA patterns with inter-individual differences were observed. The hybridization patterns are compatible with the existence of a PGA multigene family in both species.  相似文献   

12.
A total of 3552 Ixodes persulcatus from Sverdlovsk, Chelyabinsk, Novosibirsk, Irkutsk regions and Khabarovsk Territory were examined on the Ehrlichia and Anaplasma presence by nested PCR based on the 16S rRNA gene. Both Anaplasma phagocytophilum and Ehrlichia muris DNA were found in I. persulcatus in all studied regions. A. Phagocytophilum was detected in 1.3-6.3% of ticks and E. muris - in 2.0-14.1% of ticks. Moreover, "Candidatus Neoehrlichia mikurensis" DNA was found in 8 ticks collected in Novosibirsk, Irkutsk Regions and Khabarovsk Territory. Partial nucleotide sequences of 16S rRNA gene and groESL operone (1240-1300 bp) were determined for 65 samples of A. Phagocytophilum, 17 samples of E. muris and 4 samples of "Candidatus Neoehrlichia mikurensis". Nucleotide sequences of 16S rRNA gene and groESL operone of E. muris and "Candidatus Neoehrlichia mikurensis" were shown to be highly conservative, and nucleotide sequences of groESL operone of both E. muris and "Candidatus Neoehrlichia mikurensis" differed from the sequences found previously in other species of Ixodid tick. On the basis of analysis of the 16S rRNA gene and groESL operone sequences it was concluded that all revealed samples A. Phagocytophilum could be divided into 2 groups. GroESL operone sequences of A. Phagocytophilum from the first group were identical to each other but significantly differed from the known groESL operone sequences (less than 98.2% of similarity), whereas their 16S rRNA gene sequences were identical to the sequence of widely distributed and pathogenic for human A. Phagocytophilum genetic variant (CAHU-HGEl, GenBank AF093788) or differed from it by a single nucleotide substitution. The nucleotide sequences of groESL operone of A. Phagocytophilum from the second group differed from each other by 1-4 nucleotides and were closely related (99.2-99.4% of similarity) to the sequences of groESL operone ofA. phagocytophilum isolates found in Europe in Ixodes ricinus and roe deer. The nucleotide sequences of the 16S rRNA gene of A. Phagocytophilum from the second group were most similar to the sequence of the rare A. Phagocytophilum genetic variant previously found only in China (GenBank DQ342324).  相似文献   

13.
Many dissimilar protein sequences fold into similar structures. A central and persistent challenge facing protein structural analysis is the discrimination between homology and convergence for structurally similar domains that lack significant sequence similarity. Classic examples are the OB-fold and SH3 domains, both small, modular beta-barrel protein superfolds. The similarities among these domains have variously been attributed to common descent or to convergent evolution. Using a sequence profile-based phylogenetic technique, we analyzed all structurally characterized OB-fold, SH3, and PDZ domains with less than 40% mutual sequence identity. An all-against-all, profile-versus-profile analysis of these domains revealed many previously undetectable significant interrelationships. The matrices of scores were used to infer phylogenies based on our derivation of the relationships between sequence similarity E-values and evolutionary distances. The resulting clades of domains correlate remarkably well with biological function, as opposed to structural similarity, indicating that the functionally distinct sub-families within these superfolds are homologous. This method extends phylogenetics into the challenging "twilight zone" of sequence similarity, providing the first objective resolution of deep evolutionary relationships among distant protein families.  相似文献   

14.
It is widely appreciated that increasing environmental heterogeneity is one of the chief determinants of high species richness. An additional outcome that arises from the relationship between environmental heterogeneity and species richness is that species richer areas are usually taxonomically more diverse than species poor areas. For instance, due to the larger niche availability, species that coexist in heterogeneous environments experience a less severe effect of clustering in their functional traits giving rise to assemblages that are more functionally diverse than in more homogeneous areas. On the other hand, due to the conservatism of many species traits during evolutionary change, the ability of species to colonize the same ecological space is thought to depend at least partially on their taxonomic similarity, such that a positive relationship between the species taxonomic relatedness and their trait similarity is expected. In this paper, we tested the relationship between species richness and taxonomic diversity with 11 florae collected in Latium (Central Italy). The significance of the observed association was then verified with a null model assuming a random distribution of species across the landscape.  相似文献   

15.
The human alpha satellite DNA family is composed of diverse, tandemly reiterated monomer units of approximately 171 basepairs localized to the centromeric region of each chromosome. These sequences are organized in a highly chromosome-specific manner with many, if not all human chromosomes being characterized by individually distinct alphoid subsets. Here, we compare the nucleotide sequences of 153 monomer units, representing alphoid components of at least 12 different human chromosomes. Based on the analysis of sequence variation at each position within the 171 basepair monomer, we have derived a consensus sequence for the monomer unit of human alpha satellite DNA which we suggest may reflect the monomer sequence from which different chromosomal subsets have evolved. Sequence heterogeneity is evident at each position within the consensus monomer unit and there are no positions of strict nucleotide sequence conservation, although some regions are more variable than others. A substantial proportion of the overall sequence variation may be accounted for by nucleotide changes which are characteristic of monomer components of individual chromosomal subsets or groups of subsets which have a common evolutionary history.  相似文献   

16.
The complete genome sequences of two dairy phages, Streptococcus thermophilus phage 7201 and Lactobacillus casei phage A2, are reported. Comparative genomics reveals that both phages are members of the recently proposed Sfi21-like genus of Siphoviridae, a widely distributed phage type in low-GC-content gram-positive bacteria. Graded relatedness, the hallmark of evolving biological systems, was observed when different Sfi21-like phages were compared. Across the structural module, the graded relatedness was represented by a high level of DNA sequence similarity or protein sequence similarity, or a shared gene map in the absence of sequence relatedness. This varying range of relatedness was found within Sfi21-like phages from a single species as demonstrated by the different prophages harbored by Lactococcus lactis strain IL1403. A systematic dot plot analysis with 11 complete L. lactis phage genome sequences revealed a clear separation of all temperate phages from two classes of virulent phages. The temperate lactococcal phages share DNA sequence homology in a patchwise fashion over the nonstructural gene cluster. With respect to structural genes, four DNA homology groups could be defined within temperate L. lactis phages. Closely related structural modules for all four DNA homology groups were detected in phages from Streptococcus or Listeria, suggesting that they represent distinct evolutionary lineages that have not uniquely evolved in L. lactis. It seems reasonable to base phage taxonomy on data from comparative genomics. However, the peculiar modular nature of phage evolution creates ambiguities in the definition of phage taxa by comparative genomics. For example, depending on the module on which the classification is based, temperate lactococcal phages can be classified as a single phage species, as four distinct phage species, or as two if not three different phage genera. We propose to base phage taxonomy on comparative genomics of a single structural gene module (head or tail genes). This partially phylogeny-based taxonomical system still mirrors some aspects of the current International Committee on Taxonomy in Virology classification system. In this system the currently sequenced lactococcal phages would be grouped into five genera: c2-, sk1, Sfi11-, r1t-, and Sfi21-like phages.  相似文献   

17.
Relatedness in species of Erwinia was assessed by determining the extent of reassociation in heterologous deoxyribonucleic acid preparations. Thermal elution chromatography on hydroxyapatite was used to separate reassociated nucleotide sequences from nonreassociated sequences and to determine the thermal stability of related nucleotide sequences. An apparent 15% core of relatedness is present between fire blight, soft-rot, and "atypical" Erwinia species. All Erwinia species showed low to moderate reaction with representative enteric bacteria.  相似文献   

18.
Cadherins are a group of functionally related glycoproteins responsible for the Ca2+-dependent cell-cell adhesion mechanism. They are divided into subclasses, such as E-, P- and N-cadherin, which are distinct in immunological specificities and tissue distribution. Cell aggregation experiments suggest that these molecules have subclass specificities in cell-cell binding and are involved in selective cell adhesions. Analysis of amino acid sequences deduced from the nucleotide sequences of cDNAs encoding cadherins demonstrated that they are integral membrane proteins and share common sequences throughout their entire length; average similarity in the sequences among them is in a range of 50–60%. This result provided evidence that cadherins constitute a gene family which encodes adhesion molecules with different specificities. We also showed that, when cells with little cadherin activity were transfected with cadherin cDNAs, they acquired the cadherin-mediated adhesion properties.  相似文献   

19.
A taxonomic study was carried out on eight strains of Saccharomyces boulardii. Morphological and physiological characteristics were consistent with those of Saccharomyces cerevisiae. Sequences of the D1/D2 domain of the 26S rDNA were identical for all strains examined and had a similarity value of 100% compared to sequences of the type strain of S. cerevisiae (CBS 1171T) and strain S288c. For all S. boulardii isolates was found the exact same ITS1-5.8S rDNA-ITS2 sequence, which displayed a close resemblance with the sequences published for S288c (99.9%), CBS 1171(T) (99.3%) and other S. cerevisiae strains. Sequence analysis of the mitochondrial cytochrome-c oxidase II gene (COX2) also resulted in identical sequences for the S. boulardii isolates and comparisons with available nucleotide sequences revealed close relatedness to strains of S. cerevisiae including S288c (99.5%) and CBS 1171(T) (96.6%). The electrophoretic karyotypes of the S. boulardii strains appeared quite uniform and although very typical of S. cerevisiae, they formed a cluster separate from strains of this species. The results of the present study strongly indicate a close relatedness of S. boulardii to S. cerevisiae and thereby support the recognition of S. boulardii as a member of S. cerevisiae and not as a separate species.  相似文献   

20.
During the course of screening for industrially important microorganisms, an alkali-tolerant and thermotolerant actinomycete, strain DAS 131T, was isolated from a soil sample collected from the Gulbarga region, Karnataka province, India. The strain was characterized by a polyphasic approach that showed that it belonged to the genus Streptomyces. Growth was observed over a wide pH range (pH 6-12) and at 45 degrees C. The 16S rRNA gene sequence of strain DAS 131T was deposited in the GenBank database under the accession number DQ317411. 16S rRNA gene sequence analysis revealed that strain DAS 131T was most closely related to Streptomyces venezuelae ISP 5230T (AY999739) with a sequence similarity of 99.5% (8 nucleotide differences out of 1,477). Despite this very high sequence similarity, strain DAS 131T was phenetically distinct from S. venezuelae. The DNA relatedness between these strains was 54%, indicating that strain DAS 131T is a distinct genomic species. On the basis of phenetic and genetic analyses, strain DAS 131T is classified as a new species in the genus Streptomyces, for which we propose the name Streptomyces gulbargensis sp. nov.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号