首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
  • 1.1. The small intestine was cut into seven segments and properties and distribution of brush border Mg2+-HCO3-ATPase activity in each segment were examined.
  • 2.2. The optimal Mg2+ concentration was 1.0 mM.
  • 3.3. The optimal HCO3 concentration was 100 mM in the first (duodenal), 50 mM in the 3rd and 40 mM in the 5th segment, respectively.
  • 4.4. The optimal pH value was about 9.0.
  • 5.5. l-phenylalanine (above 1 mM) and SCN (above 50 mM) significantly inhibited both Mg2+- and Mg2+-HCO3-ATPase activity.
  • 6.6. The enzyme activity was found to be highest in the duodenal segment and then gradually decreased in consecutive segments as well as β-glycerophosphatase, Na+-K+-ATPase and supernatant carbonic anhydrase.
  • 7.7. The functional significance of this ATPase and the relationship with carbonic anhydrase was discussed.
  相似文献   

2.
  • 1.1. Goldfish were kept in deionized water (DW), DW + Na+ (0.35 mM), DW + K+ (0.05 mM), DW + Ca2+ (2mM) and DW + Mg2+ (0.2 mM). In Ca-free environments, prolactin cells appear unaffected. Stimulated calcium-sensitive cells (pars intermedia) may elaborate a hypercalcemic factor.
  • 2.2. Fecal excretion, reduced in all groups, remains noticeable in DW + Ca2+
  • 3.3. Ionic losses, very low in all groups, are minimal in DW. Supplementation with K+ increases Na+ loss.
  • 4.4. Plasma Na+ Ca2+, and osmolarity decrease in DW, and still more in DW + K+. Ca2+' and Mg2+ partly suppress hyponatremia.
  • 5.5. In goldfish kept in DW and subsequently in DW + Ca2+, calcemia increases.
  相似文献   

3.
  • 1.1. The expected higher gill (Na++K+)-ATPase activity in rainbow trout adapted to brackish water (BW) with respect to fresh water (FW) is accompanied by some changes in the enzyme kinetics while the enzyme sensitivity to ouabain is unaffected
  • 2.2. Maximal activation is attained under the optimal conditions of 4 mM ATP, 7.5 mM Mg2+, 50 mM Na+, 2.5 mM K+, pH 7.0 in FW, and 3 mM ATP, 10 mM Mg2+, 100 mM Na+, 10 mM K+, pH 7.5 in BW.
  • 3.3. The change of the enzyme activation kinetics by Mg2+, ATP, Na+ and K+ from simple saturation in FW to cooperativity in BW and other habitat-dependent variations including the pH alkaline shift in BW are hypothetically related to an adaptive significance to the different environmental salinity.
  • 4.4. Gill total lipids and phospholipids are 30% lower in BW than in FW while their ratio is constant; some differences in gill total lipid fatty acid composition between FW and BW do not significantly affect the unsaturation parameters.
  相似文献   

4.
  • 1.1. Rainbow trout were acclimated to salt water (1.5, 2.0 or 3.0%, which means 40, 60 or 85% concentrated sea-water) and the electrolyte, glucose and cortisol concentrations of the plasma as well as the extra- and intracellular muscle space, the muscle electrolyte concentrations and the ATPase activity were analysed.
  • 2.2. Plasma osmolality, Na+, Ca2+ and Mg2+ concentrations of the plasma had a maximum at 24 hr after the start of acclimation when acclimated to 3.0% salt water. Plasma osmolality, Na+ and Mg2+ concentrations were significantly higher during the whole acclimation time when exposed to 3.0% salt water.
  • 3.3. Variations and regulations of ECS and ICS were clearly demonstrated. The intracellular electrolyte concentrations were also maximal at 24 hr.
  • 4.4. The plasma glucose level was just slightly elevated, but the cortisol level clearly indicated a stress response at 24 hr.
  • 5.5. The activity of gill Na-K-ATPase increased during the acclimation time.
  • 6.6. The regulatory processes in trout during acclimation to salt water are compared with those occurring in tilapia and carp.
  相似文献   

5.
  • 1.1. Rates of water loss in Megetra cancellata were very high compared to those reported for other xeric arthropods.
  • 2.2. Hemolymph weight in hydrated animals was 43.0% of the total body weight while it was 24.7% in desiccated animals that had lost 16.1% of their body weight as water.
  • 3.3. Hemolymph osmotic potential increased from 417 to 447 mOsm/kg in desiccated beetles, but osmotic regulation was evident.
  • 4.4. Total hemolymph protein mass and concentration decreased in desiccated beetles while amino acid concentrations remained constant (at about 70 mM).
  • 5.5. Na+ and −PO4 concentrations increased in desiccated beetles.
  • 6.6. Cl and K+ concentrations in desiccated beetles were equal to those in undesiccated beetles.
  相似文献   

6.
  • 1.1. The study was carried out on 22 species of insects from 5 orders. The osmolality of their hemolymph varied from 319 to 421 mOsm/kg H2O, concentration of Na+ 4.6 to 118 mM/l, K+ 6.3 to 73mM/l, Ca2+ 3.6 to 12.9 mM/l, Mg2+ 2.3 to 76 mM/l. The most abundant cation in the hemolymph of insects from higher orders is either K+ or Mg2+.
  • 2.2. In the muscles of lower and higher insects K+ is usually within 80–120 mM/kg wet wt.
  • 3.3. Most Ca2+ and Mg2+ in hemolymph is bound with protein and low molecular anions, concentration of free Ca2+ is 0.9-2.1mM/l Mg2+ 3.7–8.0 mM/l.
  • 4.4. It is concluded that, in insects, potassium hemolymph, cell volume regulation and accumulation of ions in the cell, are ensured by an increased osmolality of hemolymph due to a high percentage contribution of low molecular organic substances which are retained in the hemolymph due to the absence of filtration apparatus in the Malpighian tubules.
  相似文献   

7.
  • 1.1. The (Na+ + K+)- and Na+-ATPases, both present in kidney microsomes of Sparus auratus L., have different activities and optimal assay conditions as, in the first of the two stocks of fish used (A), the spec. act. of the former is 51.7 μmol Pi mg prot−1 hr−1 at pH 7.5, 100 mM Na+, 10 mM K+, 17.5 mM Mg2+, 7.5 mM ATP and that of the latter is 6.5 μmol Pi mg prot−1 hr−1 at pH 6.5, 40 mM Na+, 4.0 mM Mg2+, 2.5 mM ATP.
  • 2.2. Ouabain and vanadate specifically inhibit the (Na+ + K+)-ATPase but not the Na+-ATPase that is preferentially inhibited by ethacrynic acid.
  • 3.3. While the (Na+ + K+)-ATPase is strictly specific for ATP and Na+, Na+-ATPase can be activated by various monovalent cations and, apart from ATP, hydrolyses CTP, though less efficiently.
  • 4.4. The second stock B, subjected to higher salinity than A, shows an acidic shifted Na+-ATPase optimal pH, opposed to the stability of that of the (Na+ + K+)-ATPase, a decreased (Na+ + K+)-ATPase and a strikingly depressed Na+-ATPase.
  • 5.5. The results are compared with literature data and discussed on the basis of the presumptive different roles as well as functional prevalence in various salinities of the two ATPases.
  相似文献   

8.
  • 1.1. Homogenates of gills from the freshwater shrimp M. amazonicum exhibit the following ATPase activities: (i) a basal, Mg2+-dependent ATPase; (ii) an ouabain-sensitive, Na+ + K+-stimulated ATPase; (iii) an ouabain-insensitive, Na+-stimulated ATPase; and (iv) an ouabain-insensitive, K+-stimulated ATPase.
  • 2.2. K+ suppresses the Na+-stimulated ATPase activity in a mixed-type kind of inhibition, whereas Na+ does not exert any noticeable effect on the K+-stimulated ATPase activity.
  • 3.3. The Na+- and the K+-stimulated ATPase activities are totally inhibited by 5 mM ethacrynic acid in the incubation medium.
  • 4.4. The Na+- and the K+-stimulated ATPase activities are not expressions of the activation of a Ca-ATPase.
  • 5.5. The possible localization and roles of the described ATPases within the gill epithelium are briefly discussed and evaluated.
  相似文献   

9.
  • 1.1. Specific activity and kinetic characteristics of the (Na+ + K+)ATPase have been investigated in the gill epithelium of the hyper-hypoosmoregulator crab Uca minax.
  • 2.2. (Na+ +K+)ATPase activity is shown to be at least three times higher in the posterior gills.
  • 3.3. The kinetic study supports the hypothesis of the existence of two different (Na+ + K+)ATPases: the enzyme activity in the posterior gills could be involved in the transepithelial transport of Na+ while the activity of the anterior gills could be responsible for the intracellular regulation of Na+ and K+.
  • 4.4. Significant and specific changes in (Na+ +K+)ATPase activity occur upon acclimation to media of various salinities.
  相似文献   

10.
  • 1.1. Unidirectional Na+ influx in lamprey red blood cells was determined using 22Na as a tracer.
  • 2.2. Total Na+ uptake and amiloride-inhibitable Na+ influx increased in a saturable fashion as a function of external Na+ concentration (Nae).
  • 3.3. At 141 mM Nae, the average value of net Na+ influx was 13 ± 1.1 and the amiloride-sensitive Na+ influx was 5.3±1.1 mmol/l cells per hr (±SE).
  • 4.4. The amiloride-sensitive component of Na+ influx was significantly activated by 10−5 M isoproterenol, by 2 × 10−5 M DNP, and by cell shrinkage.
  • 5.5. Furosemide (1 mM) had no effect on the Na+ transport in red cells.
  • 6.6. The residual amiloride-insensitive component of Na+ transport was a linear function of Nae in the range of 5–141 mM. This transport seems to be accounted for by simple diffusion.
  相似文献   

11.
  • 1.1. Kidney, oesophagus and gill Na+-K+ ATPase activity and serum Na+, K+ and Cl concentrations are evaluated in European sea bass during experimental acclimation to fresh water.
  • 2.2. Kidney and oesophagus ATPase increase in low salinity and reach a maximum in fresh water.
  • 3.3. Gill ATPase decreases during the acclimation trials and rises again to normal values after a 3-week stay in fresh water.
  • 4.4. Na+ and K+ serum concentrations decrease during the trials and increase back after a 3-week stay in fresh water.
  • 5.5. The correlations between enzymatic activities, serum ion concentrations, morphological changes and environmental salinity are discussed.
  相似文献   

12.
  • 1.1. Ion dependence and vanadium-induced inhibition on branchial sac ATPase in five species of ascidian Phlebobranchiata (vanadium-accumulating) and Stolidobranchiata (iron-accumulating) were studied.
  • 2.2. The ATPase was obtained from the microsomal fraction, which was prepared from each ascidian branchial sac.
  • 3.3. The ATPase was dependent on Mg2+ and activated by exogenous Na+ + K+.
  • 4.4. Ouabain inhibited the ATPase activity in vitro, 10 μM to 100 μM vanadate, in vitro, suppressed the (Na+, K+)-ATPase.
  相似文献   

13.
  • 1.1. Uptake of [14C]-labelled d-glucose, l-arabinose and d-fructose by intestinal and renal brush border and basolateral membrane vesicles was studied in the absence of Na+ .
  • 2.2. The Na+-independent d-glucose transport system in these membrane vesicles was saturable, sensitive to phloretin, stereospecific and accessible only to d-glucose and d-galactose.
  • 3.3. Na+-independent l-arabinose transport was not saturable even when its concentration was raised to 300 mM and it was insensitive to phloretin.
  • 4.4. Na+-independent d-fructose transport demonstrated saturation kinetics with only renal brush border membrane vesicles, but it was not inhibited by either phloretin or phlorizin.
  • 5.5. These studies indicated that the Na+-independent carrier-mediated d-glucose/d-galactose transport system of intestinal and renal brush border and basolateral membranes is clearly not shared by other monosaccharides.
  相似文献   

14.
  • 1.1. As reported previously (Robinson, 1988) the Ca2+-induced self-association reaction of the protein hyalin, purified from the sea urchin extraembryonic hyaline layer, was modulated by both Mg2+ and NaCl.
  • 2.2. In the presence of 400 mM NaCl the apparent dissociation constant (Ca2+) decreased five-fold from 4.8 ± 1.1 mM in the absence to 0.9 ± 0.5 mM in the presence of 20 mM Mg2+.
  • 3.3. The potentiating effect of Mg2+ occurred with an apparent dissociation constant (Mg2+) of 4.6 ± 0.5mM.
  • 4.4. In the absence of Ca2+ or NaCl hyalin dissociated from isolated hyaline layers indicating that the behavior of hyalin within the layer is predictable from results obtained with the purified protein.
  相似文献   

15.
  • 1.1. As reported previously (Hopper and Robinson, 1990; Int. J. Biochem. 22, 1165–1170) the sea urchin extraembryonic coat protein hyalin undergoes a Ca2+-induced self-association into an insoluble gel (gelation) in the presence of Mg2+ and/or NaCl.
  • 2.2. A 275 kDa peptide fragment, generated by limited tryptic digestion of hyalin, binds Ca2++ but does not undergo gelation in the presence of Ca2+, Mg2+ and NaCl.
  • 3.3. Comparisons between the capacities of hyalin and the 275 kDa peptide fragment to bind Ca2+ indicate that the latter binds 88% less Ca2+ than hyalin.
  • 4.4. However, the presence of Ca2+ alone, at a concentration of 5 mM, protects the 275 kDa peptide fragment from further digestion by trypsin mimicking the effect of this cation in protecting hyalin.
  • 5.5. Gel exclusion Chromatographie analyses of the 275 kDa peptide fragment, both in the presence and absence of 5 mM Ca2+, indicate that this cation does induce self-association of the fragment.
  • 6.6. These results provide information on the organization of the functional domains on hyalin which are required for gel formation.
  相似文献   

16.
  • 1.1. Final urine is intermittently released from the pneumostome of the pulmonate freshwater snail Lymnaea slagnalis. A technique is described to sample this fluid.
  • 2.2. The ionic composition of final urine greatly differs from that of haemolymph; Na+ and Cl are reabsorbed to a considerable degree. In lettuce fed snails K+ is excreted.
  • 3.3. The urine Na+ and Cl concentrations are about 38 and 31 mM lower, respectively, than the haemolymph concentrations, also when the latter concentrations vary.
  相似文献   

17.
  • 1.1. Brook trout (Salvelinus fontinalis) raised from eggs under two photoperiod and two feeding regimes were tested for physiological changes preparatory for transition from freshwater to seawater. Size, age, growth rate, photoperiod, and diel rhythms were examined for possible influences on plasma osmolarity, [Na+], [Cl], [K+], [Mg2+], thyroxine concentration, hematocrit, and gill Na+, K+-ATPase activity of brook trout in freshwater.
  • 2.2. Significant diel cycles were found in plasma osmolarity, [Na+] and thyroxine concentration.
  • 3.3. Significant size and/or age related changes occurred for plasma osmolarity, Na+], [K+] and hematocrit, but could explain little of their total variation (0.02 < r2 < 0.18).
  • 4.4. A sexually dimorphic response to photoperiod was observed in hematocrit for both mature and immature fish, with hematocrit of mature females declining in autumn and hematocrit of immature males increasing in autumn.
  • 5.5. Gill Na+, K+-ATPase activity did not respond to photoperiod or feeding treatment and showed no change with size or age.
  • 6.6. Plasma thyroxine levels responded to feeding and photoperiod treatment. There was a significant correlation between the percent mean difference in plasma thyroxine and the mean difference in growth rate between high and low feed fish (r2 =0.51), suggesting a relationship between thyroxine and growth.
  相似文献   

18.
  • 1.1. The activation energy of the membrane bound H+-pyrophosphatase is 44.9 k J·mol−1, for the detergent solubilized enzyme is 55.9 kJ·mol−1.
  • 2.2. The Arrhenius plots obtained for pyrophosphatases of Rhodospirillum rubrum show no breaks.
  • 3.3. At 70°C, the membrane-bound pyrophosphatase is more stable in the presence of either Mg2+ or Zn2+ than in their absence.
  • 4.4. At 65°C, an activator effect of Mg2+ or Zn2+ was observed. Nevertheless, at 70°C no activation was obtained.
  • 5.5. The activator effects of Mg2+ or Zn2+ were depended of their concentration.
  相似文献   

19.
  • 1.1. The hemolymph osmotic, Na+ K+, Ca++ and Mg++ concentrations were determined for both sexes in crabs from mangrove Ucides cordatus and Goniopsis cruentata and supralittoral Ocypode quadrala after aerial desiccation, for 10 hr.
  • 2.2. There was no difference between sexes in the two mangrove crabs, but in O. quadrata the females were the most significantly affected (P < 0.01).
  • 3.3. Hemolymph osmotic Na+, Ca++ and Mg++ concentrations increased significantly in desiccated ghost crabs, while K + concentration was not significantly changed. In the two mangrove crabs, only hemolymph Ca++ concentration increased significantly, after desiccation.
  • 4.4. The short time desiccation is suggested to be a device to study the steps of osmo-ionic regulation in terrestrial crabs.
  相似文献   

20.
  • 1.1. Brook trout (Salvelinus fontinalis) of a single genetic stock, and hatched at the same time, were raised under two photoperiod and two feeding regimes to obtain fish of the same age but with different sizes and photoperiod experiences. In 11 experiments over 1.5 firs, fish were gradually exposed to 32 ppt seawater for 20 days to investigate the ontogeny of salinity tolerance.
  • 2.2. Daily changes in plasma osmolarity, [Na+], [Cl], [K+], [Mg2+], thyroxine, hematocrit and gill Na+,K+-ATPase during adaptation to 10, 20 and 32 ppt were examined in one experiment.
  • 3.3. Size was the primary determinant of seawater survival (r2 = 0.77) the effect of size on seawater survival slowed after fish reached a fork length of 14 cm. The effect of age on seawater survival (r2 = 0.65) was through its covariance with size.
  • 4.4. Photoperiod affected seawater survival only through its influence on the timing of male maturation, which decreased salinity tolerance.
  • 5.5. Regulation of plasma osmolarity, [Na+], [Cl], [K2+], [Mg2+] and hematocrit in sea water increased linearly with size over the entire range of sizes (6–32 em).
  • 6.6. Gill Na+,K+-ATPase activity after 20 days in seawater decreased with increasing size of brook trout, possibly reflecting decreased demand for active ion transport in larger fish.
  • 7.7. Plasma thyroxine concentrations declined in seawater, but no definitive role of this hormone in seawater adaptation was found.
  • 8.8. Size dependent survival and osmoregulatory ability of brook trout is compared to other salmonids and a conceptual model is developed.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号