首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Peptidoglycan recognition proteins (PGRPs) are pattern recognition receptors of the innate immune system that bind peptidoglycans (PGNs) of bacterial cell walls. These molecules, which are highly conserved from insects to mammals, contribute to host defense against infections by both Gram-positive and Gram-negative bacteria. Here, we present the crystal structure of human PGRP-S at 1.70A resolution. The overall structure of PGRP-S, which participates in intracellular killing of Gram-positive bacteria, is similar to that of other PGRPs, including Drosophila PGRP-LB and PGRP-SA and human PGRP-Ialpha. However, comparison with these PGRPs reveals important differences in both the PGN-binding site and a groove formed by the PGRP-specific segment on the opposite face of the molecule. This groove, which may constitute a binding site for effector or signaling proteins, is less hydrophobic and deeper in PGRP-S than in PGRP-IalphaC, whose PGRP-specific segments vary considerably in amino acid sequence. By docking a PGN ligand into the PGN-binding cleft of PGRP-S based on the known structure of a PGRP-Ialpha-PGN complex, we identified potential PGN-binding residues in PGRP-S. Differences in PGN-contacting residues and interactions suggest that, although PGRPs may engage PGNs in a similar mode, structural differences exist that likely regulate the affinity and fine specificity of PGN recognition.  相似文献   

2.
Peptidoglycan (PGN) recognition proteins (PGRPs) are pattern recognition molecules of innate immunity that are conserved from insects to humans. Various PGRPs are reported to have diverse functions: they bind bacterial molecules, digest PGN, and are essential to the Toll pathway in Drosophila. One family member, bovine PGN recognition protein-S (bPGRP-S), has been found to bind and kill microorganisms in a PGN-independent manner, raising questions about the identity of the bPGRP-S ligand. Addressing this, we have determined the binding and microbicidal properties of bPGRP-S in a range of solutions approximating physiologic conditions. In this study we show that bPGRP-S interacts with other bacterial components, including LPS and lipoteichoic acid, with higher affinities than for PCP, as determined by their abilities to inhibit bPGRP-S-mediated killing of bacteria. Where and how PGRPs act in vivo is not yet clear. Using Immunogold electron microscopy, PGRP-S was localized to the dense/large granules of naive neutrophils, which contain the oxygen-independent bactericidal proteins of these cells, and to the neutrophil phagolysosome. In addition, Immunogold staining and secretion studies demonstrate that neutrophils secrete PGRP-S when exposed to bacteria. Bovine PGRP-S can mediate direct lysis of heat-killed bacteria; however, PGRP-S-mediated killing of bacteria is independent of this activity. Evidence that bPGRP-S has multiple activities and affinity to several bacterial molecules challenges the assumption that the PGRP family of proteins recapitulates the evolution of TLRs. Mammalian PGRPs do not have a single antimicrobial activity against a narrow range of target organisms; rather, they are generalists in their affinity and activity.  相似文献   

3.

Background  

Immune responses to parasites, which start with pathogen recognition, play a decisive role in the control of the infection in mosquitoes. Peptidoglycan recognition proteins (PGRPs) are an important family of pattern recognition receptors that are involved in the activation of these immune reactions. Pathogen pressure can exert adaptive changes in host genes that are crucial components of the vector's defence. The aim of this study was to determine the molecular evolution of the three short PGRPs (PGRP-S1, PGRP-S2 and PGRP-S3) in the two main African malaria vectors - Anopheles gambiae and Anopheles arabiensis.  相似文献   

4.
Peptidoglycan recognition proteins (PGRPs), a novel family of pattern recognition molecules (PRMs) in innate immunity conserved from insects to mammals, recognize bacterial cell wall peptidoglycan (PGN) and are suggested to act as anti-bacterial factors. In humans, four kinds of PGRPs (PGRP-L, -Ialpha, -Ibeta and -S) have been cloned and all four human PGRPs bind PGN. In this study, we examined the possible regulation of the expression of PGRPs in oral epithelial cells upon stimulation with chemically synthesized pathogen-associated molecular patterns (PAMPs) in bacterial cell surface components: Escherichia coli-type tryacyl lipopeptide (Pam3CSSNA), E. coli-type lipid A (LA-15-PP), diaminopimelic acid containing desmuramyl peptide (gamma-D-glutamyl-meso-DAP; iE-DAP), and muramyldipeptide (MDP). These synthetic PAMPs markedly upregulated the mRNA expression of the four PGRPs and cell surface expression of PGRP-Ialpha and -Ibeta, but did not induce either mRNA expression or secretion of inflammatory cytokines, in oral epithelial cells. Suppression of the expression of Toll-like receptor (TLR)2, TLR4, nucleotide-binding oligomerization domain (NOD)1 and NOD2 by RNA interference specifically inhibited the upregulation of PGRP mRNA expression induced by Pam3CSSNA, LA-15-PP, iE-DAP and MDP respectively. These PAMPs definitely activated nuclear factor (NF)-kappaB in the epithelial cells, and suppression of NF-kappaB activation clearly prevented the induction of PGRP mRNA expression induced by these PAMPs in the cells. These findings suggested that bacterial PAMPs induced the expression of PGRPs, but not proinflammatory cytokines, in oral epithelial cells, and the PGRPs might be involved in host defence against bacterial invasion without accompanying inflammatory responses.  相似文献   

5.
Peptidoglycan recognition proteins of the innate immune system   总被引:1,自引:0,他引:1  
Peptidoglycan (PGN) is the major component of bacterial cell walls and one of the main microbial products recognized by the innate immune system. PGN recognition is mediated by several families of pattern recognition molecules, including Toll-like receptors, nucleotide-binding oligomerization domain-containing proteins, and peptidoglycan recognition proteins (PGRPs). However, only the interaction of PGN with PGRPs, which are highly conserved from insects to mammals, has so far been characterized at the molecular level. Here, we describe recent structural studies of PGRPs that reveal the basis for PGN recognition and provide insights into the signal transduction and antibacterial activities of these innate immune proteins.  相似文献   

6.
Peptidoglycan recognition proteins (PGRPs) are pattern recognition molecules coded by up to 13 genes in insects and 4 genes in mammals. In insects PGRPs activate antimicrobial pathways in the hemolymph and cells, or are peptidoglycan (PGN)-lytic amidases. In mammals one PGRP is an antibacterial neutrophil protein. We report that human PGRP-L is a Zn2+-dependent N-acetylmuramoyl-l-alanine amidase (EC 3.5.1.28), an enzyme that hydrolyzes the amide bond between MurNAc and l-Ala of bacterial PGN. The minimum PGN fragment hydrolyzed by PGRP-L is MurNAc-tripeptide. PGRP-L has no direct bacteriolytic activity. The other members of the human PGRP family, PGRP-Ialpha, PGRP-Ibeta, and PGRP-S, do not have the amidase activity. The C-terminal region of PGRP-L, homologous to bacteriophage and bacterial amidases, is required and sufficient for the amidase activity of PGRP-L, although its activity (in the N-terminal delta1-343 deletion mutant) is reduced. The Zn2+ binding amino acids (conserved in PGRP-L and T7 amidase) and Cys-419 (not conserved in T7 amidase) are required for the amidase activity of PGRP-L, whereas three other amino acids, needed for the activity of T7 amidase, are not required for the activity of PGRP-L. These amino acids, although required, are not sufficient for the amidase activity, because changing them to the "active" configuration does not convert PGRP-S into an active amidase. In conclusion, human PGRP-L is an N-acetylmuramoyl-l-alanine amidase and this function is conserved in prokaryotes, insects, and mammals.  相似文献   

7.
Peptidoglycan (PGN) consists of repeating units of N-acetylglucosamine (GlcNAc) and N-acetylmuramic acid (MurNAc), which are cross-linked by short peptides. It is well known that PGN forms a major cell wall component of bacteria making it an important ligand for the recognition by peptidoglycan recognition proteins (PGRPs) of the host. The binding studies showed that PGN, GlcNAc, and MurNAc bind to camel PGRP-S (CPGRP-S) with affinities corresponding to dissociation constants of 1.3 × 10(-9), 2.6 × 10(-7), and 1.8 × 10(-7) M, respectively. The crystal structure determinations of the complexes of CPGRP-S with GlcNAc and MurNAc showed that the structures consist of four crystallographically independent molecules, A, B, C, and D, in the asymmetric unit that exists as A-B and C-D units of two neighboring linear polymers. The structure determinations showed that compounds GlcNAc and MurNAc bound to CPGRP-S at the same subsite in molecule C. Both GlcNAc and MurNAc form several hydrogen bonds and extensive hydrophobic interactions with protein atoms, indicating the specific nature of their bindings. Flow cytometric studies showed that PGN enhanced the secretions of TNF-α and IL-6 from human peripheral blood mononuclear cells. The introduction of CPGRP-S to the PGN-challenged cultured peripheral blood mononuclear cells reduced the expressions of proinflammatory cytokines, TNF-α and IL-6. This showed that CPGRP-S inhibited PGN-induced production of proinflammatory cytokines and down-regulated macrophage-mediated inflammation, indicating its potential applications as an antibacterial agent.  相似文献   

8.
Peptidoglycan recognition proteins (PGRPs) play crucial role in innate immunity for both invertebrates and vertebrates, owing to their prominent ability in detecting and eliminating invading bacteria. In the present study, two short PGRPs from mollusk Solen grandis (designated as SgPGRP-S1 and SgPGRP-S2) were identified, and their expression patterns, both in tissues and toward three PAMPs stimulation, were then characterized. The full-length cDNA of SgPGRP-S1 and SgPGRP-S2 was 1672 and 1285 bp, containing an open reading frame (ORF) of 813 and 426 bp, respectively, and deduced amino acid sequences showed high similarity to other members of PGRP superfamily. Both SgPGRP-S1 and SgPGRP-S2 encoded a PGRP domain. The motif of Zn2+ binding sites and amidase catalytic sites were well conserved in SgPGRP-S1, but partially conserved in SgPGRP-S2. The two PGRPs exhibited different tissue expression pattern. SgPGRP-S1 was highly expressed in muscle and hepatopancreas, while SgPGRP-S2 was highly in gill and mantle. The mRNA expression of SgPGRP-S1 could be induced acutely by stimulation of PGN, and also moderately by β-1,3-glucan, but not by LPS, while expression of SgPGRP-S2 was significantly up-regulated (P < 0.01) when S. grandis was stimulated by all the three PAMPs, though the expression levels were relatively lower than SgPGRP-S1. Our results suggested SgPGRP-S1 and SgPGRP-S2 could serve as pattern recognition receptors (PRRs) involved in the immune recognition of S. grandis, and they might perform different functions in the immune defense against invaders.  相似文献   

9.
The innate immune system recognizes microorganisms through a series of pattern recognition receptors that are highly conserved in evolution. Insects have a family of 12 peptidoglycan recognition proteins (PGRPs) that recognize peptidoglycan, a ubiquitous component of bacterial cell walls. We report cloning of three novel human PGRPs (PGRP-L, PGRP-Ialpha, and PGRP-Ibeta) that together with the previously cloned PGRP-S, define a new family of human pattern recognition molecules. PGRP-L, PGRP-Ialpha, and PGRP-Ibeta have 576, 341, and 373 amino acids coded by five, seven, and eight exons on chromosomes 19 and 1, and they all have two predicted transmembrane domains. All mammalian and insect PGRPs have at least three highly conserved C-terminal PGRP domains located either in the extracellular or in the cytoplasmic (or in both) portions of the molecules. PGRP-L is expressed in liver, PGRP-Ialpha and PGRP-Ibeta in esophagus (and to a lesser extent in tonsils and thymus), and PGRP-S in bone marrow (and to a lesser extent in neutrophils and fetal liver). All four human PGRPs bind peptidoglycan and Gram-positive bacteria. Thus, these PGRPs may play a role in recognition of bacteria in these organs.  相似文献   

10.
11.
Peptidoglycan recognition proteins (PGRPs) are part of the innate immune system. The 19 kDa Short PGRP (PGRP-S) is one of the four mammalian PGRPs. The concentration of PGRP-S in camel (CPGRP-S) has been shown to increase considerably during mastitis. The structure of CPGRP-S consists of four protein molecules designated as A, B, C and D forming stable intermolecular contacts, A–B and C–D. The A–B and C–D interfaces are located on the opposite sides of the same monomer leading to the the formation of a linear chain with alternating A–B and C–D contacts. Two ligand binding sites, one at C–D contact and another at A–B contact have been observed. CPGRP-S binds to the components of bacterial cell wall molecules such as lipopolysaccharide (LPS), lipoteichoic acid (LTA), and peptidoglycan (PGN) from both Gram-positive and Gram-negative bacteria. It also binds to fatty acids including mycolic acid of the Mycobacterium tuberculosis (Mtb). Previous structural studies of binary complexes of CPGRP-S with LPS and stearic acid (SA) have shown that LPS binds to CPGRP-S at C–D contact (Site-1) while SA binds to it at the A–B contact (Site-2). The binding studies using surface plasmon resonance showed that LPS and SA bound to CPGRP-S in the presence of each other. The structure determination of the ternary complex showed that LPS and SA bound to CPGRP-S at Site-1 and Site-2 respectively. LPS formed 13 hydrogen bonds and 159 van der Waals contacts (distances ≤4.2 Å) while SA formed 56 van der Waals contacts. The ELISA test showed that increased levels of productions of pro-inflammatory cytokines TNF-α and IFN-γ due to LPS and SA decreased considerably upon the addition of CPGRP-S.  相似文献   

12.
《Journal of Asia》2022,25(4):102003
Peptidoglycan recognition proteins (PGRPs) discriminate and bind peptidoglycans by acting as pattern recognition receptors (PRRs) in insects, and function pivotal roles in innate immune response. In the present study, we cloned a full-length PGRP gene designed as OfPGRP8 from the Asian corn borer, Ostrinia furnacalis (Guenée). Its mRNA exhibited the highest abundance in fat body, and its expression level upregulated dramatically after bacterial challenges. Purified recombinant OfPGRP8 exhibited intensive binding capacity to peptidoglycans from Staphylococcus aureus and Micrococcus luteus. Additionally, recombinant OfPGRP8 could inhibit the growth of S. aureus, M. luteus. However, recombinant OfPGRP8 could not cause agglutination of S. aureus, M. luteus or Escherichia coli. Furthermore, we also demonstrated that OfPGRP8 may be involved in modulating the signaling pathway of antimicrobial peptides (AMPs) synthesis. In sum, our results provided evidence that OfPGRP8 discriminates peptidoglycans from microbes and acts as a PRR to initiate downstream immune signaling pathways.  相似文献   

13.
14.
The peptidoglycan recognition proteins (PGRPs)   总被引:1,自引:0,他引:1  
Peptidoglycan recognition proteins (PGRPs) are innate immunity molecules present in insects, mollusks, echinoderms, and vertebrates, but not in nematodes or plants. PGRPs have at least one carboxy-terminal PGRP domain (approximately 165 amino acids long), which is homologous to bacteriophage and bacterial type 2 amidases. Insects have up to 19 PGRPs, classified into short (S) and long (L) forms. The short forms are present in the hemolymph, cuticle, and fat-body cells, and sometimes in epidermal cells in the gut and hemocytes, whereas the long forms are mainly expressed in hemocytes. The expression of insect PGRPs is often upregulated by exposure to bacteria. Insect PGRPs activate the Toll or immune deficiency (Imd) signal transduction pathways or induce proteolytic cascades that generate antimicrobial products, induce phagocytosis, hydrolyze peptidoglycan, and protect insects against infections. Mammals have four PGRPs, which are secreted; it is not clear whether any are directly orthologous to the insect PGRPs. One mammalian PGRP, PGLYRP-2, is an N-acetylmuramoyl-L-alanine amidase that hydrolyzes bacterial peptidoglycan and reduces its proinflammatory activity; PGLYRP-2 is secreted from the liver into the blood and is also induced by bacteria in epithelial cells. The three remaining mammalian PGRPs are bactericidal proteins that are secreted as disulfide-linked homo- and hetero-dimers. PGLYRP-1 is expressed primarily in polymorphonuclear leukocyte granules and PGLYRP-3 and PGLYRP-4 are expressed in the skin, eyes, salivary glands, throat, tongue, esophagus, stomach, and intestine. These three proteins kill bacteria by interacting with cell wall peptidoglycan, rather than permeabilizing bacterial membranes as other antibacterial peptides do. Direct bactericidal activity of these PGRPs either evolved in the vertebrate (or mammalian) lineage or is yet to be discovered in insects.  相似文献   

15.
16.
Short peptidoglycan recognition protein (PGRP-S) is a member of the innate immunity system in mammals. PGRP-S from Camelus dromedarius (CPGRP-S) is found to be highly potent against bacterial infections. It is capable of binding to a wide range of pathogen-associated molecular patterns (PAMPs) including lipopolysaccharide (LPS), lipoteichoic acid (LTA) and peptidoglycan (PGN). The heparin-like polysaccharides have also been observed in some bacteria such as the capsule of K5 Escherichia coli thus making them relevant for determining the nature of their interactions with CPGRP-S. The binding studies of CPGRP-S with heparin disaccharide in solution using surface plasmon resonance gave a value 3.3×10-7 M for the dissociation constant (Kd). The structure of the heparin bound CPGRP-S determined at 2.8Å resolution revealed the presence of a bound heparin molecule in the binding pocket of CPGRP-S. It was found anchored tightly to the protein with the help of several ionic and hydrogen bonded interactions. Three sulphate groups of heparin S1, S2 and S3 have been found to interact with residues, Arg-31, Lys-90, Thr- 97, Asn-99 Asn-140, Gln-150 and Arg-170 of CPGRP-S. The binding site includes two subsites, S-I and S-II with cleft-like structures. Heparin disaccharide is bound in subsite S-I. Previously determined structures of the complexes of CPGRP-S with LPS, LTA and PGN also showed that their glycan moieties were also held in subsite S-I indicating that heparin disaccharide also represents an important element for the recognition by CPGRP-S.  相似文献   

17.
昆虫肽聚糖识别蛋白研究进展   总被引:4,自引:0,他引:4  
陈康康  吕志强 《昆虫学报》2014,57(8):969-978
在脊椎动物和非脊椎动物中,识别非己是天生免疫反应中的第一步。肽聚糖是细菌细胞壁的必需成分,属于进化上保守的微生物表面病原相关分子模式(pathogen-associated molecular pattern, PAMP),可以被模式识别蛋白(pattern recognition proteins, PRRs)如肽聚糖识别蛋白(peptidoglycan recognition proteins, PGRPs)识别。 在昆虫的天生免疫系统中,有些PGRPs能够利用细菌独有的肽聚糖识别入侵细菌,并将细菌入侵信号传递给下游的抗菌肽(antimicrobial peptide, AMP)合成途径,启动抗菌肽基因的转录及合成;PGRPs对肽聚糖的识别也会启动酚氧化酶原途径的激活,引起黑化反应。有些具有酰胺酶活性的PGRPs可以促进吞噬作用;有些可以抑制抗菌肽合成以减弱过度免疫反应带来的损伤。还有一些PGRPs作为效应因子直接作用于细菌将细菌杀死。本文主要从昆虫PGRPs作为识别受体(recognition receptor)、调节子(regulator)和效应因子(effector) 3个方面进行了综述,并分析了目前PGRPs研究中仍不清楚的问题和未来研究的方向。  相似文献   

18.
Peptidoglycan recognition proteins (PGRPs) are innate immune molecules that are structurally conserved through evolution in both invertebrate and vertebrate animals. Here we report the identification and characterization of two long forms of PGRP (SsPGRP-L1 and SsPGRP-L2) from the rockfish, Sebastes schlegeli. The deduced amino acid sequences of SsPGRP-L1 and SsPGRP-L2, 466 and 482 residues respectively, contain the conserved PGRP domain and the four Zn2+-binding amino acid residues required for amidase activity. In addition to peptidoglycan-lytic amidase activity, recombinant SsPGRPs have broad-spectrum antimicrobial activity like zebrafish PGRPs. RT-PCR analysis of total RNA shows that the expression patterns of SsPGRP-L1 and SsPGRP-L2 genes are different, though they are widely expressed in the tissues that come in contact with bacteria. Overall, these data suggest that rockfish PGRPs are involved in the innate host defense of S. schlegeli against bacterial infections.  相似文献   

19.
实验构建了大鲵短型肽聚糖识别蛋白PGRP-S的真核表达质粒, 并对其功能进行了初步的研究。序列分析显示, 所克隆的大鲵PGRP-S的N端不含有信号肽; 其编码的氨基酸序列具有2个相距较近的半胱氨酸残基以及2个Zn2+结合位点。Western-blotting检测结果显示大鲵PGRP-S既可分泌到胞外, 也可滞留在胞内。体外抗菌实验的结果表明, 过表达大鲵PGRP-S能显著抑制迟缓爱德华氏菌(Edwardsiella tarda)在HEK293T细胞内和胞外培养基中的增殖。此外, 过表达大鲵PGRP-S能诱导NF-κB启动子的活性; 能结合Lys-type和Dap-type的肽聚糖但不能降解它们。研究结果表明大鲵PGRP-S在功能上类似于哺乳动物而有别于硬骨鱼类短型的肽聚糖识别蛋白。  相似文献   

20.
Peptidoglycan recognition proteins (PGRPs) are a family of innate immune molecules that recognize bacterial peptidoglycan. PGRPs are highly conserved in invertebrates and vertebrates including fish. However, the biological function of teleost PGRP remains largely uninvestigated. In this study, we identified a PGRP homologue, SoPGLYRP-2, from red drum (Sciaenops ocellatus) and analyzed its activity and potential function. The deduced amino acid sequence of SoPGLYRP-2 is composed of 482 residues and shares 46-94% overall identities with known fish PGRPs. SoPGLYRP-2 contains at the C-terminus a single zinc amidase domain with conserved residues that form the catalytic site. Quantitative RT-PCR analysis detected SoPGLYRP-2 expression in multiple tissues, with the highest expression occurring in liver and the lowest expression occurring in brain. Experimental bacterial infection upregulated SoPGLYRP-2 expression in kidney, spleen, and liver in time-dependent manners. To examine the biological activity of SoPGLYRP-2, purified recombinant proteins representing the intact SoPGLYRP-2 (rSoPGLYRP-2) and the amidase domain (rSoPGLYRP-AD) were prepared from Escherichia coli. Subsequent analysis showed that rSoPGLYRP-2 and rSoPGLYRP-AD (i) exhibited comparable Zn2+-dependent peptidoglycan-lytic activity and were able to recognize and bind to live bacterial cells, (ii) possessed bactericidal effect against Gram-positive bacteria and slight bacteriostatic effect against Gram-negative bacteria, (iii) were able to block bacterial infection into host cells. These results indicate that SoPGLYRP-2 is a zinc-dependent amidase and a bactericide that targets preferentially at Gram-positive bacteria, and that SoPGLYRP-2 is likely to play a role in host innate immune defense during bacterial infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号