首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Actin microfilaments were localized in quail oviduct ciliated cells using decoration with myosin subfragment S1 and immunogold labeling. These polarized epithelial cells show a well developed cytoskeleton due to the presence of numerous cilia and microvilli at their apical pole. Most S1-decorated microfilaments extend from the microvilli downward towards the upper part of the ciliary striated rootlets with which they are connected. From the microvillous roots, a few microfilaments connect the proximal part of the basal body or the basal foot associated with the basal body. Microfilament polarity is shown by S1 arrowheads pointing away from the microvillous tip to the cell body. Furthermore, short microfilaments are attached to the plasma membrane at the anchoring sites of basal bodies and run along the basal body. The polarity of these short microfilaments is directed from the basal body anchoring fibers downward to the cytoplasm. At the cell periphery, microfilaments from microvillous roots and ciliary apparatus are connected with those of the circumferential actin belt which is associated with the apical zonula adhaerens. Together with the other cytoskeletal elements, the microfilaments increase ciliary anchorage and could be involved in the coordination of ciliary beating. Moreover, microvilli surrounding the cilia probably modify ciliary beating by offering resistance to cilium bending. The presence of microvilli could explain the fact that mainly the upper part of the cilia appanars to be involved in the axonemal bending in metazoan ciliated cells.  相似文献   

2.
Microtubules and microfilaments were localized by an immunocytochemical method in the granular cells of the frog bladder after fixation and isolation. An extensive array of microtubules was observed in the granular cells with an orientation towards the luminal plasma membrane in the supranuclear zone. Actin filaments formed a continuous bundle that underlined the cellular membrane. After incubation in the presence of colchicine, nocodazole, or tubulozole, the microtubular network appeared fragmented but did not disappear completely. These observations are related to the role of the cytoskeleton in the permeability response of the frog bladder epithelium to vasopressin.  相似文献   

3.
When fluid-phase markers are internalized from opposite poles of polarized Madin-Darby canine kidney cells, they accumulate in distinct apical and basolateral early endosomes before meeting in late endosomes. Recent evidence suggests that significant mixing of apically and basolaterally internalized membrane proteins occurs in specialized apical endosomal compartments, including the common recycling endosome and the apical recycling endosome (ARE). The relationship between these latter compartments and the fluid-labeled apical early endosome is unknown at present. We report that when the apical recycling marker, membrane-bound immunoglobulin A (a ligand for the polymeric immunoglobulin receptor), and fluid-phase dextran are cointernalized from the apical poles of Madin-Darby canine kidney cells, they enter a shared apical early endosome (相似文献   

4.
A monoclonal antibody (CC-212), obtained in a fusion experiment in which basal bodies from quail oviduct were used as immunogen, has been shown to label the apical pole of ciliated cells and to react with a 200-kD protein. This monoclonal antibody was demonstrated to be an anti-myosin from smooth muscle or from nonmuscular cells using the following criteria: On Western blots it reacted with the myosin heavy chains from gizzard and platelet extracts and from cultured cell line extracts, but did not react with striated muscle myosin heavy chains. By immunofluorescence it decorated the stress fibers of well-spread cells with a characteristic striated pattern, while it did not react with myotubes containing organized myofibrils. On native ciliated cells as well as on Triton-extracted ciliated cortices from quail oviduct, this monoclonal antibody decorated the apical pole with a stronger labeling of the periphery of the apical area. Ultrastructural localization was attempted using the immunogold technique on the same preparation. Myosin was associated with a filamentous material present between striated rootlets and the proximal extremities of the basal bodies. No labeling of the basal body itself or of axoneme was observed.  相似文献   

5.
Summary— Microfilaments were localised by immunofluorescence and immunogold cytochemistry to examine their distribution in granular cells of the isolated frog skin epithelium. Strongly fluorescent bundles of actin were observed beneath the plasma membrane with little evidence for actin in the central regions. Higher resolution offered by cytochemistry revealed that bundles of actin filaments comprised a substantial portion of the cortical cytoskeleton. Quantitative analysis of the frequency of gold label revealed an extremely rich array of filaments beneath the apical membrane of granular cells, with markedly less babel along the basolateral membrane and in the central cytoplasm. Treating cells with cytochalasin B or arginine vasopressin caused an apparent disruption of the apical actin fibres, concurrent with a decrease in gold label density. Assumably these signs are indicative of depolymerization of the filaments. Although the significance of this distribution is unknown, the apical polarisation of actin is consistent with a role in regulating the Na+ permeability of the apical membrane. The data are discussed in relation to possible roles of the cytoskeleton in the regulation of transepithelial sodium transport by vasopressin.  相似文献   

6.
Summary An aminopeptidase N has been detected by immunofluorescence in the apical plasma membrane of porcine thyroid cells, facing the follicular lumen. Freshly isolated cells obtained by tissue trypsinization, lose their polarity and exhibit a homogeneous enzyme distribution over the whole plasma membrane. In thyrotropin-stimulated cultured cells organized into follicles, the enzyme is localized in the apical cell pole. In monolayer cells, on the other hand, the enzyme is distributed over the whole surface facing the medium. In both types of cultures fluorescence is also observed in intracytoplasmic organelles. In vivo, aminopeptidase is a marker of the apical part of the thyroid plasma membrane, but its in vitro localization depends upon cell differentiation related to the culture conditions.  相似文献   

7.
Treatment with cytochalasin D, a drug that acts by inducing the depolymerization of the actin cytoskeleton, selectively blocked endocytosis of membrane bound and fluid phase markers from the apical surface of polarized MDCK cells without affecting the uptake from the basolateral surface. Thus, in MDCK cell transformants that express the VSV G protein, cytochalasin blocked the internalization of an anti-G mAb bound to apical G molecules, but did not reduce the uptake of antibody bound to the basolateral surface. The selective effect of cytochalasin D on apical endocytosis was also demonstrated by the failure of the drug to reduce the uptake of 125I-labeled transferrin, which occurs by receptor-mediated endocytosis, via clathrin-coated pits, almost exclusively from the basolateral surface. The actin cytoskeleton appears to play a critical role in adsorptive as well as fluid phase apical endocytic events, since treatment with cytochalasin D prevented the apical uptake of cationized ferritin, that occurs after the marker binds to the cell surface, as well as uptake of Lucifer yellow, a fluorescent soluble dye. Moreover, the drug efficiently blocked infection of the cells with influenza virus, when the viral inoculum was applied to the apical surface. On the other hand, it did not inhibit the basolateral uptake of Lucifer yellow, nor did it prevent infection with VSV from the basolateral surface, or with influenza when this virus was applied to monolayers in which the formation of tight junctions had been prevented by depletion of calcium ions. EM demonstrated that cytochalasin D leads to an increase in the number of coated pits in the apical surface where it suppresses the pinching off of coated vesicles. In addition, in drug-treated cells cationized ferritin molecules that were bound to microvilli were not cleared from the microvillar surface, as is observed in untreated cells. These findings indicate that there is a fundamental difference in the process by which endocytic vesicles are formed at the two surfaces of polarized epithelial cells and that the integrity and/or the polymerization of actin filaments are required at the apical surface. Actin filaments in microvilli may be part of a mechanochemical motor that moves membrane components along the microvillar surface towards intermicrovillar spaces, or provides the force required for converting a membrane invagination or pit into an endocytic vesicle within the cytoplasm.  相似文献   

8.
Summary The distribution of tropomyosin, actin and tubulin in the supporting cells of the organ of Corti was studied by immunofluorescent localization of antibodies to these proteins. Tropomyosin colocalizes with actin and tubulin in the regions of the tunnel pillar and Deiters cells where actin microfilaments and microtubules had previously been observed ultrastructurally. Despite the implications of the presence of antiparallel actin filaments in the supporting cells, the presence of tropomyosin and the absence of myosin suggest that the role of tropomyosin may be to confer rigidity to the actin filaments. Thus the primary function of the cytoskeletal proteins in the supporting cells may be structural.  相似文献   

9.
Summary Actin microfilaments in isolated root-tip cells from wheat (Triticum aestivum L. cv. Kite) were visualized by immunofluorescence microscopy using two different antiactin monoclonal antibodies. Cells in interphase contain predominantly subcortical bundles of microfilaments, as described in many cell types, but in preprophase and prophase cells, immunodetectable actin is organized solely in ordered arrays of cortical microfilaments that cover the entire surface of the cell, transverse on lateral faces, random on end walls. Intermediate stages with random and transverse microfilaments are also seen on lateral faces. The cell cycle stage-dependent transverse cortical microfilaments described here are previously unreported in higher plant cells.Abbreviations Ig immunoglobulin - MF microfilament  相似文献   

10.
This ultrastructural study of both the normal human breast tissue and differentiated mammary carcinoma (NOS) epithelial cells has revealed pictures demonstrating luminal receptor-mediated endocytosis. By application of immunogold anti-actin labeling, actin surrounding the fusion ring of coated pits was visualized. However, the coated membrane was not actin labeled. We suggest that association of the actin with coated pits may evidence for its participation in pinching off of the coated vesicles.  相似文献   

11.
For identification and distribution of actin microfilaments in hand-isolated nuclei of R. temporaria oocytes (stage 6, according to Dumont, 1972) different methods were used: heavy meromyosin decoration, antiactin immunofluorescence with monoclonal antibodies, staining with rhodamine phalloidin, and electrophoresis in polyacrylamide gel. The nuclei of R. temporaria oocytes contain a considerable quantities of actin microfilaments which form intranuclear meshwork. Microfilaments are connected with the nucleoli, nucleolar RNP-complexes and nuclear envelope. Immunofluorescence with antiactin monoclonal antibodies reveals a strong staining of microfilaments and nucleoli. A slight staining of nucleoli is observed after the treatment of nuclei with rhodamine phalloidin. A specific role of intranuclear microfilaments in direct transport of nucleolar material from the nucleus into the oocyte cytoplasm, in stabilization of the karyosphere (the late diplotene oocyte complex of chromosomes with numerous nucleoli) is discussed in addition to its keeping in a definite region of the nucleus. A supposition is drawn on the functional significance of the connection between microfilaments and nuclear matrix. Based on our own and literature data, a conclusion is drawn, that the intranuclear filament actin may be one of the leading components in morpho-functional organization of the nucleus as the whole.  相似文献   

12.
Epithelial cell organization into multicellular structures is a critical biological process required for both organogenesis and repair following injury. The basement membrane and the cytoskeleton have important roles in this process; however, the functions of individual components of basement membrane and cytoskeleton are poorly understood. We used IEC-6 cells, a rat intestinal crypt cell line, grown on a three-dimensional gel of reconstituted basement membrane as a model system to determine which extracellular matrix and cytoskeletal components mediate intestinal epithelial cell organization. The cells entered the gel and formed hollow, tubular structures that resembled intestinal crypts. These structures were characterized by a single layer of polarized cells with apical tight junctions and microvilli on the luminal surface. Antiserum to laminin and the pentapeptide Tyr-Ile-Gly-Ser-Arg (which prevents cell attachment to laminin) inhibited this organization, but a control pentapeptide (Tyr-Tyr-Gly-Asp-Ala) and antiserum to collagen IV did not. Cytochalasin B, which interferes with actin microfilament polymerization, also inhibited organization of cells into multicellular structures, but vinblastine and Colcemid, which disrupt microtubules, and cycloheximide, which inhibits protein synthesis, did not. We conclude that organization of intestinal epithelial cells on a basement membrane into multicellular structures results from specific interactions between cells and laminin and requires intact actin microfilaments.  相似文献   

13.
Fluorescence staining with rhodamine phalloidin specific for F-actin was employed to examine the effects of delta-9-tetrahydrocannabinol (THC) on the distribution of microfilaments in kangaroo rat epithelial cells (PtK2) and rabbit aortic endothelial cells (RAE). PtK2 cells were more sensitive to THC treatment than RAE cells. Exposure of PtK2 cells to 10 microM THC for 2 h disrupted the microfilament network. After treatment with 20 microM THC for 2 h there was a loss of cell-to-cell contact between PtK2 cells, and at 30 microM THC, the cells started to detach from the substratum. In contrast, microfilament disorganization but not cell detachment was observed in RAE cells at THC concentrations of 80 and 100 microM. The possible mechanisms which may account for the changes in the microfilament system are discussed.  相似文献   

14.
The roles of actin microfilaments (MFs) in the organization of microtubules (MTs) at the M/G1 interface were investigated in transgenic tobacco BY-2 cells stably expressing a GFP-tubulin fusion protein, using the MF-disrupting agent, Bistheonellide A (BA). When MFs were disrupted by BA treatment, cortical MTs (CMTs) did not become reorganized even 3 h after phragmoplast collapse, whereas non-treated cells completed CMT reorganization within 1 h. Furthermore, in the absence of MFs, the tubulin proteins did not show appropriate recruitment but remained at the site where the phragmoplast had existed, or extra-phragmoplasts were organized. These extra-phragmoplasts could functionally form extra-cell plates. This is the first observation of the formation of multiple cell plates during one nuclear division, and of phragmoplast generation irrespective of the position of the mitotic spindle or nuclei. The significance of these observations on the role of MFs at the M/G1 interface is discussed.  相似文献   

15.
Thyroid peroxidase (TPO) located in the apical plasma membrane of follicular cells was investigated by means of a membrane-immunofluorescent technique. The epitope of TPO recognized by a murine monoclonal antibody (mAb 30.1.2) was identified on the apical membrane surface. Trypsinization removed TPO immunoreactivity and enzymatic activity after 60 min of incubation at 37 degrees C. The epitope reappeared on the apical membrane surface after short term culture for 120 min without the addition of TSH. With TSH the time required for reappearance was only 30 min. TPO activity was regenerated under both conditions. Since dibutyryl cyclic AMP could not accelerate the reappearance of the epitope, it was thought that TPO reappearance is mediated by other than the adenylate cyclase-cyclic AMP system.  相似文献   

16.
In this article, we investigate the contributions of actin filaments and accessory proteins to apical clathrin-mediated endocytosis in primary rabbit lacrimal acini. Confocal fluorescence and electron microscopy revealed that cytochalasin D promoted apical accumulation of clathrin, alpha-adaptin, dynamin, and F-actin and increased the amounts of coated pits and vesicles at the apical plasma membrane. Sorbitol density gradient analysis of membrane compartments showed that cytochalasin D increased [14C]dextran association with apical membranes from stimulated acini, consistent with functional inhibition of apical endocytosis. Recombinant syndapin SH3 domains interacted with lacrimal acinar dynamin, neuronal Wiskott-Aldrich Syndrome protein (N-WASP), and synaptojanin; their introduction by electroporation elicited remarkable accumulation of clathrin, accessory proteins, and coated pits at the apical plasma membrane. These SH3 domains also significantly (p 相似文献   

17.
A small conductance chloride channel has been identified on the apical membrane of porcine thyroid cells using the patch-clamp technique. In cell attached membrane patches with NaCl in the pipette, the single channel conductance is 5.5 pS. The channel is highly selective for chloride over gluconate and iodide, and is impermeable to Na+, K+ and tetraethylammonium ions. The open state probability of the channel is not affected by voltage. The channel activity disappears after excision of the patch. The Cl- channel blocker 5-nitro-2-(3-phenylpropylamino)-benzoate (NPPB) did not affect the activity of the thyroid Cl- channels. Treatment of thyroid cells with 8-(4-chlorophenylthio)adenosine-3',5'-cyclic monophosphate (8-chloro-cAMP) (0.5 mM) prior to giga-seal formation increased Cl- channel activity in the apical membrane of thyroid cells.  相似文献   

18.
F. Waller  P. Nick 《Protoplasma》1997,200(3-4):154-162
Summary In seedlings of maize (Zea mays L. cv. Percival), growth is controlled by the plant photoreceptor phytochrome. Whereas coleoptile growth is promoted by continuous far-red light, a dramatic block of mesocotyl elongation is observed. The response of the coleoptile is based entirely upon light-induced stimulation of cell elongation, whereas the response of the mesocotyl involves light-induced inhibition of cell elongation. The light response of actin microfilaments was followed over time in the epidermis by staining with fluorescence-labelled phalloidin. In contrast to the underlying tissue, epidermal cells are characterized by dense longitudinal bundles of microfilaments. These bundles become loosened during phases of rapid elongation (between 2–3 days in irradiated coleoptiles, between 5–6 days in dark-grown coleoptiles). The condensed bundles re-form when growth gradually ceases. The response of actin to light is fast. If etiolated mesocotyls are transferred to far-red light, condensation of microfilaments can be clearly seen 1 h after the onset of stimulation together with an almost complete block of mesocotyl elongation. The observations are discussed in relation to a possible role of actin microfilaments in the signal-dependent control of cell elongation.  相似文献   

19.

Background  

Actin is an ancient molecule that shows more than 90% amino acid homology between mammalian and plant actins. The regions of the actin molecule that are involved in F-actin assembly are largely conserved, and it is likely that mammalian actin is able to incorporate into microfilaments in plant cells but there is no experimental evidence until now.  相似文献   

20.
An integral membrane protein associated with sites of microfilament-membrane attachment has been identified by a newly developed IgG1 monoclonal antibody. This antibody, MAb 30B6, was derived from hybridoma fusion experiments using intact mitotic cells of chick embryo fibroblasts as the immunization vehicle as well as the screening probe for cell surface antigens. In immunofluorescent experiments with fixed cells, MAb 30B6 surface labeling is uniquely correlated with microfilament distributions in the cleavage furrow region of dividing chick embryo fibroblasts and cardiac myocytes in culture. The MAb 30B6 antigen in addition is associated with microfilament-membrane attachment sites in interphase fibroblasts at the dorsal surface, the adhesion plaque region at the ventral surface, and at junction-like regions of cell-cell contact. It is also found co-localized with the membrane-dense plaques of smooth muscle. The MAb 30B6 antigen is expressed in a wide number of chicken cell types (particularly smooth muscle cells, platelets, and endothelial cells), but not in erythrocytes. Some of the molecular characteristics of the MAb 30B6 antigen have been determined from immunoblotting, immunoaffinity chromatography, immunoprecipitation, cell extraction, and charge shift electrophoresis experiments. It is an integral sialoglycoprotein with an apparent molecular mass of 130 kD (reduced form)/107 kD (nonreduced form) in SDS PAGE. Another prominent glycoprotein species with an apparent molecular mass of 175 kD (reduced form)/165 kD (nonreduced form) in SDS PAGE is co-isolated on MAb 30B6 affinity columns, but appears to be antigenically distinct since it is not recognized by MAb 30B6 in immunoblotting or immunoprecipitation experiments. By virtue of its surface distributions relative to actin microfilaments and its integral protein character, we propose that the MAb 30B6 antigen is an excellent candidate for the function of directly or indirectly anchoring microfilaments to the membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号