首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of benzoxazole derivatives was synthesized and evaluated as melatoninergic ligands. The binding affinity of these compounds for human MT(1) and MT(2) receptors was determined using 2-[(125)I]-iodomelatonin as the radioligand. From this series of benzoxazole derivatives, compounds 14 and 17 were identified as melatonin receptor agonists.  相似文献   

2.
Cerebral inflammatory events play an important part in the pathogenesis of Alzheimer's disease (AD). Agonists of the peroxisome proliferator-activated receptor gamma (PPARgamma), a nuclear hormone receptor that mediates anti-inflammatory actions of non-steroidal anti-inflammatory drugs (NSAIDs) and thiazolidinediones, have been therefore proposed as a potential treatment of AD. Experimental evidence suggests that cortical noradrenaline (NA) depletion due to degeneration of the locus ceruleus (LC) - a pathological hallmark of AD - plays a permissive role in the development of inflammation in AD. To study a possible relationship between NA depletion and PPARgamma-mediated suppression of inflammation we investigated the influence of NA on PPARgamma expression in murine primary cortical astrocytes and neurons. Incubation of astrocytes and neurons with 100 micro m NA resulted in an increase of PPARgamma mRNA as well as PPARgamma protein levels in both cell types. These effects were blocked by the beta-adrenergic antagonist propranolol but not by the alpha-adrenergic antagonist phentolamine, suggesting that they might be mediated by beta-adrenergic receptors. Our results indicate for the first time that PPARgamma expression can be modulated by the cAMP signalling pathway, and suggest that the anti-inflammatory effects of NA on brain cells may be partly mediated by increasing PPARgamma levels. Conversely, decreased NA due to LC cell death in AD may reduce endogenous PPARgamma expression and therefore potentiate neuroinflammatory processes.  相似文献   

3.
In response to inflammatory cytokines, chondrocytes and synovial fibroblasts produce high amounts of prostaglandins (PG) which self-perpetuate locally the inflammatory reaction. Prostaglandins act primarily through membrane receptors coupled to G proteins but also bind to nuclear Peroxisome Proliferator-Activated Receptors (PPARs). Amongst fatty acids, the cyclopentenone metabolite of PGD2, 15-deoxy-Delta12,14PGJ2 (15d-PGJ2), was shown to be a potent ligand of the PPARgamma isotype prone to inhibit the production of inflammatory mediators. As the stimulated synthesis of PGE2 originates from the preferential coupling of inducible enzymes, cyclooxygenase-2 (COX-2) and membrane PGE synthase-1 (mPGES-1), we investigated the potency of 15d-PGJ2 to regulate prostaglandins synthesis in rat chondrocytes stimulated with interleukin-1beta (IL-1beta). We demonstrated that 15d-PGJ2, but not the high-affinity PPARgamma ligand rosiglitazone, decreased almost completely PGE2 synthesis and mPGES-1 expression. The inhibitory potency of 15d-PGJ2 was unaffected by changes in PPARgamma expression and resulted from inhibition of NF-kappaB nuclear binding and IkappaBalpha sparing, secondary to reduced phosphorylation of IKKbeta. Consistently with 15d-PGJ2 being a putative endogenous regulator of the inflammatory reaction if synthesized in sufficient amounts, the present data confirm the variable PPARgamma-dependency of its effects in joint cells while underlining possible species and cell types specificities.  相似文献   

4.
5.
A structurally novel liver X receptor (LXR) agonist (1) was identified from internal compound collection utilizing the combination of structure-based virtual screening and high-throughput gene profiling. Compound 1 increased ABCA1 gene expression by eightfold and SREBP1c by threefold in differentiated THP-1 macrophage cell lines. Confirmation of its agonistic activity against LXR was obtained in the co-factor recruitment and reporter transactivation assays. Structure-activity relationship studies on compound 1 are described.  相似文献   

6.
7.
Optimization of the R(2) and R(6) positions of (5-{4-[3-(R)-2-methylpyrrolin-1-yl-propoxy]phenyl}-2H-pyridazin-3-one) 2a with constrained phenoxypiperidines led to the identification of 5-[4-(cyclobutyl-piperidin-4-yloxy)-phenyl]-6-methyl-2H-pyridazin-3-one 8b as a potent, selective histamine H(3) receptor antagonist with favorable pharmacokinetic properties. Compound 8b had an excellent safety genotoxocity profile for a CNS-active compound in the Ames and micronucleus tests, also displayed potent H(3)R antagonist activity in the brain in the rat dipsogenia model and robust wake activity in the rat EEG/EMG model.  相似文献   

8.
Some of the pathological manifestations of cystic fibrosis are in accordance with an impaired expression and/or activity of PPARgamma. We hypothesized that PPARgamma expression is altered in tissues lacking the normal cystic fibrosis transmembrane regulator protein (CFTR). PPARgamma mRNA levels were measured in colonic mucosa, ileal mucosa, adipose tissue, lung, and liver from wild-type and cftr-/- mice by quantitative RT-PCR. PPARgamma expression was decreased twofold in CFTR-regulated tissues (colon, ileum, and lung) from cftr-/- mice compared to wild-type littermates. In contrast, no differences were found in fat and liver. Immunohistochemical analysis of PPARgamma in ileum and colon revealed a predominantly nuclear localization in wild-type mucosal epithelial cells while tissues from cftr-/- mice showed a more diffuse, lower intensity labeling. A significant decrease in PPARgamma expression was confirmed in nuclear extracts of colon mucosa by Western blot analysis. In addition, binding of the PPARgamma/RXR heterodimer to an oligonucletotide containing a peroxisome proliferator responsive element (PPRE) was also decreased in colonic mucosa extracts from cftr-/- mice. Treatment of cftr-/- mice with the PPARgamma ligand rosiglitazone restored both the nuclear localization and binding to DNA, but did not increase RNA levels. We conclude that PPARgamma expression in cftr-/- mice is downregulated at the RNA and protein levels and its function diminished. These changes may be related to the loss of function of CFTR and may be relevant to the pathogenesis of metabolic abnormalities associated with cystic fibrosis in humans.  相似文献   

9.
10.
Through preparation and examination of a series of novel 4-amino-2-phenylpyrimidine derivatives as agonists for GPR119, we identified 2-(4-bromophenyl)-6-methyl-N-[2-(1-oxidopyridin-3-yl)ethyl]pyrimidin-4-amine (9t). Compound 9t improved glucose tolerance in mice following oral administration and showed good pharmacokinetic profiles in rats.  相似文献   

11.
12.
PPARgamma is highly expressed in granulosa cells by 23 days post-partum (pp) and is down-regulated in response to the LH surge. We tested the hypothesis that high levels of FSH during the neonatal period trigger the expression of PPARgamma. To determine when PPARgamma expression is initiated, ovaries were collected from neonatal rats. Messenger RNA for PPARgamma was undetectable on day 1, low from days 5-14, and increased by day 19 pp (p < 0.05). PPARgamma was detected in select granulosa cells in primary/early secondary follicles. Messenger RNA for the FSH receptor was detected as early as day 1 and remained steady throughout day 19 pp. The FSH receptor was detected by immunoblot analysis in ovaries collected 1, 2, and 5-9 days pp. In a subsequent experiment, neonatal rats were treated with acyline (GnRH antagonist) which significantly reduced FSH (p < 0.05) but not levels of mRNA for PPARgamma. The role of FSH in the induction of PPARgamma expression was further assessed in ovarian tissue from FORKO mice. Both mRNA and protein for PPARgamma were identified in ovarian tissue from FORKO mice. In summary, the FSH/FSH receptor system is present in granulosa cells prior to the onset of expression of PPARgamma. Reducing FSH during the neonatal period, or the ability to respond to FSH, did not decrease expression of mRNA for PPARgamma. These data indicate that FSH is not a primary factor initiating the expression of PPARgamma and that other agents play a role in activating its expression in the ovary.  相似文献   

13.
Replacement of the methyl-thiazole moiety of GW501516 (a PPARdelta selective agonist) with [1,2,4]thiadiazole gave compound 21 which unexpectedly displayed submicromolar potency as a partial agonist at PPARalpha in addition to the high potency at PPARdelta. A structure-activity relationships study of 21 resulted in the identification of 40 as a potent and selective PPARalpha/delta dual agonist. Compound 40 and its close analogs represent a new series of PPARalpha/delta dual agonists. The high potency, high selectivity, significant gene induction, excellent PK profiles, low P450 inhibition or induction, and good in vivo efficacy in four animal models support 40 being selected as a pre-clinical study candidate, and may render 40 as a valuable pharmacological tool in elucidating the complex roles of PPARalpha/delta dual agonists, and the potential usage for the treatment of metabolic syndrome.  相似文献   

14.
A series of novel tetrahydropyrazolopyrimidine derivatives containing an adamantyl group were synthesized and evaluated as potential calcium-sensing receptor (CaSR) antagonists. After chemical modification of 9a, which was identified as a hit compound in a random screening of CaSR antagonist assay, 7,7-dimethyl derivative 16c was found to be the most active compound of this new series (IC(50)=10nM). We report the synthesis of this series and their biological activities and structure-activity relationship.  相似文献   

15.
Peroxisome proliferators-activated receptor gamma (PPARgamma) has been shown to suppress cell proliferation and tumorigenesis, whereas the gastrointestinal regulatory peptide gastrin stimulates the growth of neoplastic cells. The present studies were directed to determine whether changes in PPARgamma expression might mediate the effects of gastrin on the proliferation of colorectal cancer (CRC). Initially, using growth assays, we determined that the human CRC cell line DLD-1 expressed both functional PPARgamma and gastrin receptors. Amidated gastrin (G-17) attenuated the growth suppressing effects of PPARgamma by decreasing PPARgamma activity and total protein expression, in part through an increase in the rate of proteasomal degradation. G-17-induced degradation of PPARgamma appeared to be mediated through phosphorylation of PPARgamma at serine 84 by a process involving the biphasic phosphorylation of ERK1/2 and activation of the epidermal growth factor receptor (EGFR). These results were confirmed through the use of EGFR antagonist AG1478 and MEK1 inhibitor PD98059. Furthermore, mutation of PPARgamma at serine 84 reduced the effects of G-17, as evident by inability of G-17 to attenuate PPARgamma promoter activity, degrade PPARgamma, or inhibit the growth suppressing effects of PPARgamma. The results of these studies demonstrate that the trophic properties of gastrin in CRC may be mediated in part by transactivation of the EGFR and phosphorylation of ERK1/2, leading to degradation of PPARgamma protein and a decrease in PPARgamma activation.  相似文献   

16.
Chemerin is an adipocyte-secreted protein that regulates adipogenesis and the metabolic function of mature adipocytes via activation of chemokine-like receptor 1 (CMKLR1). Herein we report the interaction of peroxisome proliferator-activated receptor γ (PPARγ) and chemerin in the context of adipogenesis. Knockdown of chemerin or CMKLR1 expression or antibody neutralization of secreted chemerin protein arrested adipogenic clonal expansion of bone marrow mesenchymal stem cells (BMSCs) by inducing a loss of G(2)/M cyclins (cyclin A2/B2) but not the G(1)/S cyclin D2. Forced expression of PPARγ in BMSCs did not completely rescue this loss of clonal expansion and adipogenesis following chemerin or CMKLR1 knockdown. However, forced expression and/or activation of PPARγ in BMSCs as well as non-adipogenic cell types such as NIH-3T3 embryonic fibroblasts and MCA38 colon carcinoma cells significantly induced chemerin expression and secretion. Sequence analysis revealed a putative PPARγ response element (PPRE) sequence within the chemerin promoter. This PPRE was able to confer PPARγ responsiveness on a heterologous promoter, and mutation of this sequence abolished activation of the chemerin promoter by PPARγ. Chromatin immunoprecipitation confirmed the direct association of PPARγ with this PPRE. Treatment of mice with rosiglitazone elevated chemerin mRNA levels in adipose tissue and bone marrow coincident with an increase in circulating chemerin levels. Together, these findings support a fundamental role for chemerin/CMKLR1 signaling in clonal expansion during adipocyte differentiation as well as a role for PPARγ in regulating chemerin expression.  相似文献   

17.
18.
19.
20.
A series of 3-(4-alkoxyphenyl)propanoic acid derivatives was prepared as candidate peroxisome proliferator-activated receptor (PPAR) delta-selective agonists, based on our previously discovered potent human PPARalpha/delta dual agonist TIPP-401 as a lead compound. Structure-activity relationship studies clearly indicated the importance of the chain length of the alkoxy group at the 4-position, and the n-butoxy compound exhibited the most potent PPARdelta transactivation activity and highest PPARdelta selectivity. The (S)-enantiomer of a representative compound exhibited extremely potent PPARdelta transactivation activity, comparable with or somewhat superior to that of the known PPARdelta-selective agonist, GW-501516. The representative compound regulated the expression of genes involved in lipid and glucose homeostasis, and should be useful not only as a chemical tool to study PPARdelta function, but also as a candidate drug for the treatment of metabolic syndrome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号