首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
  • 1.1. The cardiovascular physiology of adult Carcinus maenas (L.) emerging into air has been investigated at three different air temperatures.
  • 2.2. Transition from seawater to air or vice versa triggered transient increases in cardiac and locomotor activity.
  • 3.3. However, crabs became inactive 5–10 min after emerging from seawater (15°C) into air at the same temperature (15°C) or at lower temperatures (12–13°C) and heart rate fell.
  • 4.4. At higher air temperatures (18–20°C) heart rate rose but to a lesser extent than predicted from aquatic Q10 heart-rate values.
  • 5.5. Crabs were again quiescent in aerial conditions.
  • 6.6. Mean arterial oxygen tension (Pao2) was ~ 74 mmHg in submerged crabs but fell to ~ 38 mmHg in air while mean arterial carbon dioxide tension (Pao2) increased from 1 to 4 mmHg resulting in respiratory acidosis.
  • 7.7. A model of gill function is proposed to explain the development of internal hypoxia in air.
  • 8.8. The results are discussed in relation to the distribution of adult and juvenile C. maenas in situ.
  相似文献   

2.
  • 1.1. The effects of thermal acclimatization at 10 and 24°C on heart rate were investigated on unrestrained soles (Solea vulgaris).
  • 2.2. The sensitivity of heart rate to temperature changes induced by temperature acclimatization was higher in cold-acclimatized than in warm-acclimatized soles.
  • 3.3. Heart rate of cold-acclimatized fish to temperature changes was not affected by blocking the vagal tone with atropine.
  • 4.4. After atropine treatment the ability of heart rate to show thermal compensation decreased in warm-acclimatized soles.
  • 5.5. It is suggested that the vagus nerve can function differently at different temperatures.
  相似文献   

3.
  • 1.1. Heart rates of adult aquatic red-spotted newts can be conveniently recorded using an impedance pneumograph.
  • 2.2. Heart rates decrease linearly with decreasing temperature.
  • 3.3. Submergence in normoxic and hypoxic water at 10°, 15°, and 20°C results in bradycardia which is more pronounced in hypoxic water.
  • 4.4. At 5°C one newt exhibited the above pattern, but bradycardia was not exhibited by the other newt during normoxic submergence.
  • 5.5. Diminishing heart rates are probably due to oxygen deficiency, not immersion alone.
  • 6.6. Recovery from bradycardia in air is rapid and not linked with resumption of aerial breathing.
  相似文献   

4.
  • 1.1. Common carp (Cyprinus carpio) exposed to experimental temperatures of 12, 18, 24, 30 or 36°C for a 4-week period were used to investigate the effect of temperature acclimation on the frequency of opercular movement (FOM), growth and cytochrome c oxidase (CCO) activity in heart, liver and muscle.
  • 2.2. An exponential relationship between FOM and temperature after the first week (1010 =1.76) disappeared after the second week.
  • 3.3. The initially high FOM at temperatures of 30 or 36°C and the low FOM at 18 or 12°C changed over 4 weeks to approach the FOM of fish at 24°C.
  • 4.4. This change in the relationship of FOM to temperature from highly dependent to independent appeared to be thermal compensation.
  • 5.5. Heart and liver CCO activities were significantly affected by temperature, with the lowest activity at the approximate optimum temperature for growth, 24°C.
  • 6.6. Highest CCO activities for heart and liver occurred at both the highest and lowest temperatures.
  • 7.7. Among the three tissues, heart CCO activity was generally the highest and most affected by acclimation temperature.
  • 8.8. Muscle tissue had the lowest CCO activity and was unaffected by temperature.
  • 9.9. The high CCO activity at a cold acclimation of temperature 12°C was probably due to thermal compensation and the high activity at 36°C may have been a result of thermal stress.
  相似文献   

5.
  • 1.1. The ambient temperature of embryos of pipped eggs was reduced from 38 to 28°C for a period of 45 min.
  • 2.2. The blood PCO2 was lower and the blood more alkaline at 28°C than at 38°C.
  • 3.3. At 28°C plasma [HCO3] ] was lower than predicted from the blood buffer line determined in vitro.
  • 4.4. The plasma concentrations of strong ions and lactate were the same at both temperatures.
  • 5.5. After the ambient temperature had been returned to 38°C for a period of 45 min, blood pH was more acidic than before cooling, but there was no difference in blood PCO2.
  • 6.6. The plasma [HCO3] was the same as that at 28°C and plasma [K+] was higher than before cooling.
  • 7.7. The results arc discussed in relation to the factors affecting blood pH in embryos at this stage of development.
  相似文献   

6.
  • 1.1. Diurnal cycles of body temperature, Tb, and energy metabolism, M, at different ambient temperatures (Ta: +5 −+ 32°C) were tested in 13 sunbird species from various habitats and of different body masses (5.2–14.2 g) including one of the smallest passerines, Aethopyga christinae.
  • 2.2. Resting M-level (night) reaches Ta-dependent mean values of 54% (+5°C) and 49% (+25°C) of activity M-levels (day). Expected level is ca 75%.
  • 3.3. Resting metabolic rate of sunbirds lies within the range of theoretically expected values for birds.
  • 4.4. Mean linear metabolism-weight regression of the night values follows: M = 0.102 × W0.712 (M = energy metabolism in kJ/hr and W = body mass in g).
  • 5.5. Thermal conductances, Tc, are lower (−24%) than the predicted values. This is caused by a decrease of Tb at low Ta. Mean nocturnal Tc is 3.2 J/g × hr × °C, mean day-time value is 4.3 J/g × hr × °C.
  • 6.6. The zone of thermoneutrality is, in most species, within a Ta-range of 24–28°C.
  • 7.7. Normal day and night levels of Tb are in the same range as reported for other birds of the same weight class. Tb decreases slightly with falling Ta (partial heterothermia). Lowest recorded Tb was 34.2°C.
  • 8.8. No species tested showed any sign of torpor at night, independent of Ta, body mass or habitat origin.
  相似文献   

7.
  • 1.1. Developing eggs of whitefish (Coregonus lavaretus L.) and vendace (Coregonus albula L.) were kept at 1–2°C and some eggs taken gradually up to 8°C to provoke mass hatching of embryos.
  • 2.2. Wet weight, dry matter and the contents of lipid, protein and ash were measured in fish during the course of experiment.
  • 3.3. Dry matter content decreased gradually in whitefish eggs from 15.64 to 11.95% during 1 month at 1–2°C, whereas vendace eggs showed only a slight decrease from 16.27 to 15.53%.
  • 4.4. In both species protein content decreased but lipid increased when approaching the natural time of hatching.
  • 5.5. During delayed hatching at low water temperatures protein contributes to catabolism, whereas lipid content decreased only in the later phase of the experiment.
  • 6.6. Larvae starved for 10 days after hatching lost increasing amounts of dry matter (from 26.1 to 50.3% of body weight) and protein (from 18.7 to 45.9% of body weight) as they remained longer in cold water as embryos.
  • 7.7. A correspondence was found between assessment of metabolic utilization of body stores based on chemical analysis of fish body and previous work on oxygen consumption and nitrogen excretion.
  相似文献   

8.
  • 1.1. Malleefowl Leipoa ocellata have a lower than predicted metabolic rate, a finding common to many arid adapted avian species.
  • 2.2. Evaporative water loss was as expected by allometric analysis. However, in the wild this species probably reduces its evaporative water loss because their water turnover rate is extremely low.
  • 3.3. Malleefowl coped with temperatures up to 40°C well, but above this temperature they become highly agitated.
  相似文献   

9.
  • 1.1. Resting metabolic rates (RMR) below thermoneutrality in adult hyrax acclimated to 26, 15 and 10°C remained unchanged, i.e. thermal conductance (K) remained constant.
  • 2.2. Conductance in juveniles decreased with acclimation to lower ambient temperatures (Ta).
  • 3.3. Body temperature (Tb) dropped by 3.8°C in adults exposed to Ta of 30 – 5°C. The decrease was constant.
  • 4.4. Body temperature fell by 1.5°C in juveniles exposed to Ta of 30 – 20°C but stabilized between 20 and 5°C.
  • 5.5. The labile Tb, associated with behavioural strategies and lower than predicted RMR, can be seen as an energy-conserving mechanism of particular importance during winter conditions.
  相似文献   

10.
  • 1.1. In 43 European bison divided into three groups (Group A, 3–8-month-old calves; Group B, 18-month-7-year-old young bison; Group C, 12–24-year-old bison) the rectal, humerus region and abdomen region temperatures were measured.
  • 2.2. The experiments were carried out in winter months, from mid-December to mid-March.
  • 3.3. The mean rectal temperatures changed from 38.55°C in calves to 38.15°C in the oldest bison.
  • 4.4. The mean temperatures of the humerus region changed from 20.69°C in calves to 21.49°C in older bison.
  • 5.5. The mean temperatures of the abdomen region changed from 20.79°C in calves to 22.17°C in older bison (Gr. B).
  • 6.6. The cluster analysis divided the bison into four groups named hot, warm, cool and cold bison.
  • 7.7. Only air temperature measured 2 m above the ground and snow cover influenced the integrated bison temperature. Age, sex and mass as well as some environmental factors had no influence.
  • 8.8. Measurements made 1 to nearly 4hr after a bison's death showed a drop in rectal temperature and mostly increases in temperatures of the humerus and abdomen regions.
  相似文献   

11.
  • 1.1. Oxygen consumption at 18°C was 60% of the rate at 22 and 26°C.
  • 2.2. Critical points, where the rate of oxygen consumption changed, were defined at 22°C (2.89 mg DO) and 26°C (3.46 mg DO). Linear regressions were fitted showing that oxygen consumption declined significantly (81.5% ±4.5) below the critical point.
  • 3.3. Oxygen consumption was proportional to weight. Allometric relationships resulted in variable temperature-related coefficients for respiratory dependence on weight, a reflection of the crayfish adaptation towards re-establishment of a new equilibrium state.
  • 4.4. Heart beat rate was lower at 18°C, and highest at the acclimation temperature (22°C). Stress at 26°C was evident.
  相似文献   

12.
Absract
  • 1.1. The basal metabolism of the vole, Microtus ochrogaster, a non-hibernator is about 80% below that expected for microtine rodents, while the basal metabolism of the chipmunk, Tamias striatus, is about 20% below that expected for small mammals.
  • 2.2. Blocking thyroid secretion results in a 3°C improvement in the vole. and a 2°C improvement in the chipmunk, to the highest air temperature tolerated.
  • 3.3. Blood levels of thyroxine in both species did not change as a function of ambient temperatures, whereas rates of radioiodine release were reciprocally related to ambient temperature.
  • 4.4. There was no indication that the thyroid gland of the chipmunk was ever inactive either preceding, or during, hibernation.
  相似文献   

13.
  • 1.1. Measurements of aerobic scope (resting and active oxygen consumption rates) and anaerobic scope (resting and active production of lactate rates in the whole body homogenates) were carried out on the desert skink, Chalcides ocellatus at temperatures between 10 and 40°C.
  • 2.2. The aerobic scope was maximal around the preferred body temperature with a low thermal temperature dependence above the preferred levels.
  • 3.3. During initial stages of forced activity, C. ocellatus employed anaerobic metabolism as its major energy source.
  相似文献   

14.
  • 1.1. Cardiac frequency patterns of Callincctes sapidus Rathbun were used to evaluate potential thermal stress after exposure to 5°C increases over a range of acclimation temperatures from 5° to 30°C.
  • 2.2. An acclimated rate-temperature curve (R-T curve), acute R-T curves of the stabilized rates at the increased temperatures and Q10 temperature coefficients were used to assess the significance of the changes in rate frequency.
  • 3.3. The acclimated R-T curve showed that blue crabs go through a series of seasonal adaptation types characterized by a plateau of perfect adaptation for both cold and warm adapted organisms. Paradoxical adaptation occurred between the transition from cold to warm acclimation temperatures.
  • 4.4. The acute R-T curves showed that cardiac frequency was highly responsive to a 5°C increase when the organisms were acclimated to low temperatures.
  • 5.5. The Q10's of the acute R-T curves at the warm acclimation temperatures approximated those values derived for the acclimated R-T curve.
  • 6.6. This suggests that the temperature increase had a negligible effect on the warm adapted crabs, that is, little or no thermal stress occurred.
  相似文献   

15.
  • 1.1. The thermal neutral zone of Cassin's Finches extends from 22 to 37.5°C.
  • 2.2. Standard metabolism (40.1 Wm−2 or 7.6kcal bird−1 day−1) of the 28 g birds was 89% of the value predicted for passerines measured at night.
  • 3.3. At temperatures below the zone of thermal neutrality metabolism is described by the relation, Wm−2 = 1.55–74.5°C. The coefficient of heat transfer (1.55Wm−2°C−1) is only 58% of the value predicted for birds of this size, indicating excellent insulation.
  • 4.4. At temperatures above thermal neutralzfsity metabolism is described by the relation, Wm−2 = 2.75–62.6°C.
  • 5.5. Under conditions of heat stress (44.5°C; PH2O = 8.6 Torr) Cassin's Finches were able to dissipate up to 208% of their metabolic heat production by evaporative water loss. Maximal rate of water loss was 56 mg g−1 hr−1.
  • 6.6. At 20°C resting fasted finches lost a mean of 4.94 ± 1.5 SD mg H2O g−1hr−1.
  相似文献   

16.
  • 1.1. A respirometer for long-term measurements of oxygen consumption in terrestrial vertebrates is described.
  • 2.2. The tortoise, Testudo hermanni Gmelin, investigated in summer and autumn, presents a day-night rhythm of oxygen consumption at 28 and 18°C but not at 8°C.
  • 3.3. The standard metabolic rate presents an important and constant thermal dependence in the range 8-18-28°C.
  相似文献   

17.
  • 1.1. The effect of short-term (79 hr) food deprivation at 27°C on body mass, locomotor activity, body temperature (Tb), and resting oxygen consumption was determined in eleven American kestrels (Falco sparverius).
  • 2.2. The change in body mass during resting followed the relation, % mass remaining = 99 e0.07(days fasting). There was no significant difference in the rate of relative mass loss between males and females.
  • 3.3. Locomotor activity, measured as perch hopping, was highly variable in both control and fasted birds and showed no correlation with stage of the fast, basal metabolic rate (BMR), or rate of mass loss during food deprivation.
  • 4.4. Body temperatures of fasted birds declined continuously by 0.2–0.4°C per day from 39.3 to 38.3°C.
  • 5.5. Both males and females responded to food deprivation with a decrease in metabolism. By the third night of fasting, BMR had declined 23.4% from 0.845 W (bird day)−1 to 0.647 W (bird day)−1. The observed reduction in BMR is 2.4 times that expected from a 1°C decline in Tb (assuming Q10 = 2.5) indicating active suppression of metabolism.
  相似文献   

18.
19.
  • 1.1.|Colonic temperatures of BALB/c and CBA/J mice, golden hamsters, and Sprague-Dawley rats were taken immediately after exposure for 90 min to radiofrequency (RF) radiation.
  • 2.2.|Exposures were made in 2450 MHz (mouse and hamster) or 600 MHz (rat) waveguide exposure systems while the dose rate, specific absorption rate (SAR), was continuously recorded. Experiments were performed on naive, unrestrained animals at ambient temperatures (Ta) of 20 and 30°C.
  • 3.3.|Body mass and Ta) were found to be significant factors in influencing the threshold SAR for the elevation of colonic temperature. The threshold SARs at Ta's of 20 and 30°C were respectively: 27.5 and 12.1 W/kg for the BALB/c mouse; 40.7 and 8.5 W/kg for the CBA/J mouse; 8.7 and 0.61 W/kg for the golden hamster; and 1.58 and 0.4 W/kg for the Sprague-Dawley rat.
  • 4.4.|The relationship between threshold SAR or SAR for a 1.0°C elevation in colonic temperature vs body mass were linearly and inversely related on a double logarithmic plot. The results of this study suggest that the thermoregulatory sensitivity to RF radiation in these rodent species is heavily dependent on body mass and Ta.
  相似文献   

20.
  • 1.1. Ultradian oscillations in the min and hr range on long-term (24-hr) computerized recordings of heart rate in rainbow trout Oncorhynchus mykiss, acclimated to 5, 10 and 15°C water temperature, were investigated. Eight-hour duration time series derived from the heart rate recordings were analysed for their harmonic content in the ultradian band by spectral analysis.
  • 2.2. A significant ultradian rhythm at around 0.011 cycles/min (approximately 91-min period) was detected in the power spectral density functions of all the 8-hr duration time series derived from the heart rate recordings at the three experimental water temperatures.
  • 3.3. The spectral power of the ultradian oscillation detected in heart rate of trout was found to increase significantly with increasing temperature.
  • 4.4. The possible endogenous origin of the ultradian rhythm detected in heart rate of Oncorhynchus mykiss is discussed.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号