首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The metabolism of collagen in male rats by treatment with bleomycin was studied following the injection of [3H]proline and the determination of specific and total activity of [3H]hydroxyproline in skin collagen fractions and urine. In the case of the bleomycin-treated animals, there was found to be an increase in the neutral salt soluble collagen content with no change in insoluble collagen content as compared to the control group. The specific and total radioactivity of [3H]hydroxyproline in soluble and insoluble collagen fractions was also increased. Examination of [3H]hydroxyproline activity in soluble and insoluble collagen showed that the conversion of soluble to insoluble collagen was improved by the bleomycin-treated group. It was found that this was accompanied by a decrease in urinary excretion of total hydroxyproline and [3H]hydroxyproline during the first 12 hr after the administration of [3H]proline. Therefore, the results of the present investigation clearly indicate that the maturation of soluble to insoluble collagen is promoted and accompanied by a decrease in the catabolism of soluble collagen in the bleomycin-treated animals. In addition, administration of bleomycin increased the synthesis of collagen.  相似文献   

2.
The effect of protein malnutrition on the metabolism of collagen was studied in young female albino rats after a single injection of 3H-proline by determining the specific as well as total activities of 3H-hydroxyproline in the skin collagen fractions and in the urine. a) Compared to controls, the total activity of 3H-hydroxyproline in the soluble collagen and in the urine was significantly lower in the deficient group at 12 hrs. after the administration of 3H-proline. b) The urinary excretion of hydroxyproline and the total activity of urinary 3H-hydroxyproline measured after four weeks of labelled proline injection were also considerably decreased in the protein-deficient animals. c) When the total radioactivities of both soluble and insoluble collagen are expressed as a percentage of the sum of both, the recorded activity was more in soluble and less in insoluble collagen at 12 and 120 hrs. after the administration of 3H-proline, due to the influence of protein malnutrition. The results of the present investigation therefore clearly indicate that the synthesis of collagen is decreased and accompanied by a retardation in the maturation of soluble to insoluble collagen in the protein-deficient animals compared to controls. In addition, protein deficiency is accompanied by decreased rates of catabolism of both soluble and insoluble collagen.  相似文献   

3.
Interactions of cells with extracellular matrix (ECM) are mediated through specific cell surface receptors, belonging to the integrin family of transmembrane proteins. Integrins have been shown to be involved in chondrocyte-matrix interactions in the cartilage. In this study, the status of a matrix glycoprotein fibronectin (FN) and its receptor alpha5beta1 integrin in the articular cartilage in collagen type II-induced experimental arthritis in rats, as well as in synovial fluid from osteoarthritic patients was investigated. Experimental arthritis was induced by intradermal injection of type-II collagen (300 microg/100 g body wt) and Freund's complete adjuvant. Saline-treated animals served as control. Clinical severity was indicated by increase in paw volume. Significant increase in the activities of lysosomal enzymes beta-glucuronidase and beta-hexosaminidase was observed in synovial effusate, serum and cartilage of arthritic animals, when compared to untreated control, indicating dysfunction of cartilage. Changes in FN and alpha5beta1 integrin were studied by ELISA. A progressive increase was observed in the FN level in synovial effusate and cartilage of arthritic animals, when compared to untreated controls. FN levels were also significantly high in synovial fluid of osteoarthritic patients. A significant increase in the levels of alpha5beta1 integrin was found in cartilage of arthritic rats. Parallel changes in FN and alpha5beta1 integrin indicated that alterations in FN and alpha5beta1 integrin in chondrocytes constituted one of the molecular mechanisms during progression of arthritis.  相似文献   

4.
The metabolic changes in the connective tissue glycosaminoglycans were studied in tissues of adjuvant induced arthritic rats. Arthritic process was induced in rats with the inoculation of Freund's adjuvant containing heat killed Mycobacterium tuberculosis in paraffin oil. The connective tissue glycosaminoglycans were fractionated into sulfated and non-sulfated glycosaminoglycans by chemical and enzymatic methods. The biosynthesis of sulfated glycosaminoglycans was examined using radioactive labeled (35S)-sulfate incorporation measurements into the sulfated glycosaminoglycans in tissues such as liver, kidney, spleen and skin of arthritic rats. The catabolism of glycosaminoglycans was studied by measuring the activity of various connective tissue degrading lysosomal glycohydrolases in tissues of experimental animals. In addition, the changes in the contents of total glycosaminoglycans, mono-sulfated, highly-sulfated and non-sulfated glycosaminoglycans were quantitatively assessed in diseased tissues. Alterations in the metabolism of connective tissue glycosaminoglycans were demonstrated in tissues of arthritic rats. The uptake of (35S)-sulfate into the tissue was found to be increased in liver, kidney and spleen, while that of skin decreased during the process of arthritis. The total glycosaminoglycan content was significantly elevated in diseased tissues compared to normal. Similarly, mono-sulfated, highly-sulfated and non-sulfated glycosaminoglycans were found to be increased in arthritic tissues. In addition, the activity of various connective tissue degrading lysosomal glycohydrolases such as -glucuronidase, -N-acetylglucosaminidase, cathepsin B, cathepsin L and collagenolytic cathepsin was increased in tissues of arthritic rat. The results presented in this communication indicate that the characteristic alterations were induced in the metabolism of glycosaminoglycans by the dynamic process of adjuvant arthritis.  相似文献   

5.
Rheumatoid arthritis (RA) has a negative impact on muscle mass, and reduces patient's mobility and autonomy. Furthermore, RA is associated with metabolic comorbidities, notably in lipid homeostasis by unknown mechanisms. To understand the links between the loss in muscle mass and the metabolic abnormalities, arthritis was induced in male Sprague Dawley rats (n = 11) using the collagen-induced arthritis model. Rats immunized with bovine type II collagen were compared to a control group of animals (n = 11) injected with acetic acid and complete Freund's adjuvant. The clinical severity of the ensuing arthritis was evaluated weekly by a semi-quantitative score. Skeletal muscles from the hind limb were used for the histological analysis and exploration of mitochondrial activity, lipid accumulation, metabolism and regenerative capacities. A significant atrophy in tibialis anterior muscle fibers was observed in the arthritic rats despite a non-significant decrease in the weight of the muscles. Despite moderate inflammation, accumulation of triglycerides (P < 0.05), reduced mitochondrial DNA copy number (P < 0.05) and non-significant dysfunction in mitochondrial cytochrome c oxidase activity were found in the gastrocnemius muscle. Concomitantly, our results suggested an activation of the muscle specific E3 ubiquitin ligases MuRF-1 and MAFbx. Finally, the adipose tissue from the arthritic rats exhibited decreased PPARγ mRNA suggesting reduced adipogenic capacities. In conclusion, the reduced adipose tissue adipogenic capacity and skeletal muscle mitochondrial capacity are probably involved in the activation of protein catabolism, inhibition of myogenesis, accumulation of lipids and fiber atrophy in the skeletal muscle during RA.  相似文献   

6.
Adjuvant-induced arthritis in rats is associated with growth failure, hypermetabolism and accelerated protein breakdown. The aim of this work was to study the effects of adjuvant-induced arthritis on GH and insulin-like growth factor-I (IGF-I). Arthritis was induced by an intradermal injection of complete Freund's adjuvant and rats were killed 18 and 22 days later. IGF-I and GH levels were measured by radioimmunoassay. Pituitary GH mRNA was analyzed by northern blot and IGF binding proteins (IGFBPs) by western blot. Arthritic rats showed a decrease in both serum and hepatic concentrations of IGF-I. On the contrary, arthritis increased the circulating IGFBPs. The serum concentration of IGF-I in the arthritic rats was negatively correlated with the body weight loss observed in these animals. Arthritis decreased the serum concentration of GH and this decrease seems to be due to an inhibition of GH synthesis, since pituitary GH mRNA content was decreased in arthritic rats (p<0.01). These data suggest that the decrease in body weight gain in arthritic rats may be, at least in part, secondary to the decrease in GH and IGF-I secretion. Furthermore, the increased serum IGFBPs may also be involved in the disease process.  相似文献   

7.
The effect of milk extract of Semecarpus anacardium Linn. nut milk extract (SA) was studied to gain some insight into this intriguing disease with reference to collagen metabolism. Arthritis was induced in rats by injecting Freund's complete adjuvant containing 10mg of heat killed mycobacterium tuberculosis in 1 ml paraffin oil (0.1 ml) into the left hind paw of the rat intradermally. After 14 days of induction, SA (150 mg/kg body weight/day) was administered orally by gastric intubations for 14 days. Decreased levels of collagen and glycosaminoglycans (GAGS) components (chondroitin sulphate, heparan sulphate, hyaluronic acid) and increase in the levels of connective tissue degrading lysosomal glycohydrolases such as acid phosphatase, beta-glucuronidase, beta-N-acetyl glucosaminidase and cathepsin-D observed in arthritic animals were reverted back to near normal levels upon treatment with SA. The drug effectively regulated the uriniray markers of collagen metabolism namely hexosamine, hexuronic acid, hydroxyproline and total GAGS. Electron microscopic studies also revealed the protective effect of SA. Hence, it can be suggested that SA very effectively regulate the collagen metabolism that derange during arthritic condition.  相似文献   

8.
To explore the effects of growth retardation, caused by restricted protein intake, on collagen turnover in the whole skin, Sprague-Dawley rats (n = 20) were labelled with 18O2 and fed on either an adequate (18%) or a low (3%) lactalbumin diet. Skin biopsies were obtained at intervals during the following 6 months. Independent groups of animals (n = 186) were used to determine the size of the 0.5 M-acetic acid-soluble and -insoluble collagen pools in the entire skin of healthy and malnourished rats. Collagen was estimated by measurement of hydroxyproline. Soluble-collagen synthesis rates were equivalent to 99 +/- 8 mumol of hydroxyproline/day in healthy animals and 11 +/- 2 mumol/day in malnourished rats. Insoluble-collagen synthesis rates were 32 and 5 mumol of hydroxyproline/day in the healthy and protein-depleted rats respectively. The degradation of soluble collagen amounted to 37 +/- 8 and 6 +/- 2 mumol of hydroxyproline/day in the healthy and malnourished groups respectively. Efflux of collagen from the soluble collagen, defined as the sum of the rate of soluble collagen that is degraded plus that which matures into insoluble collagen, was 70 +/- 8 and 11 +/- 2 mumol of hydroxyproline/day in the healthy and malnourished groups respectively. Insoluble collagen was not degraded in either group. The fraction of soluble collagen leaving the pool that was converted into insoluble collagen was 0.46 in both diet groups. It is concluded that the turnover of soluble collagen is markedly decreased with malnutrition, but degradation and conversion into insoluble collagen account for the same proportions of efflux from the soluble-collagen pool as in rapidly growing rats.  相似文献   

9.
Elevated levels of PGE(2) have been reported in synovial fluid and cartilage from patients with osteoarthritis (OA). However, the functions of PGE(2) in cartilage metabolism have not previously been studied in detail. To do so, we cultured cartilage explants, obtained from patients undergoing knee replacement surgery for advanced OA, with PGE(2) (0.1-10 muM). PGE(2) inhibited proteoglycan synthesis in a dose-dependent manner (maximum 25% inhibition (p < 0.01)). PGE(2) also induced collagen degradation, in a manner inhibitable by the matrix metalloproteinase (MMP) inhibitor ilomastat. PGE(2) inhibited spontaneous MMP-1, but augmented MMP-13 secretion by OA cartilage explant cultures. PCR analysis of OA chondrocytes treated with PGE(2) with or without IL-1 revealed that IL-1-induced MMP-13 expression was augmented by PGE(2) and significantly inhibited by the cycolooygenase 2 selective inhibitor celecoxib. Conversely, MMP-1 expression was inhibited by PGE(2), while celecoxib enhanced both spontaneous and IL-1-induced expression. IL-1 induction of aggrecanase 5 (ADAMTS-5), but not ADAMTS-4, was also enhanced by PGE(2) (10 muM) and reversed by celecoxib (2 muM). Quantitative PCR screening of nondiseased and end-stage human knee OA articular cartilage specimens revealed that the PGE(2) receptor EP4 was up-regulated in OA cartilage. Moreover, blocking the EP4 receptor (EP4 antagonist, AH23848) mimicked celecoxib by inhibiting MMP-13, ADAMST-5 expression, and proteoglycan degradation. These results suggest that PGE(2) inhibits proteoglycan synthesis and stimulates matrix degradation in OA chondrocytes via the EP4 receptor. Targeting EP4, rather than cyclooxygenase 2, could represent a future strategy for OA disease modification.  相似文献   

10.
The biosynthesis and degradation of myocardial collagen was studied in myocardium infarcted rats after a single intraperitoneal injection of 3H-proline. The incorporation of tritiated proline into collagen as 3H-hydroxyproline was regarded as a measure of collagen synthesis. The total content as well as total activity of hydroxyproline were measured in the whole homogenate, neutral salt soluble fraction, insoluble fraction and in urine collected at different time intervals and specific activities were calculated. Both collagen anabolism and catabolism were found to be affected in infarcted rat hearts. Degradation of existing collagen at the earlier stages of myocardial infarction and a simultaneous new collagen synthesis and deposition as insoluble form later took place.  相似文献   

11.
This study examined ventilation in rats with arthritis induced by Mycobacterium butyricum. It was found that, 19 days after inoculation, the minute ventilation of arthritic rats breathing air was about two-fold higher than that of control animals. This increase resulted from an increase both in respiratory frequency and in tidal volume. Air-CO2 mixtures continued to stimulate ventilation in arthritic rats, and the minute ventilation of these animals on breathing 5 or 7% CO2 exceeded that of controls. The results are consistent with the hypothesis that arthritic rats hyperventilate and contribute to the validation of adjuvant arthritis as an animal model of chronic pain.  相似文献   

12.
PGE(2) has been reported to inhibit allergen-induced airway responses in sensitized human subjects. The aim of this study was to investigate the mechanism of anti-inflammatory actions of PGE(2) in an animal model of allergic asthma. BN rats were sensitized to OVA using Bordetella pertussis as an adjuvant. One week later, an aerosol of OVA was administered. After a further week, animals were anesthetized with urethan, intubated, and subjected to measurements of pulmonary resistance (R(L)) for a period of 8 h after OVA challenge. PGE(2) (1 and 3 micro g in 100 micro l of saline) was administered by insufflation intratracheally 30 min before OVA challenge. The early response was inhibited by PGE(2) (3 micro g). The late response was inhibited by both PGE(2) (1 and 3 micro g). Bronchoalveolar lavage fluid from OVA-challenged rats showed eosinophilia and an increase in the number of cells expressing IL-4 and IL-5 mRNA. These responses were inhibited by PGE(2). Bronchoalveolar lavage fluid levels of cysteinyl-leukotrienes were elevated after OVA challenge and were reduced after PGE(2) to levels comparable with those of sham challenged animals. We conclude that PGE(2) is a potent anti-inflammatory agent that may act by reducing allergen-induced Th2 cell activation and cysteinyl-leukotriene synthesis in the rat.  相似文献   

13.
In the liver of adjuvant arthritic rats perfused with a hemoglobin-free buffer solution, the rate of metabolism of a model drug, 2,6-dichloro-4-nitroanisole, was approximately half that of the control, while the bile flow rate was normal. Granulation tissue extracts and arthritic rat serum had no effect on the activity of CNA metabolism in normal rat liver preparations. In the perfused normal rat liver, the rate of CNA metabolism was inhibited by addition of prostaglandin (PG) E1, PGE2, and PGF2 alpha, respectively, in a final concentration of 0.5 microM. The inhibition by PGE1 was increased in the concentration range from 0.1 to 2.5 microM. The bile flow rate was not affected by the added PGs. However, these PGs had no direct effect on the CNA demethylating activity of the isolated hepatocytes from normal rat liver in a high concentration of 10 microM. Serotonin stimulated slightly CNA metabolism and bile production in the perfused livers by the intermittent infusion, but was without effect in the isolated hepatocytes. Epinephrine and histamine had no significant effect on CNA metabolism in both liver preparations. A similar pattern of the inhibition of CNA metabolism by PGs was reproduced in the normal rat liver perfused with the medium containing the supernatant of the hepatic nonparenchymal cells incubated in the presence of PGE1. The involvement of liver sinusoidal cells as secretory cells in depression of hepatic drug metabolism has been discussed.  相似文献   

14.
Localised bone loss in the form of bone erosions and peri-articular osteopenia constitutes an important criteria for the diagnosis of rheumatoid arthritis. In the present study, the effect of Semecarpus anacardium Linn. nut milk extract (SA) on the metabolism of bone turn over has been studied by analyzing various markers of bone turnover and by histological and radiological analysis of the joints in adjuvant arthritis in rats. Arthritis was induced in rats by injecting Freund's complete adjuvant containing 10mg of heat killed mycobacterium tuberculosis in 1 ml paraffin oil (0.1 ml) into the left hind paw of the rat intradermally. After 14 days of induction, SA (150 mg/kg body weight/day) was administered orally by gastric intubations for 14 days. SA significantly reverted the alterations in the bone turnover observed in arthritic animals by modulating the levels of calcium, phosphorus and the activities of the enzymes names tartrate resistant acid phosphatase, acid phosphatase and alkaline phosphatase. The drug increased the bone weights that were found to be decreased during arthritis. Protective effect of SA was also observed by the decrease in the levels and expression of tumour necrosis factor alpha (TNF-alpha) as well as the histopathological and radiological observations. From all these observations it can be concluded that SA possesses strong anti-arthritic property by regulating bone turnover.  相似文献   

15.
Mechanical stress and prostaglandin E2 synthesis in cartilage   总被引:1,自引:0,他引:1  
Knee osteoarthritis (OA) results, at least in part, from overloading and inflammation leading to cartilage degradation. Prostaglandin E2 (PGE2) is one of the main catabolic factors involved in OA in which metalloproteinase (MMP) is crucial for cartilage degradation. Its synthesis is the result of cyclooxygenase (COX) and prostaglandin E synthase (PGES) activities whereas NAD+-dependent 15 hydroxy-prostaglandin dehydrogenase (15-PGDH) is the key enzyme implicated in the catabolism of PGE2. Among the isoforms described, COX-1 and cytosolic PGES are constitutively expressed whereas COX-2 and microsomal PGES type 1 (mPGES-1) are inducible in an inflammatory context. We investigated the regulation of the COX, PGES and 15-PGDH and MMP-2, MMP-9 and MMP-13 genes by mechanical stress applied to cartilage explants. Mouse cartilage explants were subjected to compression (0.5 Hz, 1 MPa) from 2 to 24 h. After determination of the PGE2 release in the media, mRNA and proteins were extracted directly from the cartilage explants and analyzed by real-time RT-PCR and western blot respectively. Mechanical compression of cartilage explants significantly increased PGE2 production in a time dependent manner. This was not due to the synthesis of IL-1, since pretreatment with IL1-Ra did not alter the PGE2 synthesis. Interestingly, COX-2 and mPGES-1 mRNA expression significantly increased after 2 hours, in parallel with protein expression. Moreover, we observed a delayed overexpression of 15-PGDH just before the decline of PGE2 synthesis after 18 hours suggesting that PGE2 synthesis could be altered by the induction of 15-PGDH expression. MAPK are involved in signaling, since specific inhibitors partially inhibited COX-2 and mPGES-1 expressions. Lastly, compression induced MMP-2, -9, -13 mRNA expressions in cartilage. We conclude that dynamic compression induces pro-inflammatroy mediators release and matrix degradating enzymes synthesis. Notably, compression increases mPGES-1 mRNA and protein expression in cartilage explants. Thus, the mechanosensitive mPGES-1 enzyme represents a potential therapeutic target in osteoarthritis.  相似文献   

16.
The selective induction of PGE(2) synthesis in inflammation suggests that a PGE synthase may be linked to an inducible pathway for PG synthesis. We examined the expression of the recently cloned inducible microsomal PGE synthase (mPGES) in synoviocytes from patients with rheumatoid arthritis, its modulation by cytokines and dexamethasone, and its linkage to the inducible cyclooxygenase-2. Northern blot analysis showed that IL-1beta or TNF-alpha treatment induces mPGES mRNA from very low levels at baseline to maximum levels at 24 h. IL-1beta-induced mPGES mRNA was inhibited by dexamethasone in a dose-dependent fashion. Western blot analysis demonstrated that mPGES protein was induced by IL-1beta, and maximum expression was sustained for up to 72 h. There was a coordinated up-regulation of cyclooxygenase-2 protein, although peak expression was earlier. Differential Western blot analysis of the microsomal and the cytosolic fractions revealed that the induced expression of mPGES protein was limited to the microsomal fraction. The detected mPGES protein was catalytically functional as indicated by a 3-fold increase of PGES activity in synoviocytes following treatment with IL-1beta; this increased synthase activity was limited to the microsomal fraction. In summary, these data demonstrate an induction of mPGES in rheumatoid synoviocytes by proinflammatory cytokines. This novel pathway may be a target for therapeutic intervention for patients with arthritis.  相似文献   

17.
Although large amounts of epidermal growth factor (EGF) are found in the synovial fluids of arthritic cartilage, the role of EGF in arthritis is not clearly understood. This study investigated the effect of EGF on differentiation and on inflammatory responses such as cyclooxygenase-2 (COX-2) expression and prostaglandin E(2) (PGE(2)) production in articular chondrocytes. EGF caused a loss of differentiated chondrocyte phenotype as demonstrated by inhibition of type II collagen expression and proteoglycan synthesis. EGF also induced COX-2 expression and PGE(2) production. EGF-induced dedifferentiation was caused by EGF receptor-mediated activation of extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) but not p38 kinase, whereas the activation of both ERK1/2 and p38 kinase was necessary for COX-2 expression and PGE(2) production. Neither the inhibition of COX-2 expression and PGE(2) production nor the addition of exogenous PGE(2) affected EGF-induced dedifferentiation. However, COX-2 expression and PGE(2) production were significantly enhanced in chondrocytes that were dedifferentiated by serial subculture, and EGF also potentiated COX-2 expression and PGE(2) production, although these cells were less sensitive to EGF. Dedifferentiation-induced COX-2 expression and PGE(2) production were mediated by ERK1/2 and p38 kinase signaling. Our results indicate that EGF in articular chondrocytes stimulates COX-2 expression and PGE(2) production via ERK and p38 kinase signaling in association with differentiation status.  相似文献   

18.
Using the curative model of adjuvant arthritis, adult male Sprague-Dawley rats were treated with vehicle or etodolac (1, 3, and 8 mg/kg/day, po) for 9 days. Rats were sacrificed after 1, 2, 4, or 9 daily doses, and paw volume, PGE2 concentrations, and N-acetyl-beta-D-glucosaminidase (NAG) activity were determined in the left adjuvant-injected hindpaws. All three doses of etodolac caused a significant decrease in PGE2 concentrations after the first dose, and the decreases persisted for 2, 4, and 9 days of treatment, respectively. In rats given four daily doses of 3 and 8 mg/kg/day of etodolac, the paw volume was significantly decreased by about 50%, compared with that of the arthritic controls. A significant decrease in NAG activity was observed only after nine daily doses of 8 mg/kg/day etodolac. The sequence of anti-inflammatory events manifested following etodolac treatment would appear to be an initial inhibition of PGE2 synthesis, followed by resorption of fluid, and then by a reduction in macrophage infiltration.  相似文献   

19.
T lymphocytes expressing the chemokine receptors, CCR2, CCR5, CXCR3, and CXCR6 are increased in inflamed tissues in rheumatoid arthritis. The role of CXCR3 in autoimmune arthritis induced in Lewis rats was investigated. CXCR3+ T cells migrated 2- to 3-fold more than CXCR3- T cells to inflamed joints in arthritic animals. CXCR3-expressing in vivo Ag-activated T lymphoblasts and in vitro-activated lymph node cells from arthritic animals were strongly recruited to the arthritic joints, and treatment with anti-CXCR3 mAb significantly inhibited this T cell recruitment by 40-60%. Immune T cells from the spleen and lymph nodes of actively immunized arthritic donors adoptively transferred arthritis to naive rats. Treatment with anti-CXCR3 mAb delayed the onset of arthritis and significantly reduced the severity of joint inflammation with a >50% decrease in the clinical arthritis score. Blockade of CXCR3 also significantly reduced the weight loss in the arthritic animals and inhibited neutrophil accumulation in the joints by 50-60%. There was a marked reduction in the leukocyte infiltration of the synovium in the presence of CXCR3 blockade and a decrease in the loss of articular cartilage of the joints. In conclusion, CXCR3 on T cells has an essential role in T cell recruitment to inflamed joints and the development of joint inflammation in adjuvant arthritis.  相似文献   

20.
Nitric oxide as well as prostaglandins has been reported to play an important role in inflammatory diseases including arthritis. In the present study, the effects of iNOS inhibition on development of disease were examined in type II collagen-induced arthritis (CIA) in male DBA/1J mice. From 4 weeks after the first immunization with bovine type II collagen, 1400W (10 mg/kg/day, p.o.), a selective iNOS inhibitor, indomethacin (1 mg/kg/day, p.o.), a cyclooxygenase (COX) inhibitor, or 1400W + indomethacin was administered for 8 weeks. Immunization with type II collagen evoked arthritic inflammation of paws and bone destruction accompanied by increases in urinary nitrite/nitrate (NOx) excretion, plasma NOx and PGE2 levels. Administration of 1400W reduced urinary NOx excretion and increased plasma PGE2 levels, while it had no effect on arthritic inflammation or bone destruction. Indomethacin slightly reduced the inflammatory signs and bone destruction with marked reduction of plasma PGE2. Combination of 1400W and indomethacin reduced urinary NOx and PGE2 levels, and showed greater amelioration of inflammatory signs and bone destruction than either alone. In conclusion, 1400W, a selective iNOS inhibitor, failed to prevent CIA probably due to its increasing effect on PGE2 production, but showed a synergistic ameliorative effect in combination with indomethacin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号