首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
The structural and biochemical changes of cytoskeletal components of retinal pigmented epithelial cells were studied during the development of chicken eyes. When the cytoskeletal components of the pigmented epithelial cells from various stages of development were examined by SDS PAGE, actin contents in the cells markedly increased between the 15-d-old and hatching stages. Immunofluorescence microscopy showed that chicken pigmented epithelial cells have two types of actin bundles. One is the circumferential bundle associated with the zonula adherens region as previously reported (Owaribe, K., and H. Masuda, 1982, J. Cell Biol., 95:310-315). The other is the paracrystalline bundle forming the core of the apical projections. The increase in actin contents after the 15-d-old stage is accompanied by the formation and elongation of core filaments of apical projections in the cells. During this period the apical projections extend into extracellular space among outer and inner segments of photoreceptor cells. Accompanying this change is an elongation of the paracrystalline bundles of actin filaments in the core of the projection. By electron microscopy, the bundles decorated with muscle heavy meromyosin showed unidirectional polarity, and had transverse striations with approximately 12-nm intervals, as determined by optical diffraction of electron micrographs. Since the shape of these bundles was not altered in the presence or absence of Ca2+, they seemed not to have villin-like proteins. Unlike the circumferential bundles, the paracrystalline bundles did not contract when exposed to Mg-ATP. These observations indicate that the paracrystalline bundles are structurally and functionally different from the circumferential actin bundles.  相似文献   

2.
The cytoskeleton of isolated murine primitive erythrocytes   总被引:1,自引:0,他引:1  
Summary Cytoskeletons of primitive erythrocytes have been isolated from the embryos of day 12 pregnant C57/Bl mice and examined by transmission electron microscopy, immunofluorescence microscopy, and SDS-polyacrylamide gel electrophoresis. Microtubules are the most prominent cytoskeletal component. They are found either singly or organized into loose bundles just under the plasma membrane, but do not form classical marginal bands in most cells. Immunofluorescence with a polyclonal tubulin antiserum confirms this distribution and further reveals numerous mitotic figures among the cells. Rhodamine-conjugated phalloidin and heavy meromyosin labeling reveal that actin is localized in the cortex of the primitive erythrocyte in the form of 6 nm filaments. Antibody directed against avian erythrocyte alpha spectrin demonstrates that spectrin is also found in the cortex. Occasional 10-nm intermediate filaments, observed in the primitve erythrocytes by electron microscopy, are believed to be of the vimentin class based on positive reaction of the cells with vimentin-specific antiserum. In addition, a band in erythrocyte cytoskeletons comigrates in SDS-polyacrylamide gels with vimentin isolated from mouse kidney. Spectrin and actin were also found to be associated with the membrane of primitive erythrocytes when membrane ghost preparations were analyzed by SDS-polyacrylamide gel electrophoresis.  相似文献   

3.
Heavy meromyosin (HMM) decoration of actin filaments was used to detect the polarity of microfilaments in interphase and cleaving rat kangaroo (PtK2) cells. Ethanol at -20 degrees C was used to make the cells permeable to HMM followed by tannic acid-glutaraldehyde fixation for electron microscopy. Uniform polarity of actin filaments was observed at cell junctions and central attachment plaques with the HMM arrowheads always pointing away from the junction or plaque. Stress fibers were banded in appearance with their component microfilaments exhibiting both parallel and antiparallel orientation with respect to one another. Identical banding of microfilament bundles was also seen in cleavage furrows with the same variation in filament polarity as found in stress fibers. Similarly banded fibers were not seen outside the cleavage furrow in mitotic cells. By the time that a mid-body was present, the actin filaments in the cleavage furrow were no longer in banded fibers. The alternating dark and light bands of both the stress fibers and cleavage furrow fibers are approximately equal in length, each measuring approximately 0.16 micrometer. Actin filaments were present in both bands, and individual decorated filaments could sometimes be traced through four band lengths. Undecorated filaments, 10 nm in diameter, could often be seen within the light bands. A model is proposed to explain the arrangement of filaments in stress fibers and cleavage furrows based on the striations observed with tannic acid and the polarity of the actin filaments.  相似文献   

4.
The structure of acto-heavy meromyosin has been examined by electron microscopy. When heavy meromyosin is mixed with actin at ~ 2 mg/ml a gel is formed. At lower actin concentrations more ordered assemblies are formed in which the actin filaments are in “rafts” about 300 Å apart cross-linked by heavy meromyosin. These results indicate that in solution the two heads of a heavy meromyosin molecule can bind to different actin filaments.  相似文献   

5.
Previous studies (Holmes, K.V., and P.W. Choppin. J. Exp. Med. 124:501- 520; J. Cell Biol. 39:526-543) showed that infection of baby hamster kidney (BHK21-F) cells with the parainfluenza virus SV5 causes extensive cell fusion, that nuclei migrate in the syncytial cytoplasm and align in tightly-packed rows, and that microtubules are involved in nuclear movement and alignment. The role of microtubules, 10-nm filaments, and actin-containing microfilaments in this process has been investigated by immunofluorescence microscopy using specific antisera, time-lapse cinematography, and electron microscopy. During cell fusion, micro tubules and 10-nm filaments from many cells form large bundles which are localized between rows of nuclei. No organized bundles of actin fibers were detected in these areas, although actin fibers were observed in regions away from the aligned nuclei. Although colchicine disrupts microtubules and inhibits nuclear movement, cytochalasin B (CB; 20-50 microgram/ml) does not inhibit cell fusion or nuclear movement. However, CB alters the shape of the syncytium, resulting in long filamentous processes extending from a central region. When these processes from neighboring cells make contact, fusion occurs, and nuclei migrate through the channels which are formed. Electron and immunofluorescence microscopy reveal bundles of microtubules and 10-nm filaments in parallel arrays within these processes, but no bundles of microfilaments were detected. The effect of CB on the structural integrity of microfilaments at this high concentration (20 microgram/ml) was demonstrated by the disappearance of filaments interacting with heavy meromyosin. Cycloheximide (20 microgram/ml) inhibits protein synthesis but does not affect cell fusion, the formation of microtubules and 10-nm filament bundles, or nuclear migration and alignment; thus, continued protein synthesis is not required. The association of microtubules and 10-nm filaments with nuclear migration and alignment suggests that microtubules and 10-nm filaments are two components in a system which serves both cytoskeletal and force-generating functions in intracellular movement and position of nuclei.  相似文献   

6.
Studies were made of the ultracytochemical changes in the cell membrane and microfilaments of colonic epithelial cells during tumorigenesis induced by 1,2-dimethylhydrazine (DMH) in mice fed a high fat diet. The tumor cells showed reduced membrane ATPase activity and loss of contact with neighboring cells. Microfilaments in tumor cells showed an irregular intensity of fluorescent staining. Their actin filaments bound with heavy meromyosin (HMM) had an arrowhead pattern as in normal cells, but these complexes were shortened and detached from the cell membrane. The arrowheads were directed toward the interior in the terminal web of tumor cells. Microfilaments with long rootlets extended to the apical surface of some tumor cells. These results indicate that during development of colonic tumors, the structures of the cell membrane and microfilaments of the cells changes.  相似文献   

7.
Summary Filamentous structures were observed when cytoplasmic extracts of various tissues of soybean plants and seedlings were examined by electron microscopy. Three main lines of evidence indicate that these structures represented microfilaments derived from the soybean tissues: a) the diameter of the filaments was estimated to be 6–7 nm; b) the addition of rabbit heavy meromyosin resulted in the decoration of the filaments, yielding characteristic arrow-head patterns; and c) ATP reversed the decoration of the filaments by heavy meromyosin. When the various anatomical parts of soybean plants and seedlings were compared for the presence of microfilaments, the root tips and radicles showed the highest frequency while the petioles and cotyledons yielded no observable filaments. In order to substantiate these findings, a quantitative radioimmunoassay was developed using rabbit antibodies directed against calf thymus actin. These studies demonstrated that the concentration of actin in extracts of the root tip was 15-fold higher than in those of the petiole and leaf. Similar comparisons of various parts of soybean seedlings showed that the radicle was rich in actin. These results suggest that actin filaments are found predominantly in the subterranean parts of plants.  相似文献   

8.
The distribution, ultrastructure, and chemistry of microfilaments in cultured chick embryo fibroblasts were studied by thin sectioning of flat-embedded untreated and glycerol-extracted cells, histochemical and immunological electron microscopic procedures, and the negative staining of cells cultured on electron microscopic grids. In these cultured cells, the microfilaments are arranged into thick bundles that are disposed longitudinally and in looser arrangements in the fusiform-shaped cells. In the latter case, they are concentrated along the margins of the flattened cell, on the dorsal surface, and particularly at the ends of the cell and its ventral surface, where contact is made with the plastic dish or with other cells. Extracellular filaments, presumably originating from within the cell, are found at these points of contact. The microfilaments are composed in part of an actin-like protein. These filaments are between 70 and 90 Å in diameter, they are stable in 50% glycerol, they have an endogenous ATPase (myosin-like?) associated with them, they bind rabbit muscle heavy meromyosin, and they specifically bind antibody directed against isolated actin-like protein. In the cultured chick embryo fibroblasts, the microfilaments are essential for the establishment and maintenance of form, and they are probably critical elements for adhesion and motility. The microfilaments might also serve as stabilizers of intramembranous particle fluidity.  相似文献   

9.
The cytoskeleton of murine peritoneal macrophages has been examined by a combination of morphological techniques, including phase-contrast light microscopy, scanning electron microscopy (SEM), and several transmission electron microscopic (TEM) methods. The cytoskeleton of cells spreading on glass, Formvar-carbon, and polystyrene substrata was exposed by brief extraction with non-ionic detergent, and stabilized by exposure to heavy meromyosin, myosin subfragment-1 or tropomyosin. In the spreading lamellae and lamellipodia the cytoskeleton is principally composed of filamentous actin, which appears as dense foci, interconnected by radiating filaments and filament bundles. The actin of the foci, as well as individual actin filaments, are connected to the substratum by transmembrane linkages which appear as filaments that pass through the plane of the (extracted) plasma membrane. Thus, the results of this study indicate that the adhesion of macrophages to substrata for the purposes of spreading and motility may be a function of transmembrane elements which link actin to substrata. Further, the formation of actin foci may serve to stiffen and stabilize the cytoskeleton, conditioning it to function in cell adhesion, spreading and locomotion.  相似文献   

10.
Summary The distribution of caldesmon (a calmodulin-binding, F-actin interacting protein; Sobue et al. 1982) and actin was studied in the rat thyroid gland by means of light-microscopic immunocytochemistry, and the fine-structural distribution of actin filaments was examined by use of heavy meromyosin (HMM). Caldesmon and actin were demonstrated in the apical cytoplasm of almost all the follicle epithelial cells in normal as well as TSH-treated animals. Immunoreactivities for both caldesmon and actin showed almost the same pattern in localization. The smooth muscle cells of the blood vessels were also positive for caldesmon and actin. By electron microscopy, numerous actin filaments decorated by HMM and running perpendicularly or randomly to the apical surface were recognized in the apical cytoplasm of the follicle epithelial cell. These results suggest that caldesmon and actin, in conjugation with calmodulin, play a role in the regulation of cellular activity such as exocytosis and endocytosis in the apical portion of the follicle epithelial cell.This study was supported by grants from the Ministry of Education, Science and Culture, Japan  相似文献   

11.
Bearer  E. L.  Reese  T. S. 《Brain Cell Biology》1999,28(2):85-98
Axoplasmic organelles move on actin as well as microtubules in vitro and axons contain a large amount of actin, but little is known about the organization and distribution of actin filaments within the axon. Here we undertake to define the relationship of the microtubule bundles typically found in axons to actin filaments by applying three microscopic techniques: laser-scanning confocal microscopy of immuno-labeled squid axoplasm; electronmicroscopy of conventionally prepared thin sections; and electronmicroscopy of touch preparations-a thin layer of axoplasm transferred to a specimen grid and negatively stained. Light microscopy shows that longitudinal actin filaments are abundant and usually coincide with longitudinal microtubule bundles. Electron microscopy shows that microfilaments are interwoven with the longitudinal bundles of microtubules. These bundles maintain their integrity when neurofilaments are extracted. Some, though not all microfilaments decorate with the S1 fragment of myosin, and some also act as nucleation sites for polymerization of exogenous actin, and hence are definitively identified as actin filaments. These actin filaments range in minimum length from 0.5 to 1.5 µm with some at least as long as 3.5 µm. We conclude that the microtubule-based tracks for fast organelle transport also include actin filaments. These actin filaments are sufficiently long and abundant to be ancillary or supportive of fast transport along microtubules within bundles, or to extend transport outside of the bundle. These actin filaments could also be essential for maintaining the structural integrity of the microtubule bundles.  相似文献   

12.
Amebas of Dictyostelium discoideum contain both microfilaments and microtubules. Microfilaments, found primarily in a cortical filament network, aggregate into bundles when glycerinated cells contract in response to Mg-ATP. These cortical filaments bind heavy meromyosin. Microtubules are sparse in amebas before aggregation. Colchicine, griseofulvin, or cold treatments do not affect cell motility or cell shape. Saltatory movement of cytoplasmic particles is inhibited by these treatments and the particles subsequently accumulate in the posterior of the cell. Cell motility rate changes as Dicytostelium amebas go through different stages of the life cycle. Quantitation of cellular actin by sodium dodecyl sulfate-polyacrylamide gel electrophoresis shows that the quantity of cellular actin changes during the life cycle. These changes in actin are directly correlated with changes in motility rate. Addition of cyclic AMP to Dictyostelium cultures at the end of the feeding stage prevents a decline in motility rate during the preaggregation stage. Cyclic AMP also modifies the change in actin content of the cells during preaggregation.  相似文献   

13.
Respreading gerbil fibroma cells (CCL146) have been found to display cytoplasmic actin-based polygonal fiber networks 10 h after replating (stage III of respreading according to Vasiliev & Gelfand, [1]). The networks have been analyzed by immunofluorescence and electron microscopy. The foci, sites of actin, α-actinin and filamin distribution, are condensed meshworks of microfilaments attached to the inner surface of the plasma membrane. The interconnecting fibers, sites of uniform actin distribution and complementary periodicities of α-actinin and myosin, are bundles of parallel microfilaments with periodic dense bodies. Heavy meromyosin (HMM) labelling of the microfilaments in the foci and interconnecting bundles confirm that they contain actin. In addition, approx. 70% of the microfilaments associated with an individual focus have a uniform polarity relative to it (arrowheads pointing away) suggesting that they have their origin there. Our results support earlier conclusions [2] that polygonal networks are structural intermediates responsible for organizing contractile proteins of the cortical microfilament layer into stress fibers.  相似文献   

14.
Sensory neurons from chick embryos were cultured on substrata that support neurite growth, and were fixed and prepared for both cytochemical localization of actin and electron microscopic observation of actin filaments in whole-mounted specimens. Samples of cells were treated with the detergent Triton X-100 before, during, or after fixation with glutaraldehyde to determine the organization of actin in simpler preparations of extracted cytoskeletons. Antibodies to actin and a fluorescent derivative of phallacidin bound strongly to the leading margins of growth cones, but in neurites the binding of these markers for actin was very weak. This was true in all cases of Triton X- 100 treatment, even when cells were extracted for 4 min before fixation. In whole-mounted cytoskeletons there were bundles and networks of 6-7-nm filaments in leading edges of growth cones but very few 6-7-n filaments were present among the microtubules and neurofilaments in the cytoskeletons of neurites. These filaments, which are prominent in growth cones, were identified as actin because they were stabilized against detergent extraction by the presence of phallacidin or the heavy meromyosin and S1 fragments of myosin. In addition, heavy meromyosin and S1 decorated these filaments as expected for binding to F-actin. Microtubules extended into growth cone margins and terminated within the network of actin filaments and bundles. Interactions between microtubule ends and these actin filaments may account for the frequently observed alignment of microtubules with filopodia at the growth cone margins.  相似文献   

15.
Cytoplasmic microfilaments are regular constituents of the cortical cytoplasm of rat mast cells. Heavy meromyosin binding to the microfilaments in glycerinated mast cells indicates that they represent actin filaments. Many of the actin filaments were found to be attached to spots of increased density of the plasma membrane. The actin filaments, possibly as part of an actomyosin system, may be involved in exocytosis of mast cell granules.  相似文献   

16.
Summary Retinal pigmented epithelial cells of chicken have circumferential microfilament bundles (CMBs) at the zonula adherens region. Isolated CMBs are polygons filled with a meshwork composed primarily of intermediate filaments; they show three major components of 200000, 55000, and 42000 daltons in SDS-gel electrophoresis. Here we have characterized the 55000-dalton protein immunochemically and ultrastructurally. Immunoblotting and immunofluorescence microscopy have shown that the 55000-dalton protein is an intermediate filament protein, vimentin.Vimentin filaments changed their distribution during differentiation of pigmented epithelial cells in culture. The protein in the elongated cells showed a fibroblast-type pattern of intermediate filaments. During epithelium formation, the filaments were uniformly distributed and formed a finer meshwork at the apical level. In pigmented epithelial cells that differentiated and matured in culture, vimentin and actin exhibited their characteristic behavior after treatment with colcemid. In the central to basal region of the cell, intermediate filaments formed thick perinuclear bundles. In the apical region, however, intermediate filaments changed in organization from a nonpolarized meshwork to a polarized bundle-like structure. Simultaneously, new actin bundles were formed, running parallel to the intermediate filaments. This suggests that there is some interaction between microfilaments and intermediate filaments in the apical region of these cells.  相似文献   

17.
《The Journal of cell biology》1989,109(4):1581-1595
We investigated the mechanism of turnover of an actin microfilament system in fibroblastic cells on an electron microscopic level. A new derivative of actin was prepared by labeling muscle actin with biotin. Cultured fibroblastic cells were microinjected with biotinylated actin, and incorporated biotin-actin molecules were detected by immunoelectron microscopy using an anti-biotin antibody and a colloidal gold-labeled secondary antibody. We also analyzed the localization of injected biotin-actin molecules on a molecular level by freeze-drying techniques. Incorporation of biotin-actin was rapid in motile peripheral regions, such as lamellipodia and microspikes. At approximately 1 min after injection, biotin-actin molecules were mainly incorporated into the distal part of actin bundles in the microspikes. Heavily labeled actin filaments were also observed at the distal fringe of the densely packed actin networks in the lamellipodium. By 5 min after injection, most actin polymers in microspikes and lamellipodia were labeled uniformly. These findings suggest that actin subunits are added preferentially at the membrane-associated ends of preexisting actin filaments. At earlier times after injection, we often observed that the labeled segments were continuous with unlabeled segments, suggesting the incorporation of new subunits at the ends of preexisting filaments. Actin incorporation into stress fibers was a slower process. At 2-3 min after injection, microfilaments at the surface of stress fibers incorporated biotin-actin, but filaments in the core region of stress fibers did not. At 5-10 min after injection, increasing density of labeling along stress fibers toward their distal ends was observed. Stress fiber termini are generally associated with focal contacts. There was no rapid nucleation of actin filaments off the membrane of focal contacts and the pattern of actin incorporation at focal contacts was essentially identical to that into distal parts of stress fibers. By 60 min after injection, stress fibers were labeled uniformly. We also analyzed the actin incorporation into polygonal nets of actin bundles. Circular dense foci, where actin bundles radiate, were stable structures, and actin filaments around the foci incorporated biotin- actin the slowest among the actin-containing structures within the injected cells. These results indicate that the rate and pattern of actin subunit incorporation differ in different regions of the cytoplasm and suggest the possible role of rapid actin polymerization at the leading margin on the protrusive movement of fibroblastic cells.  相似文献   

18.
Fluorescein-labeled heavy meromyosin subfragment-1 (F-S-1) has been purified by ion exchange chromatography and characterized in terms of its ability to bind specifically to actin. F-S-1 activates the Mg++-adenosine triphosphatase activity of rabbit skeletal muscle actin and decorates actin as shown by negative stains and thin sections of rabbit actin and rat embryo cell microfilament bundles, respectively. Binding of F-S-1 to cellular structures is prevented by pyrophosphate and by competition with excess unlabeled S-1. The F-S-1 is used in light microscope studies to determine the distribution of actin-containing structures in wnterphase and mitotic rat embryo and rat kangaroo cells. Interphase cells display the familiar pattern of fluorescent stress fibers. Chromosome-to-pole fibers are fluorescent in mitotic cells. The glycerol extraction procedures employed provide an opportunity to examine cells prepared in an identical manner by light and electron microscopy. The latter technique reveals that actin-like microfilaments are identifiable in spindles of glycerinated cells before and after addition of S-1 or HMM. In some cases, microfilaments appear to be closely associated with spindle microtubles. Comparison of the light and electron microscope results aids in the evaluation of the fluorescent myosin fragment technique and provides further evidence for possible structural and functional roles of actin in the mitotic apparatus.  相似文献   

19.
Summary Trypanosomes, an evolutionarily ancient group of unicellular eukaryotic parasites, appear to lack both microfilaments (actin) and intermediate filaments (IFs): the major cytoskeletal component common to all trypanosomes consists of a stable microtubular array intimately associated with the plasma membrane. We present here evidence of bundles of trans-cytoplasmic filaments ca. 10 nm in diameter, seen by transmission electron microscopy, that are formed in stationary cultures of an insect trypanosome,Crithidia fasciculata. Immunofluorescent labelling with an antibody raised against plant fibrillar bundles (AFB) and Western blotting with an antibody that cross-reacts with a broad range of IFs (anti-IFA) as well as with fibrillar bundles, indicates that these filaments appear to share antigenic determinants common to animal IFs and to fibrillar bundles of plant origin.Abbreviations AFB anti-fibrillar bundle antibody - anti-IFA anti-intermediate filament antibody - IF intermediate filament - SEM scanning electron microscope - TEM transmission electron microscope - YOL 1/34 anti--tubulin antibody  相似文献   

20.
Electron microscopic evidence demonstrated that dimethyl sulfoxide (DMSO) induces formation of giant intranuclear microfilament bundles in the interphase nucleus of a cellular slime mold, Dictyostelium. These giant bundles are approximately giant bundles are approximately 3 micrometer long, 0.85 micrometer wide, and composed of microfilaments 6 nm in diameter. Studies in which glycerinated cells were used showed that these microfilaments bind rabbit skeletal muscle heavy meromyosin, forming typical decorated "arrowhead" structures, and that this binding can be reverted by Mg-adenosine triphosphate. These data verify that the intranuclear microfilaments are the contractile protein actin, and that DMSO affects intranuclear actin, inducing the formation of such giant bundles. The intranuclear actin bundles appear at any developmental stage in two different species of cellular slime molds after treatment with DMSO. The native form of the intranuclear actin molecules and their possible functions are discussed, and it is proposed that the contractile protein has essential functions in the cell nucleus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号