首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A strain of Escherichia coli K-12 containing mutations that allow for the experimental control of RNA and DNA syntheses was constructed to investigate the role that RNA synthesis plays in conjugational DNA transfer when DNA replication is inhibited. The mutations possessed by this strain and its donor derivatives include: (i) thyA, which blocks synthesis of dTMP, causing a requirement for thymine; (ii) deoC, which blocks breakdown of deoxyribose 5-phosphate, permitting growth with low levels of thymine; (iii) pyrF, which blocks synthesis of UMP from OMP, imposing a requirement for uridine; (iv) cdd and pyrG, which block the deamination of cytidine to uridine and the synthesis of CTP from UTP, respectively, causing a requirement for cytidine; (v) codA and codB, which block the deamination of cytosine to uracil and cytosine transport, respectively, preventing the substitution of cytosine for cytidine; and (vi) dnaB, which blocks vegetative but not conjugational DNA replication at 42 degrees C. DNA synthesis can be blocked in the donor strains by the addition of excess uridine when exogenous thymine is not present. We found that RNA synthesis can also be blocked by addition of excess uridine when exogenous cytidine is not present. Blocking RNA synthesis prior to mating, under conditions in which DNA synthesis either is or is not inhibited, depresses DNA transfer. However, under conditions in which DNA synthesis is inhibited, the blocking of RNA synthesis immediately after mating has commenced had no effect on continued conjugational transfer of DNA. Thus, RNA synthesis is needed to initiate but not to continue conjugational DNA transfer.  相似文献   

2.
The treatment of rats by galactosamine (2 mmol/kg i.p.), which dramatically alters the metabolism of pyrimidine nucleotides in the liver, has been used to investigate the dynamics of pyrimidine nucleotides in the rat heart. Six hours after administration of the drug, the UTP and UDPG myocardial contents were decreased by respectively 40 and 52% while the sum of uracil nucleotides was increased by 66% and that of cytosine nucleotides by 15%. When administered 5 h after galactosamine treatment, cytidine (750 nmol/rat i.v.) induced a further increase in cytosine nucleotides (46% above control value 1 h later) without however effect on uracil nucleotides. On the other hand, the administration of uridine (250 nmol/rat, i.v. 5 h after galactosamine), while restoring UTP, UDPG and the pool of uracil nucleotides, provoked a decrease in cytosine nucleotide level (-17%). In the absence of galactosamine treatment, the administration of uridine and cytidine did not induce changes in nucleotide levels despite a rise in blood cytidine concentration. All these observations support the hypothesis that: 1. the pathway for cytosine nucleotide synthesis predominant in the heart is that utilizing preformed exogenous cytidine and 2. this pathway is mainly controlled by the intracellular concentration of UTP rather than that of CTP.  相似文献   

3.
By measuring enzyme activities in crude extracts and studying the effect of toxic analogs (5-fluoropyrimidines) on cell growth, the metabolism of pyrimidines in Lactococcus lactis was analyzed. Pathways by which uracil, uridine, deoxyuridine, cytidine, and deoxycytidine are metabolized in L. lactis were established. They are similar to those found in Escherichia coli except that lactococci are unable to utilize cytosine.  相似文献   

4.
Using 5-fluoropyrimidine analogues, high-performance liquid chromatography (HPLC), and the feeding of pyrimidine compounds to pyrimidine auxotrophs, the pathways for salvage of exogenous pyrimidine nucleosides and bases in Streptomyces were established. Selection for resistance to the analogues resulted in the isolation of strains of S. griseus lacking the following enzyme activities: uracil phosphoribosyltransferase (upp) and cytidine deaminase (cdd). The conversion of substrates in the pathway was followed using reverse-phase HPLC. The strains deficient in salvage enzymes were also verified by this method. In addition, feeding of exogenous pyrimidines to strains lacking the biosynthetic pathway confirmed the salvage pathway. Data from the analogue, HPLC, and feeding experiments showed that Streptomyces recycles the pyrimidine base uracil, as well as the nucleosides uridine and cytidine. Cytosine is not recycled due to a lack of cytosine deaminase.  相似文献   

5.
Pyrimidine Salvage Pathways In Toxoplasma Gondii   总被引:1,自引:0,他引:1  
ABSTRACT. Pyrimidine salvage enzyme activities in cell-free extracts of Toxoplasma gondii were assayed in order to determine which of these enzyme activities are present in these parasites. Enzyme activities that were detected included phosphoribosyltransferase activity towards uracil (but not cytosine or thymine), nucleoside phosphorylase activity towards uridine, deoxyuridine and thymidine (but not cytidine or deoxycytidine), deaminase activity towards cytidine and deoxycytidine (but not cytosine, cytidine 5'-monophosphate or deoxycytidine 5'-monophosphate), and nucleoside 5'-monophosphate phosphohydrolase activity towards all nucleotides tested. No nucleoside kinase or phosphotransferase activity was detected, indicating that T. gondii lack the ability to directly phosphorylate nucleosides. Toxoplasma gondii appear to have a single non-specific uridine phosphorylase enzyme which can catalyze the reversible phosphorolysis of uridine, deoxyuridine and thymidine, and a single cytidine deaminase activity which can deaminate both cytidine and deoxycytidine. These results indicate that pyrimidine salvage in T. gondii probably occurs via the following reactions: cytidine and deoxycytidine are deaminated by cytidine deaminase to uridine and deoxyuridine, respectively; uridine and deoxyuridine are cleaved to uracil by uridine phosphorylase; and uracil is metabolized to uridine 5'-monophosphate by uracil phosphoribosyltransferase. Thus, uridine 5'-monophosphate is the end-product of both de novo pyrimidine biosynthesis and pyrimidine salvage in T. gondii.  相似文献   

6.
Pyrimidine-requiring cdd mutants of Escherichia coli deficient in cytidine deaminase utilize cytidine as a pyrimidine source by an alternative pathway. This has been presumed to involve phosphorylation of cytidine to CMP by cytidine/uridine kinase and subsequent hydrolysis of CMP to cytosine and ribose 5-phosphate by a putative CMP hydrolase. Here we show that cytidine, in cdd strains, is converted directly to cytosine and ribose by a ribonucleoside hydrolase encoded by the previously uncharacterized gene ybeK, which we have renamed rihA. The RihA enzyme is homologous to the products of two unlinked genes, yeiK and yaaF, which have been renamed rihB and rihC, respectively. The RihB enzyme was shown to be a pyrimidine-specific ribonucleoside hydrolase like RihA, whereas RihC hydrolyzed both pyrimidine and purine ribonucleosides. The physiological function of the ribonucleoside hydrolases in wild-type E. coli strains is enigmatic, as their activities are paralleled by the phosphorolytic activities of the nucleoside phosphorylases, and a triple mutant lacking all three hydrolytic activities grew normally. Furthermore, enzyme assays and lacZ gene fusion analysis indicated that rihB was essentially silent unless activated by mutation, whereas rihA and rihC were poorly expressed in glucose medium due to catabolite repression.  相似文献   

7.
The type 1 ribosome inactivating protein from Momordica balsamina (MbRIP1) has been shown to interact with purine bases, adenine and guanine of RNA/DNA. We report here the binding and structural studies of MbRIP1 with a pyrimidine base, cytosine; cytosine containing nucleoside, cytidine; and cytosine containing nucleotide, cytidine diphosphate. All three compounds bound to MbRIP1 at the active site with dissociation constants of 10?4 M–10?7 M. As reported earlier, in the structure of native MbRIP1, there are 10 water molecules in the substrate binding site. Upon binding of cytosine to MbRIP1, four water molecules were dislodged from the substrate binding site while five water molecules were dislodged when cytidine bound to MbRIP1. Seven water molecules were dislocated when cytidine diphosphate bound to MbRIP1. This showed that cytidine diphosphate occupied a larger space in the substrate binding site enhancing the buried surface area thus making it a relatively better inhibitor of MbRIP1 as compared to cytosine and cytidine. The key residues involved in the recognition of cytosine, cytidine and cytidine diphosphate were Ile71, Glu85, Tyr111 and Arg163. The orientation of cytosine in the cleft is different from that of adenine or guanine indicating a notable difference in the modes of binding of purine and pyrimidine bases. Since adenine containing nucleosides/nucleotides are suitable substrates, the cytosine containing nucleosides/nucleotides may act as inhibitors.  相似文献   

8.
Mutagenicity of the cytidine analog zebularine in Escherichia coli   总被引:1,自引:0,他引:1  
Lee G  Wolff E  Miller JH 《DNA Repair》2004,3(2):155-161
We have examined the mutagenic properties of zebularine, a cytidine analog lacking the amino group at C-4 that has potential use in chemotherapy. Because the hydrate is a strong inhibitor of cytidine deaminase, its use can enhance the potency of other cytosine based compounds such as 5-azacytidine (5AzaC) and cytosine arabinoside (ara-C) that are inactivated by cytidine deaminase. Using the newly developed rpoB/Rifr system in Escherichia coli, we examined base substitution mutations caused by zebularine in the chromosomal rpoB gene. Zebularine is a potent mutagen that causes mainly G : C --> A : T transitions and favors certain hotspots. Mutations are not specific to the rpoB gene, since there is also a strong induction of mutations in the thyA gene. In the absence of mismatch repair, zebularine induces both base substitutions and frame shifts at rates well above those seen in wild-type strains treated with zebularine or in mismatch repair deficient strains without treatment. The nature of these induced mutations indicates that zebularine is stimulating the induction of increased replication errors, in addition to the targeted G : C --> A : T mutations, and that these errors are normally repaired by the mismatch repair system.  相似文献   

9.
Pyrimidine salvage pathways are vital for all bacteria in that they share in the synthesis of RNA with the biosynthetic pathway in pyrimidine prototrophs, while supplying all pyrimidine requirements in pyrimidine auxotrophs. Salvage enzymes that constitute the pyrimidine salvage pathways were studied in 13 members of Pseudomonas and former pseudomonads. Because it has been established that all Pseudomonas lack the enzyme uridine/cytidine kinase (Udk) and all contain uracil phosphoribosyl transferase (Upp), these two enzymes were not included in this experimental work. The enzymes assayed were: cytosine deaminase [Cod: cytosine + H2O → uracil + NH3], cytidine deaminase [Cdd: cytidine + H2O → uridine + NH3], uridine phosphorylase [Udp: uridine + Pi ↔ uracil + ribose – 1 - P], nucleoside hydrolase [Nuh: purine/pyrimidine nucleoside + H2O → purine/pyrimidine base + ribose], uridine hydrolase [Udh: uridine/cytidine + H2O → uracil/cytosine + ribose]. The assay work generated five different Pyrimidine Salvage Groups (PSG) designated PSG1 – PSG5 based on the presence or absence of the five enzymes. These enzymes were assayed using reverse phase high-performance liquid chromatography techniques routinely carried out in our laboratory. Escherichia coli was included as a standard, which contains all seven of the above enzymes.  相似文献   

10.
Pyrimidine salvage pathways in adult Schistosoma mansoni   总被引:2,自引:0,他引:2  
Adult Schistosoma mansoni can utilize radiolabelled cytidine, uridine, uracil, orotate, deoxycytidine and thymidine for the synthesis of its nucleic acids. In this respect, cytidine is the most efficiently utilized pyrimidine precursor. Cytosine, thymine and orotidine are transported into the parasites but not metabolized. High performance liquid chromatography analysis of the nucleobase, nucleoside and nucleotide pools from in vivo metabolic studies and assays of enzyme activities in cell-free extracts indicate the presence of nucleoside and nucleotide kinases which phosphorylate the various nucleosides to their respective nucleoside mono-, di- and triphosphates. Uridine, thymidine and deoxyuridine can also be cleaved to their respective nucleobases by uridine phosphorylase. Uracil can be converted directly to UMP by orotate phosphoribosyltransferase or by the sequential actions of uridine phosphorylase and uridine kinase. Nucleoside 5'-monophosphates were dephosphorylated by active phosphohydrolases. All enzymes tested were found in the cytosol fraction with the exception of the phosphohydrolases which were associated mainly with the particulate fraction. No deamination of cytosine, cytidine, deoxycytidine, CMP or dCMP was detected either in vivo or in vitro. The active metabolism of cytidine and absence of deamination and phosphorolysis of cytidine derivatives in schistosomes raise the possibility of using cytidine analogues for the selective treatment of schistosomiasis.  相似文献   

11.
The repressive effects of exogenous cytidine on growing cells was examined in a specially constructed strain in which the pool sizes of endogenous uridine 5'-diphosphate and uridine 5'-triphosphate cannot be varied by the addition of uracil and/or uridine to the medium. Five enzymes of the pyrimidine biosynthetic pathway and one enzyme of the arginine biosynthetic pathway were assayed from cells grown under a variety of conditions. Cytidine repressed the synthesis of dihydroorotase (encoded by pyrC), dihydroorotate dehydrogenase (encoded by pyrD), and ornithine transcarbamylase (encoded by argI). Moreover, aspartate transcarbamylase (encoded by pyrB) became further derepressed upon cytidine addition, whereas no change occurred in the levels of the last two enzymes (encoded by pyrE and pyrF) of the pyrimidine pathway. Quantitative nucleotide pool determinations have provided evidence that any individual ribo- or deoxyribonucleoside mono-, di-, or triphosphate of cytosine or uracil is not a repressing metabolite for the pyrimidine biosynthetic enzymes. Other nucleotide derivatives or ratios must be considered.  相似文献   

12.
In Neisseria meningitidis, uridine, deoxyuridine, cytosine, cytidine, or deoxycytidine could not be used by uracil-requiring mutants as pyrimidine sources. Consistent with these findings, only 5-fluorouracil of the different fluoropyrimidine bases and nucleosides showed any inhibitory effect on the growth of four prototrophic strains of N. meningitidis. Likewise, only radioactive uracil was readily incorporated into nucleic acids, whereas uptake of radioactive uridine, cytosine, or cytidine could not be demonstrated. Uracil was converted to uridine 5'-monophosphate by uracil phosphoribosyltransferase, whereas enzyme activities for conversion of cytosine or any of the nucleosides were not detectable in meningococcal extracts.  相似文献   

13.
Summary The molecular weights of the 18s and 25s ribosomal RNA components of fungi from all major classes were determined by electrophoresis in polyacrylamide gels. The molecular weight of the 18s RNA was found to be very similar for all fungi (range 0.71–0.75 million) and about 4–5% larger than the 18s RNA of HeLa cells and soybean. The molecular weight of the 25s RNA ranged between 1.45 million in the Myxomycetes and 1.30–1.31 million in the Ascomycetes and Basidiomycetes. The differences in the 25s RNA molecular weights between various classes of fungi were interpreted as being in agreement with a monophyletic origin of the Chytridiomycetes, Zygomycetes, Ascomycetes and Basidiomycetes, and independent origins for the Myxomycetes and the Oomycetes. The Hyphochytridiomycete examined could not be placed unequivocally in any group on the basis of its 25s RNA. Fungal RNA extracted with a p-aminosalicylate-triisopropylnaphthalene sulfonate-phenol mixture at 40–60°C contained a high molecular weight aggregate of the 18s and 25s ribosomal RNA; this suggested significant base sequence homology between the two ribosomal RNA species in fungi.  相似文献   

14.
T P West 《Microbios》1988,56(226):27-36
Pyrimidine metabolism in Pseudomonas fluorescens biotype F, and its ability to grow in liquid culture on pyrimidines and related compounds was investigated. It was found that uracil, uridine, cytosine, cytidine, deoxycytidine, dihydrouracil, dihydrothymine, beta-alanine or beta-aminoisobutyric acid could be utilized by this pseudomonad as a sole nitrogen source. Only uridine, cytidine, beta-alanine, beta-aminoisobutyric acid or ribose were capable of supporting its growth as a sole source of carbon. In solid medium, the pyrimidine analogue 5-fluorouracil or 5-fluorouridine could prevent P. fluorescens biotype F growth at a low concentration while a 20-fold higher concentration of 5-fluorocytosine, 5-fluorodeoxyuridine or 6-azauracil was necessary to block its growth. The pyrimidine salvage enzymes cytosine deaminase, nucleoside hydrolase, uridine phosphorylase, thymidine phosphorylase and cytidine deaminase were assayed. Only cytosine deaminase and nucleoside hydrolase activities could be detected under the assay conditions used. The effect of growth conditions on cytosine deaminase and nucleoside hydrolase levels in the micro-organism was explored. Cytosine deaminase activity was shown to increase if glycerol was substituted for glucose as the sole carbon source or if asparagine replaced (NH4)2SO4 as the sole nitrogen source in each respective medium. In contrast, nucleoside hydrolase activity remained virtually unchanged whether the carbon source in the medium was glucose or glycerol. A decrease in nucleoside hydrolase activity was witnessed when asparagine was present in the medium instead of (NH4)2SO4 as the sole source of nitrogen.  相似文献   

15.
Abstract. 1. The mycophagous Drosophilidae flies in eastern North America display a range of ecological responses to their fungal trophic resources. Some ( Drosophilu duncani Sturtevant, and two species labelled as Mycodrosophila cluytonae Wheeler and Takada) specialize on the bracket fungi of the family Polyporaceae. Other species ( Drosophila falleni Wheeler, D.recens Wheeler, D.putridu Sturtevant and D.tripunctuta Loew) are broad generalists, non-selectively consuming a diverse array of Basidioniycete mushrooms. D.restaceu von Roser and D.ordinuria Coquillett utilize a broad subset of the Basidio-mycetes, while M.dimidiata hew feeds on some Basidioniycetes, including a variety of Clavariaceae (coral fungi) and Heterobasidiomycetes (jelly fungi) not commonly used by other flies, and Ascomycetes (cup fungi).
2. Unlike some phytophagous insects, host chemistry seems to have little effect on host preferences. The mycophagous drosophilids do not avoid fungi thought to be toxic or undigestible to other Diptera.
3. Resource predictability appears to delimit trophic niches in the mycophagous guild. The average duration of individual host mushroom caps is negatively correlated with three measures of trophic niche breadth. Specialist fly species utilize long-lasting resources, while more generalized mycophagous species include progressively ephemeral fungi in their diets.  相似文献   

16.
Salt-adapted and control cells of the cultivated potato, Solanum tuberosum cultivar Russet Burbank, untreated or treated with 5-azacytidine (an inhibitor of DNA methylation), were compared with respect to: a) % of cytosine methylation in total nuclear DNA, as determined by HPLC; b) fresh and dry weight. Adapted and control cells were compared also with respect to % of cytosine methylation in DNA, which was purified from DNaseI-partially-digested chromatin and size fractionated by electrophoresis in agarose gels. The growth (represented by dry weight) of the NaCl-adapted cells in saline medium lacking 5-azacytidine was similar to that of control cells in standard medium. The adaptation of the cells was correlated with some increase (+16%) of methylation in total DNA and with a much greater increase in the lower molecular weight DNA fractions which were obtained from the presumably more active chromatin. As expected, the treatment of the cells with the methylation inhibitor induced a decrease in the level of methylation. The decrease of methylation, however, was much greater in the adapted cells, whose dry weight, unlike in the control, was not affected by this treatment.Abbreviations 5-azaCyt 5-azacytidine - C cytidine - 2,4-D 2,4 dichlorophenoxyacetic acid - DW dry weight - EDTA ethylenediaminetetraacetic acid - FW fresh weight - HPLC high performance liquid chromatography - m5Cyt 5 methyl cytidine - RB Russet Burbank - SDS sodium dodecyl sulfate - TE 10 mM Tris and 1 mM EDTA - Tris Tris [hydroxymethyl] aminomethane  相似文献   

17.
The occurrence of coprophilous fungi on samples of antelope, buffalo, zebra and hippopotamus dung collected from the Marula Estates in Kenya was recorded. A hundred and seventy three fungal isolates representative of 40 genera and 59 species were identified. Among these species, 23 were Ascomycetes (39%), 30 Deuteromycetes (50.8%), 5 Zygomycetes (8.5%) and 1 Basidiomycete (1.7%). Ascobolus immersus, Coprotus niveus, Iodophanus carneus, Lasiobolus lasioboloides, Podospora anserina, P. australis and Sporormiella minima were the dominant species occurring in the dung of these animals. Notes on infrequent or interesting Ascomycetes include Kernia nitida, Saccobolus versicolor, Sordaria fimicola and others. The interdependence of the vegetation of this area with the fungi occurring on the dung of these animals is discussed. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

18.
The utilization of (2-14C)orotic acid for the synthesis of cytidine components of the acid-soluble extract and for the RNA cytosine is decreased in the liver of rats which fasted for 24 or 72 h. The depression of the specific activity of the cytidine components is greater in animals which received alpha-HCH during the 24-hour interval after removal of food than in the control group; by contrast, the specific activity of the cytidine components again increases in rats fasting for 72 h. Analogous changes also occurred in the specific activity of RNA cytosine. Both the (U-14C)cytidine uptake and its utilization for the synthesis of RNA cytosine are enhanced in fasting rats; the administration of alpha-HCH has a potentiating effect. The total content of cytidine components of the acidsoluble extract of 1 g of liver tissue is enhanced 24 h after the animals of the control and experimental group were deprived of food. There are no marked differences in the concentration of the uridine components. Fasting has an additive effect on the increase of cytochrome P-450 level in the alpha-HCH treated rats. Alpha-HCH = alpha-1,2,3,4,5,6-hexachlorocyclohexane.  相似文献   

19.
We summarized experimental data on species diversity of fungi decomposing synthetic polymeric materials. Most of the fungi were anamorphs of the phylum Ascomycota, class Ascomycetes (231 species and 85 genera). Teleomorphs of ascomycetes were represented by 18 species and 7 genera. We revealed a smaller number of fungi belonging to the phylum Zygomycota, class Zygomycetes (31 species and 15 genera), or the phylum Basidiomycota, class Basidiomycetes (5 species and 5 genera). The specific composition of fungi was assessed on polymeric materials of various classes.  相似文献   

20.
RNAs isolated from Escherichia coli B grown in the presence of 5-fluorouracil have high levels of the analog replacing uridine and uridine-derived modified nucleosides. Cytidine has also been shown to be replaced in these RNAs by 5-fluorocytidine, a metabolic product of 5-fluorouracil, but to a considerably lesser extent. When 5-fluorocytidine is added to cultured of E. coli B little 5-fluorocytidine (0.20 mol%) is incorporated into cellular RNAs because of the active cytosine/cytidine deaminase activities. Addition of the cytidine deaminase inhibitor tetrahydrouridine (70 micrograms/ml) increases 5-fluorocytidine incorporation to about 3 mol% in tRNAs, but does not eliminate 5-fluorouridine incorporation. E. coli mutants lacking cytosine/cytidine deaminase activities are able to more than double the extent of 5-fluorocytidine incorporation into their transfer and ribosomal RNAs, replacing cytidine with no detectable 5-fluorouridine incorporation. Levels of 5-methyluridine, pseudouridine and dihydrouridine in tRNAs are not affected. These fluorocytidine-containing tRNAs show amino acid-accepting activities similar to control tRNAs. Fluorocytidine was found to be quite susceptible to deamination under alkaline conditions. Its conversion to primarily 5-fluorouridine follows pseudo-first-order reaction kinetics with a half-life of 10 h in 0.3 M KOH at 37 degrees C. This instability in alkali probably explains why 5-fluorocytidine was not found earlier in RNAs isolated from cells treated with 5-fluorouridine, since most early RNA hydrolyses were carried out in alkali. It may also explain the mild mutagenic properties observed in some systems following 5-fluorouridine treatment. Initial 19F-NMR measurements in fluorocytidine-containing tRNAs indicate that this modified tRNA may be useful in future structural studies of tRNAs and in probing tRNA-protein complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号