首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The mosquitocidal properties of Bacillus thuringiensis subsp. israelensis and B. thuringiensis subsp. morrisoni PG-14 are attributable to protein inclusions grouped together within a parasporal body. In both of these strains, the mosquitocidal activity resides in proteins with molecular masses of 27, 72, 128, and 135 kDa. In an attempt to determine the toxicity of each protein, the shuttle vector pHT3101 was used to express the cryIVD gene (encoding the 72-kDa CryIVD protein) from B. thuringiensis subsp. morrisoni in an acrystalliferous mutant of B. thuringiensis subsp. kurstaki. With this system, parasporal inclusions of the 72-kDa protein were obtained that were comparable in size, shape, and toxicity to those produced by parental B. thuringiensis subsp. morrisoni. The inclusions were bar shaped, measured 500 by 300 by 150 nm, and were easily visible with phase-contrast microscopy by 16 h of cell growth. A 50% lethal concentration of 64 ng/ml for these inclusions was determined in bioassays against fourth instars of Culex quinquefasciatus, which was similar to the 50% lethal concentration of 55 ng/ml obtained for the 72-kDa inclusion from B. thuringiensis subsp. israelensis. In contrast, expression of the cryIVD gene in Escherichia coli was very low and only detectable by immunoblot analysis. These results demonstrate that the pHT3101-B. thuringiensis expression system can be used to express the CryIVD protein in quantities and with properties comparable to that obtained with the natural host. This system may prove useful for the expression of other B. thuringiensis proteins and, in particular, for reconstitution experiments with inclusions produced by the mosquitocidal subspecies of B. thuringiensis.  相似文献   

2.
Bacillus thuringiensis NTB-1 isolated from soil samples in Korea produces ovoidal parasporal inclusions with proteins of approximately 24–40 kDa in size. Although serological study indicated that the isolate has a flagella (H) antigen identical with subsp. israelensis , it seemed to be non-insecticidal against Lepidoptera and Coleoptera as well as Diptera. To investigate the activity of non-insecticidal B. thuringiensis transformed with insecticidal crystal protein genes, cryIVD and cytA genes of B. thuringiensis subsp. morrisoni PG-14, highly toxic to mosquito larvae, were introduced into the isolate NTB-1. The expression of mosquitocidal crystal protein genes in NTB-1 was characterized by SDS–PAGE analysis and electron microscopy. The results showed that crystalline inclusions of host, CryIVD and CytA were stably expressed in the transformant. However, the mosquitocidal activity of transformant was similar to that of B. thuringiensis subsp. kurstaki Cry B harbouring cryIVD and cytA genes, demonstrating that a synergistic effect by an interaction of both introduced insecticidal and resident non-insecticidal crystal proteins was not observed.  相似文献   

3.
The parasporal bodies of the mosquitocidal isolates of Bacillus thuringiensis subsp. israelensis and B. thuringiensis subsp. morrisoni isolate PG-14 were compared with regard to their hemolytic and cytolytic activities and the immunological relatedness of the 28- and 65-kilodalton (kDa) proteins that occur in both subspecies. The alkali-solubilized parasporal bodies of B. thuringiensis subsp. israelensis caused 50% lysis of human erythrocytes at 1.14 micrograms/ml, whereas those of B. thuringiensis subsp. morrisoni caused similar lysis at 1.84 micrograms/ml. Preincubation of solubilized parasporal bodies with dioleolyl phosphatidylcholine significantly inhibited the hemolytic activity of both supspecies. In cytolytic assays against Aedes albopictus cells, the toxin concentrations causing 50% lysis for B. thuringiensis subsp. israelensis and B. thuringiensis subsp. morrisoni were 1.87 and 11.98 micrograms/ml, respectively. Polyclonal antibodies raised separately against the 25-kDa protein (a tryptic digest of the 28-kDa protein) or the 65-kDa protein of B. thuringiensis subsp. israelensis cross-reacted, respectively, with the 28- and the 65-kDa proteins of B. thuringiensis subsp. morrisoni. However, neither of these antibodies cross-reacted with the 135-kDa protein of either subspecies. These results indicate that the mosquitocidal and hemolytic properties of B. thuringiensis subsp. israelensis and B. thuringiensis subsp. morrisoni isolate PG-14 are probably due to the biologically related proteins that are present in the parasporal bodies of both subspecies. The lower hemolytic activity of the B. thuringiensis subsp. morrisoni may be due to the presence of lower levels of the 28-kDa protein in that subspecies.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
C Chang  Y M Yu  S M Dai  S K Law    S S Gill 《Applied microbiology》1993,59(3):815-821
Interactions among the 20-kDa protein gene and the cytA and cryIVD genes located in a 9.4-kb HindIII fragment were studied. A series of plasmids containing a combination of these different genes was constructed by using the Escherichia coli/Bacillus thuringiensis shuttle vector pHT3101. The plasmids were then used to transform an acrystalliferous strain, cryB, derived from B. thuringiensis subsp. kurstaki. The results from sodium dodecyl sulfate-polyacrylamide gel electrophoresis and immunoblot analyses suggest that although the 20-kDa protein is required for the efficient CytA protein production in E. coli, it is not required in B. thuringiensis. With or without the truncated 20-kDa protein gene, the CtyA and/or CryIVD proteins are produced and form parasporal inclusions in B. thuringiensis cells. However, more-efficient expression is obtained when a second protein, probably acting as a chaperonin, is present. In addition, the time course studies show that the CytA and CryIVD proteins are coordinately produced. Both the crude B. thuringiensis culture and purified inclusions from each recombinant B. thuringiensis strain are toxic to Culex quinquefasciatus larvae. The parasporal inclusions formed in B. thuringiensis cells are mosquitocidal, with CytA synergizing CryIVD toxicity.  相似文献   

5.
The parasporal bodies of the mosquitocidal isolates of Bacillus thuringiensis subsp. israelensis and B. thuringiensis subsp. morrisoni isolate PG-14 were compared with regard to their hemolytic and cytolytic activities and the immunological relatedness of the 28- and 65-kilodalton (kDa) proteins that occur in both subspecies. The alkali-solubilized parasporal bodies of B. thuringiensis subsp. israelensis caused 50% lysis of human erythrocytes at 1.14 micrograms/ml, whereas those of B. thuringiensis subsp. morrisoni caused similar lysis at 1.84 micrograms/ml. Preincubation of solubilized parasporal bodies with dioleolyl phosphatidylcholine significantly inhibited the hemolytic activity of both supspecies. In cytolytic assays against Aedes albopictus cells, the toxin concentrations causing 50% lysis for B. thuringiensis subsp. israelensis and B. thuringiensis subsp. morrisoni were 1.87 and 11.98 micrograms/ml, respectively. Polyclonal antibodies raised separately against the 25-kDa protein (a tryptic digest of the 28-kDa protein) or the 65-kDa protein of B. thuringiensis subsp. israelensis cross-reacted, respectively, with the 28- and the 65-kDa proteins of B. thuringiensis subsp. morrisoni. However, neither of these antibodies cross-reacted with the 135-kDa protein of either subspecies. These results indicate that the mosquitocidal and hemolytic properties of B. thuringiensis subsp. israelensis and B. thuringiensis subsp. morrisoni isolate PG-14 are probably due to the biologically related proteins that are present in the parasporal bodies of both subspecies. The lower hemolytic activity of the B. thuringiensis subsp. morrisoni may be due to the presence of lower levels of the 28-kDa protein in that subspecies.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
A new mosquitocidal Bacillus thuringiensis subsp., jegathesan, has recently been isolated from Malaysia. Parasporal crystal inclusions were purified from this strain and bioassayed against fourth-instar larvae of Culex quinquefasciatus, Aedes aegypti, Aedes togoi, Aedes albopictus, Anopheles maculatus, and Mansonia uniformis. The 50% lethal concentration of crystal inclusions for each species was 0.34, 8.08, 0.34, 17.59, 3.91, and 120 ng/ml, respectively. These values show that parasporal inclusions from this new subspecies have mosquitocidal toxicity comparable to that of inclusions isolated from B. thuringiensis subsp. israelensis. Solubilized and chymotrypsin-activated parasporal inclusions possessed low-level hemolytic activity. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed that the crystals were composed of polypeptides of 77, 74, 72, 68, 55, 38, 35, 27, and 23 kDa. Analysis by Western blotting (immunoblotting) with polyclonal antisera raised against toxins purified from B. thuringiensis subsp. israelensis reveals that proteins in parasporal inclusions of subsp. jegathesan are distinct, because little cross-reactivity was shown. Analysis of the plasmid content of B. thuringiensis subsp. jegathesan indicates that the genes for toxin production may be located on 105- to 120-kb plasmids. Cry- clones that have been cured of these plasmids are nontoxic. Southern blot analysis of plasmid and chromosomal DNA from subsp. jegathesan showed little or low homology to the genes coding for CryIVA, CryIVB, and CryIVD from B. thuringiensis subsp. israelensis.  相似文献   

7.
The cytA gene encoding the 28-kDa polypeptide of Bacillus thuringiensis subsp. israelensis crystals was disrupted in the 72-MDa resident plasmid by in vivo recombination, thus indicating that homologous recombination occurs in B. thuringiensis. The absence of the 28-kDa protein in B. thuringiensis did not affect the crystallization of the other toxic components of the parasporal body (68-, 125-, and 135-kDa polypeptides). The absence of the 28-kDa protein abolished the hemolytic activity of B. thuringiensis subsp. israelensis crystals. However, the mosquitocidal activity of the 28-kDa protein-free crystals did not differ significantly from that of the wild-type crystals when tested on Aedes aegypti and Culex pipiens larvae. The 28-kDa protein contributed slightly to the toxicity to Anopheles stephensi larvae. This indicates that the 28-kDa protein is not essential for mosquitocidal activity, at least against the three species tested.  相似文献   

8.
Y M Yu  M Ohba    S S Gill 《Applied microbiology》1991,57(4):1075-1081
The mosquitocidal crystals of Bacillus thuringiensis subsp. fukuokaensis were isolated and bioassayed against fourth-instar larvae of two mosquito species. The 50% lethal concentration values of the crystals to Aedes aegypti and Culex quinquefasciatus were 4.1 and 2.9 micrograms/ml, respectively. In addition, the solubilized crystals had hemolytic activity; 50 micrograms/ml was the lowest detectable level. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis revealed that the crystals consisted of polypeptides of 90, 86, 82, 72, 50, 48, 37, and 27 kDa. When the solubilized inclusion was treated with C. quinquefasciatus midgut brush border membrane vesicles or Manduca sexta gut juice, only one major protein was detected. This protein retained mosquitocidal activity but had no detectable hemolytic activity. Immunological analysis of this subspecies and the subspecies israelensis, kyushuensis and darmstadiensis by using polyclonal antisera raised against the whole-crystal protein of B. thuringiensis subsp. fukuokaensis revealed that the proteins in subsp. fukuokaensis are distinct from proteins in the other subspecies because little cross-reaction was observed. Analysis of the plasmid pattern showed that the crystal protein genes are located on a plasmid of 130 MDa. Analysis of plasmid and chromosomal DNA from subsp. fukuokaensis showed little homology to the 72-kDa toxin gene (PG-14) of B. thuringiensis subsp. morrisoni. However, some of the proteins of B. thuringiensis subsp. fukuokaensis are homologous to other B. thuringiensis toxins because N-terminal amino acid analysis revealed that the 90-kDa protein is encoded by a cryIV gene type.  相似文献   

9.
The mosquitocidal crystals of Bacillus thuringiensis subsp. fukuokaensis were isolated and bioassayed against fourth-instar larvae of two mosquito species. The 50% lethal concentration values of the crystals to Aedes aegypti and Culex quinquefasciatus were 4.1 and 2.9 micrograms/ml, respectively. In addition, the solubilized crystals had hemolytic activity; 50 micrograms/ml was the lowest detectable level. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis revealed that the crystals consisted of polypeptides of 90, 86, 82, 72, 50, 48, 37, and 27 kDa. When the solubilized inclusion was treated with C. quinquefasciatus midgut brush border membrane vesicles or Manduca sexta gut juice, only one major protein was detected. This protein retained mosquitocidal activity but had no detectable hemolytic activity. Immunological analysis of this subspecies and the subspecies israelensis, kyushuensis and darmstadiensis by using polyclonal antisera raised against the whole-crystal protein of B. thuringiensis subsp. fukuokaensis revealed that the proteins in subsp. fukuokaensis are distinct from proteins in the other subspecies because little cross-reaction was observed. Analysis of the plasmid pattern showed that the crystal protein genes are located on a plasmid of 130 MDa. Analysis of plasmid and chromosomal DNA from subsp. fukuokaensis showed little homology to the 72-kDa toxin gene (PG-14) of B. thuringiensis subsp. morrisoni. However, some of the proteins of B. thuringiensis subsp. fukuokaensis are homologous to other B. thuringiensis toxins because N-terminal amino acid analysis revealed that the 90-kDa protein is encoded by a cryIV gene type.  相似文献   

10.
Mosquitocidal Bacillus thuringiensis strains show as a common feature the presence of toxic proteins with cytolytic and hemolytic activities, Cyt1Aa1 being the characteristic cytolytic toxin of Bacillus thuringiensis subsp. israelensis. We have detected the presence of another cyt gene in this subspecies, highly homologous to cyt2An1, coding for the 29-kDa cytolytic toxin from B. thuringiensis subsp. kyushuensis. This gene, designated cyt2Ba1, maps upstream of cry4B coding for the 130-kDa crystal toxin, on the 72-MDa plasmid of strain 4Q2-72. Sequence analysis revealed, as a remarkable feature, a 5' mRNA stabilizing region similar to those described for some cry genes. PCR amplification and Southern analysis confirmed the presence of this gene in other mosquitocidal subspecies. Interestingly, anticoleopteran B. thuringiensis subsp. tenebrionis belonging to the morrisoni serovar also showed this gene. On the other hand, negative results were obtained with the anti-lepidopteran strains B. thuringiensis subsp. kurstaki HD-1 and subsp. aizawai HD-137. Western analysis failed to reveal Cyt2A-related polypeptides in B. thuringiensis subsp. israelensis 4Q2-72. However, B. thuringiensis subsp. israelensis 1884 and B. thuringiensis subsp. tenebrionis did show cross-reactive products, although in very small amounts.  相似文献   

11.
Abstract The mosquitocidal parasporal bodies of the PG-14 isolate of Bacillus thuringiensis ssp. morrisoni and B. thuringiensis ssp. israelensis were purified on sodium bromide gradients and compared using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) electron microscopy and bioassays against mosquito larvae. The parasporal bodies of both subspecies were spherical/ovoidal, approx. 0.7–1.2 μm in diameter, and contained major proteins of 28, 65, 126 and 135 kDa. In addition to these, the parasporal body of B. thuringiensis ssp. morrisoni contained at least one other major protein, of 144 kDa, which correlated with the presence of a quasi-bi-pyramidal inclusion not present in the B. thuringiensis ssp. israelensis parasporal body. The LC50 for parasporal bodies of each subspecies was in the range of 3 ng/ml for fourth-instars of Aedes aegypti . These results indicate that B. thuringiensis Serotype 8a:8b, which is generally considered to produce proteins toxic to lepidopterous insects, is capable of producing a protein toxin complement similar to B. thuringiensis Serotype 14.  相似文献   

12.
Strains of Bacillus thuringiensis such as B. thuringiensis subsp. israelensis (ONR-60A) and B. thuringiensis subsp. morrisoni (PG-14) pathogenic for mosquito larvae produce a complex parasporal body consisting of several protein endotoxins synthesized during sporulation that form an aggregate of crystalline inclusions bound together by a multilamellar fibrous matrix. Most studies of these strains focus on the molecular biology of the endotoxins, and although it is known that parasporal body structural integrity is important to achieving high toxicity, virtually nothing is known about the matrix that binds the toxin inclusions together. In the present study, we undertook a proteomic analysis of this matrix to identify proteins that potentially mediate assembly and stability of the parasporal body. In addition to fragments of their known major toxins, namely, Cry4Aa, Cry4Ba, Cry11Aa, and Cyt1Aa, we identified peptides with 100% identity to regions of Bt152, a protein coded for by pBtoxis of B. thuringiensis subsp. israelensis, the plasmid that encodes all endotoxins of this subspecies. As it is known that the Bt152 gene is expressed in B. thuringiensis subsp. israelensis, we disrupted its function and showed that inactivation destabilized the parasporal body matrix and, concomitantly, inclusion aggregation. Using fluorescence microscopy, we further demonstrate that Bt152 localizes to the parasporal body in both strains, is absent in other structural or soluble components of the cell, including the endospore and cytoplasm, and in ligand blots binds to purified multilamellar fibrous matrix. Together, the data show that Bt152 is essential for stability of the parasporal body of these strains.  相似文献   

13.
The parasporal body of the mosquitocidal isolate (PG-14) of Bacillus thuringiensis subsp. morrisoni (BTM) contains five major proteins with molecular masses of, respectively, 27.3, 65, 128, 135, and 144 kDa. Proteins corresponding in mass to the first four of these also occur in the mosquitocidal strain, B. thuringiensis subsp. israelensis (BTI), and it is thought therefore that the mosquitocidal activity of both strains is due to these four proteins. In other studies it has been shown that each of these proteins exhibits from moderate to high toxicity to mosquitoes, though the specific toxicity of the 144 kDa protein in PG-14 to mosquitoes remains unknown. In the present study, two parasporal body mutants (M146 and M242) of PG-14 were developed growing the wild-type strain at 42 degrees C. The parasporal body of M146 contained less of the 65-kDa protein and was less toxic (LC50 = 108 ng/ml) to mosquitoes than the wild-type strain (LC50 = 8.3 ng/ml). The parasporal body of M242 consisted of a bipyramidal crystal composed of a 144-kDa protein that was not toxic to the mosquito, Aedes aegypti, but exhibited substantial toxicity (LC50 = 2.5 micrograms/ml) to the lepidopteran. Trichoplusia ni. Because the parasporal bodies of BTI and BTM PG-14 are similar in mosquitocidal toxicity on a weight basis, the latter results suggest the 144-kDa protein, though not mosquitocidal alone, can contribute to mosquitocidal, activity when in the presence of other mosquitocidal proteins.  相似文献   

14.
A gene encoding a 125-kilodalton (kDa) mosquitocidal delta-endotoxin was cloned from the 72-MDa resident plasmid of Bacillus thuringiensis subsp. israelensis. This gene is similar in its 3' region to the gene encoding the 135-kDa protein previously cloned (C. Bourgouin, A. Klier, and G. Rapoport, Mol. Gen. Genet. 205:390-397, 1986). Escherichia coli recombinant clones harboring the 125-kDa gene were toxic to larvae of the three mosquito species Aedes aegypti, Anopheles stephensi, and Culex pipiens. In addition, the B. thuringiensis subsp. israelensis DNA fragment carrying the 125-kDa protein gene contains two sets of inverted repeat sequences, identified either by the S1 nuclease method or by electron microscopic observation. The structural organization of inverted repeat sequences and of the 125-kDa gene was analyzed and suggests that this B. thuringiensis subsp. israelensis delta-endotoxin gene is located within a transposable element.  相似文献   

15.
The genes cryIVA and cryIVD, encoding 134- and 72-kDa proteins, respectively, and the gene for a regulatory 20-kDa polypeptide of Bacillus thuringiensis subsp. israelensis (serovar H14) were cloned in all seven possible combinations by the Escherichia coli expression vectors pT7 and pUHE. The four combinations containing cryIVA (cryIVA alone, with cryIVD, with the 20-kDa-protein gene, and with both) displayed high levels of mosquito larvicidal activity in pUHE. The toxicity of the combination of cryIVA and cryIVD, with or without the 20-kDa-protein gene, was higher than has ever been achieved with delta-endotoxin genes in recombinant E. coli. Fifty percent lethal concentrations against third-instar Aedes aegypti larvae for these clones decreased (i.e., toxicity increased) continuously to about 3 x 10(5) cells ml-1 after 4 h of induction. Larvicidal activities, obtained after 30 min of induction, were lower for clones in pT7 and decreased for an additional 3.5 h. Induction of either cryIVD or the 20-kDa-protein gene alone resulted in no larvicidal activity in either pT7 or pUHE20. Cloned together, these genes were slightly toxic in pT7 but not in pUHE20. Five minutes of induction of this combination (cryIVD with the 20-kDa-protein gene) in pT7 yielded a maximal mortality of about 40%, which decreased rapidly and disappeared completely after 50 min. CryIVD is thus apparently degraded in E. coli and partially stabilized by the 20-kDa regulatory protein. Larvicidal activity of the combination of cryIVA and cryIVD was sevenfold higher than that of cryIVA alone, probably because of the cross-stabilization of the polypeptides or the synergism between their activities.  相似文献   

16.
The gene encoding the CryIVD protein of B. thuringiensis subsp. israelensis crystals was disrupted by in vivo recombination. The toxicity of the CryIVD protein-free inclusions was similar to that of the wild-type crystals on Anopheles stephensi larvae but was half the wild-type toxicity on Culex pipiens and Aedes aegypti larvae.  相似文献   

17.
A 3.7-kilobase (kb) XbaI fragment harboring the cryIVB gene (L. Thorne, F. Garduno, T. Thompson, D. Decker, M. A. Zounes, M. Wild, A. M. Walfield, and T. J. Pollock, J. Bacteriol. 166:801-811, 1986) which encoded a 130-kilodalton (kDa) mosquitocidal toxin from a 110-kb plasmid of Bacillus thuringiensis subsp. israelensis 4Q2-72 was cloned into pUC12 and transformed into Escherichia coli. The clone with a recombinant plasmid (designated pBT8) was toxic to Aedes aegypti larvae. The fragment (3.7 kb) was ligated into pBC16 (tetracycline resistant [Tcr]) and transformed by the method of protoplast transformation into Bacillus sphaericus 1593 and 2362, which were highly toxic to Anopheles and Culex mosquito larvae but less toxic to Aedes larvae. After cell regeneration on regeneration medium, the Tcr plasmids from transformants (pBTC1) of both strains of B. sphaericus were prepared and analyzed. The 3.7-kb XbaI fragment from the B. thuringiensis subsp. israelensis plasmid was shown to be present by agarose gel electrophoresis and Southern blot hybridization. In addition, B. sphaericus transformants produced a 130-kDa mosquitocidal toxin which was detected by Western (immuno-) blot analysis with antibody prepared against B. thuringiensis subsp. israelensis 130-kDa mosquitocidal toxin. The 50% lethal concentrations of the transformants of strains 1593 and 2362 against A. aegypti larvae were 2.7 X 10(2) and 5.7 X 10(2) cells per ml, respectively. This level of toxicity was comparable to the 50% lethal concentration of B. thuringiensis subsp. israelensis but much higher than that of B. sphaericus 1593 and 2362 (4.7 X 10(4) cells per ml) against A. aegypti larvae.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
A 3.7-kilobase (kb) XbaI fragment harboring the cryIVB gene (L. Thorne, F. Garduno, T. Thompson, D. Decker, M. A. Zounes, M. Wild, A. M. Walfield, and T. J. Pollock, J. Bacteriol. 166:801-811, 1986) which encoded a 130-kilodalton (kDa) mosquitocidal toxin from a 110-kb plasmid of Bacillus thuringiensis subsp. israelensis 4Q2-72 was cloned into pUC12 and transformed into Escherichia coli. The clone with a recombinant plasmid (designated pBT8) was toxic to Aedes aegypti larvae. The fragment (3.7 kb) was ligated into pBC16 (tetracycline resistant [Tcr]) and transformed by the method of protoplast transformation into Bacillus sphaericus 1593 and 2362, which were highly toxic to Anopheles and Culex mosquito larvae but less toxic to Aedes larvae. After cell regeneration on regeneration medium, the Tcr plasmids from transformants (pBTC1) of both strains of B. sphaericus were prepared and analyzed. The 3.7-kb XbaI fragment from the B. thuringiensis subsp. israelensis plasmid was shown to be present by agarose gel electrophoresis and Southern blot hybridization. In addition, B. sphaericus transformants produced a 130-kDa mosquitocidal toxin which was detected by Western (immuno-) blot analysis with antibody prepared against B. thuringiensis subsp. israelensis 130-kDa mosquitocidal toxin. The 50% lethal concentrations of the transformants of strains 1593 and 2362 against A. aegypti larvae were 2.7 X 10(2) and 5.7 X 10(2) cells per ml, respectively. This level of toxicity was comparable to the 50% lethal concentration of B. thuringiensis subsp. israelensis but much higher than that of B. sphaericus 1593 and 2362 (4.7 X 10(4) cells per ml) against A. aegypti larvae.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Electron microscopy of Bacillus thuringiensis subsp. kyushuensis revealed that the parasporal inclusions are composed of a homogeneous center surrounded by a thick, electron-dense coating. Antibodies directed against the 135- and 65-kilodalton B. thuringiensis subsp. israelensis peptides cross-reacted with the 70- and 26-kilodalton peptides, respectively, of B. thuringiensis subsp. kyushuensis.  相似文献   

20.
The cytolytic and mosquitocidal proteins of Bacillus thuringiensis subsp. israelensis were isolated from parasporal crystals and subsequently separated from each other. The proteins were separated by gel filtration chromatography and their molecular weights were estimated by both gel filtration chromatography and SDS-polyacrylamide gel electrophoresis. The apparent molecular weights of the mosquitocidal protein and the cytolytic protein were estimated to be 65,000 daltons and 28,000 daltons, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号