首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fresh arterial tissue generates an unstable substance (prostaglandin X) which relaxes vascular smooth muscle and potently inhibits platelet aggregation. The release of prostaglandin (PG) X can be stimulated by incubation with arachidonic acid or prostaglandin endoperoxides PGG2 or PGH2. The basal release of PGX or the release stimulated with arachidonic acid can be inhibited by previous treatment with indomethacin or by washing the tissue with a solution containing indomethacin. The formation of PGX from prostaglandin endoperoxides PGG2 or PGH2 is not inhibited by indomethacin. 15-hydro-peroxy arachidonic acid (15-HPAA) inhibits the basal release of PGX as well as the release stimulated by arachidonic acid or prostaglandin endoperoxides (PGG2 or PGH2). Fresh arterial tissue obtained from control or indomethacin treated rabbits, when incubated with platelet rich plasma (PRP) generates PGX. This generation is inhibited by treating the tissue with 15-HPAA. A biochemical interaction between platelets and vessel wall is postulated by which platelets feed the vessel wall with prostaglandin endoperoxides which are utilized to form PGX. Formation of PGX could be the underlying mechanism which actively prevents, under normal conditions, the accumulation of platelets on the vessel wall.  相似文献   

2.
A calcium sequestering platelet membrane fraction was prepared and the effect of arachidonic acid, PGG2 and PGH2 on calcium content evaluated. At 4°C, 6.7–16.7 μM arachidonic acid caused significant release of calcium from preloaded vesicles. Such release was completely inhibited by aspirin pretreating the platelets from which the membrane fraction was prepared. γ-linolenic acid, not a substrate for prostaglandin synthesis, did not cause calcium release. At 37°C, after a 5 minute calcium loading of the membrane vesicles, arachidonic acid, PGG2, and PGH2 caused release of calcium. Calcium release by the PGG2 and PGH2 was only slightly inhibited by aspirin. Imidazole, which prevented conversion of the prostaglandin endoperoxides to thromboxanes, also only slightly inhibited calcium release. Other prostaglandins including PGD2, PGE1, PGE2 and PGD2 had no effect on the calcium content of the vesicles. These studies suggest that PGG2 and PGH2 may exert their effects on platelets by mobilizing calcium from an internal membrane store to make it available to promote platelet activation.  相似文献   

3.
We examined platelet aggregation and serotonin release, induced by less than 60 μM arachidonic acid, using washed platelet suspensions in the absense of albumin. The concentration of arachidonic acid use did not cause platelet lysis. Platelet responses induced by less than 20 μM arachidonic acid were inhibited by aspirin, whereas those induced by above 30 μM arachidonic acid were not inhibited, even by both aspirin and 5,8,11,14-eicosatetraynoic acid. Although phosphatidic acid and 1,2-diacylglcerol increased after the addition of arachidonic acid in aspirin-treated platelets, the amounts were not parallel to platelet aggregation. Oleic, linoleic and linolenic acids also induced platelet responses, while palmitic, stearic and arachidic acids did not. EDTA, dibutyryl cyclic AMP, apyrase and creatine phosphate / creatin phosphokinase brought about almost the same effects in platelet responses induced by the unsaturated fatty acids, other than arachodinic acid, as those induced by 40 μM arachodonic acid. These results suggest that the mechanism of the actions of more than 30 μM arachodinic acid on platelets is the same as that of the other unsaturated fatty acids and is independent of prostaglandin endoperoxides, thromboxane A2 and, perhaps, phosphatidic acid and 1,2-diacylglycerol.  相似文献   

4.
Prostaglandin (PG) endoperoxides (PGG2 and PGH2) contract arterial smooth muscle and cause platelet aggregation. Microsomes from pig aorta, pig mesenteric arteries, rabbit aorta and rat stomach fundus enzymically transform PG endoperoxides to an unstable product (PGX) which relaxes arterial strips and prevents platelet aggregation. Microsomes from rat stomach corpus, rat liver, rabbit lungs, rabbit spleen, rabbit brain, rabbit kidney medulla, ram seminal vesicles as well as particulate fractions of rat skin homogenates transform PG endoperoxides to PGE- and PGF- rather than to PGX-like activity.PGX differs from the products of enzymic transformation of prostaglandin endoperoxides so far identified, including PGE2, F, D2, thromboxane A2 and their metabolites.PGX is less active in contracting rat fundic strip, chick rectum, guinea pig ileum and guinea pig trachea than are PGG2 and PGH2. PGX does not contract the rat colon.PGX is unstable in aqueous solution and its anti-aggregating activity disappears within 0.25 min on boiling or within 10 min at 37° C.As an inhibitor of human platelet aggregation induced in vitro by arachidonic acid PGX was 30 times more potent than PGE1. The enzymic formation of PGX is inhibited by 15-hydroperoxy arachidonic acid (IC50 = 0.48 μg/ml), by spontaneously oxidised arachidonic acid (IC50 <100 μg/ml) and by tranylcypromine (IC50 = 160 μg/ml).We conclude that a balance between formation by arterial walls of PGX which prevents platelet aggregation and release by blood platelets of prostaglandin endoperoxides which induce aggregation is of the utmost importance for the control of thrombus formation in vessels.  相似文献   

5.

The conditions for producing phosphatidylcholine liposomes containing lipoic acid and carnosine together were determined. The obtained liposomes are 180–250-nm spherical particles with an efficiency of lipoic acid inclusion of 50–70% (for carnosine, 17–33%). Based on the model of the oxidation of phosphatidylcholine by hydrogen peroxide, an antioxidant effect of carnosine, lipoic acid or lipoic acid with carnosine together was demonstrated; it consisted in inhibition of lipid peroxidation process, which was manifested in a decrease in the formation of lipid peroxidation products that react with thiobarbituric acid. It was established that lipoic acid (5 mM) and carnosine (0.1–10 mM) in liposomes exhibit an antioxidant effect. At the same time, it was demonstrated that the content of the appropriate lipid peroxidation products in liposomes with antioxidants (lipoic acid + carnosine) was 15 times lower than in control liposomes (without antioxidants). The effect of the obtained liposomal drugs on the platelet aggregation induced by arachidonic acid was evaluated. It was found that the liposomal drug containing lipoic acid (1.5 mM) and carnosine (2.1 mM) inhibited platelet aggregation by 50–55% relative to the control (platelets and arachidonic acid), while liposomes without antioxidants and water-soluble forms of carnosine and lipoic acid had almost no effect on platelet aggregation caused by arachidonic acid.

  相似文献   

6.
Clausine-D inhibited concentration-dependently the aggregation and release of washed rabbit platelets induced by arachidonic acid and collagen, without affecting those induced by U46619, PAF and thrombin. The IC50 values of clausine-D on arachidonic acid-and collagen-induced platelet aggregation were calculated to be 9.0±1.1 and 58.9±0.9 μM, respectively. Thromboxane B2 and prostaglandin D2 formation in platelets caused by arachidonic acid were also suppressed. Clausine-D inhibited increased intracellular concentration of calcium in platelets caused by arachidonic acid and collagen, and also abolished the generation of inositol monophosphate caused by arachidonic acid, but not that by collagen U46619, PAF and thrombin. In human citrated platelet-rich plasma, clausine-D inhibited the secondary phase, but not the primary phase, of aggregation induced by epinephrine and ADP. These results indicate that the antiplatelet effect of clausine-D is due to inhibition of the formation of thromboxane A2.  相似文献   

7.
The present study has investigated the influence of agents which elevate intracellular levels of endogenous platelet adenosine 3′5′-cyclic monophosphate (cyclic AMP), and the effect of the exogenous cyclic AMP analog, dibutyryl cyclic AMP, on the conversion of 14C-arachidonic acid by washed platelets. Prostaglandin E1 (PGE1), PGE1 with theophylline, or dibutyryl cyclic AMP incubated with washed platelets prevented arachidonic acid induced platelet aggregation, but had no effect on the conversion of arachidonic acid to 12L-hydroxy-5,8,10, 14-eicosatetraenoic acid (HETE), 12L-hydroxy-5,8,10 heptadecatrienoic acid (HHT), or thromboxane B2. Ultrastructural studies of the platelet response revealed that agents acting directly or indirectly to increase the level of cyclic AMP inhibited the action of arachidonic acid on washed platelets and prevented internal platelet contraction as well as aggregation. The influence of PGE1 with theophylline, and dibutyryl cyclic AMP on the thrombin induced release of 14C-arachidonic acid from platelet membrane phospholipids was also investigated. These agents were found to be potent inhibitors of the thrombin stimulated release of arachidonic acid from platelet phospholipids, due most likely to an inhibition of platelet phospholipase A activity. The results show that dibutyryl cyclic AMP and agents which elevate intracellular cyclic AMP levels act to inhibit platelet activation at two steps 1) internal contraction and 2) release of arachidonic acid from platelet phospholipids.  相似文献   

8.
Several substituted phenols with antioxidant properties were potent reversible inhibitors of prostaglandin synthesis in 3T3 cell cultures. The ID50's for prostaglandin (PG) E2 synthesis in these cells were 0.1 μM for 2,6-xylenol, 5 μM for tricresol, 6 μM for -cresol, 7 μM for -cresol, 15 μM for 3,5-xylenol, 30 μM for -cresol and 100 μM for phenol. The corresponding values for aspirin and indomethacin were 4 μM and 0.02 μM, respectively.The substituted phenols also inhibited serotonin release, aggregation and prostaglandin synthesis in human platelets induced by arachidonic acid but not by PGG2.  相似文献   

9.
Flurbiprofen has been shown to inhibit cyclo-oxygenase metabolism of arachidonic acid to thromboxane A2 (TxA2), resulting in the inhibition of platelet aggregation. Recently, our laboratory reported that the "irreversible" phase of platelet aggregation and adhesion were regulated, in part, by the lipoxygenase metabolism of arachidonic acid to 12-hydroxy-eicosatetraenoic acid (12-HETE) in platelets, and that selective inhibition of one enzyme i.e. either cyclo-oxygenase or lipoxygenase, resulted in paradoxical effects on the metabolism of arachidonic acid and platelet response related to the other pathway. Therefore, we performed experiments to assess the relative effects of flurbiprofen on TxA2 and 12-HETE synthesis, and on collagen-induced platelet aggregation and platelet adhesion to collagen-coated surfaces. "Irreversible" collagen-induced platelet aggregation was only partially inhibited by pre-incubation with 1 x 10(-6) M flurbiprofen, while TxA2 production was elevated and 12-HETE production was maximally inhibited in these platelets. At this concentration of flurbiprofen (1 x 10(-6)M), collagen-induced platelet adhesion was also reduced by 50%. At higher concentrations of flurbiprofen, both platelet aggregation and adhesion were further reduced, with a corresponding inhibition of TxA2 production. Thus it appears that the lipoxygenase pathway of arachidonic acid metabolism in platelets is not only inhibited by flurbiprofen, but is more sensitive to inhibition by flurbiprofen than the cyclo-oxygenase pathway. This differential effect of flurbiprofen on arachidonic acid metabolism in the platelet is related to differential effects on platelet function.  相似文献   

10.
Dibutyryl-cAMP but not dibutyryl-cGMP inhibited platelet aggregation and release of 14C-serotonin and ADP when induced by collagen and arachidonate but not when induced by the endoperoxide PGG2* (TXB2) induced by addition of collagen to platelet rich plasma (PRP) was decreased by dibutyryl-cAMP and agents known to increase the concentration of cAMP (PGE1, PGD2, theophylline and acetyl choline).PGE2 in concentrations known to decrease cAMP levels increased the formation of TXB2 whereas concentrations of PGE2 known to increase cAMP levels decreased the amount of TXB2 formed. That this was due to an effect on the cyclooxygenase was indicated by inhibition of the transformation of arachidonic acid by DB-cAMP and by high concentrations of PGE2. Additional support for regulation of the cyclo-oxygenase by cAMP and its relevance to platelet aggregation was obtained by demonstrating stimulation of PGG2 induced aggregation by low concentrations of PGE2 and the absence of this effect in the presence of a cyclo-oxygenase inhibitor.  相似文献   

11.
The present study has investigated the influence of agents which elevate intracellular levels of endogenous platelet adenosine 3'5'-cyclic monophosphate (cyclic AMP), and the effect of the exogenous cyclic AMP analog, dibutyryl cyclic AMP, on the conversion of 14C-arachidonic acid by washed platelets. Prostaglandin E1 (PGE1), PGE1 with theophylline, or dibutyryl cyclic AMP incubated with washed platelets prevented arachidonic acid induced platelet aggregation, but had no effect on the conversion of arachidonic acid to 12L-hydroxy-5,8,10, 14-eicosatetraenoic acid (HETE), 12L-hydroxy-5,8,10 heptadecatrienoic acid (HHT), or thromboxane B2. Ultrastructural studies of the platelet response revealed that agents acting directly or indirectly to increase the level of cyclic AMP inhibited the action of arachidonic acid on washed platelets and prevented internal platelet contraction as well as aggregation. The influence of PGE1 with theophylline, and dibutyryl cyclic AMP on the thrombin induced release of 14C-arachidonic acid from platelet membrane phospholipids was also investigated. These agents were found to be potent inhibitors of the thrombin stimulated release of arachidonic acid from platelet phospholipids, due most likely to an inhibition of platelet phospholipase A activity. The results show that dibutyryl cyclic AMP and agents which elevate intracellular cyclic AMP levels act to inhibit platelet activation at two steps 1) internal contraction and 2) release of arachidonic acid from platelet phospholipids.  相似文献   

12.
Soluble elastin, prepared from insoluble elastin by treatment with oxalic acid or elastase, was found to inhibit the formation of thromboxane B2 both from [1-14C]arachidonic acid added to washed platelets and from [1-14C]arachidonic acid in prelabeled platelets on stimulation with thrombin. In both systems, the formation of 12-hydroxy-5,8,10,14-eicosatetraenoic acid (12-HETE) was accelerated. Oxalic acid-treated soluble elastin st 1 and 10 mg/ml inhibited the formation of thromboxane B2 from exogenously supplied arachidonic acid 21 and 59%, respectively, and the formation of thromboxane B2 in prelabeled platelets stimulated by thrombin 44 and 94%, respectively. These concentrations of elastin increased the formation of 12-HETE from exogenously supplied arachidonic acid about 3.4- and 7.3-times, respectively. Almost all the added arachidonic acid was converted to metabolites. In prelabeled platelets, soluble elastin at 1 and 10 mg/ml increased the formation of 12-HETE stimulated by thrombin about 1.3- and 2.8-times, respectively, and inhibited the thrombin-induced total productions of thromboxane B2 (12-hydroxy-5,8,10-heptadecatrienoic acid (12-HETE) and free arachidonic acid by 26 and 25%, respectively. Elastase-treated digested elastin also inhibited the formation of thromboxane B2 and stimulated the formation of 12-HETE in prelabeled platelets stimulated by thrombin. This inhibitory action of elastin was not replaced by desmosine. The level of cAMP in platelets was not affected by soluble elastin. Soluble elastin was also found to inhibit platelet aggregation induced by thrombin. However, the inhibitory action of soluble elastin on platelet aggregation cannot be explained by inhibition of thromboxane B2 formation by the elastin.  相似文献   

13.
Metyrapone and SKF-525A, together with amphenone B, a structural analogue of metyrapone, which are all inhibitors of cytochrome P-450-mediated reactiors, were shown to inhibit the arachidonic acid-induced aggregation of human platelets. Amphenone B, like metyrapone, exhibited a type II (ligand) binding spectrum with rat liver microsomal cytochrome P-450, in contrast to SKF 525A which is a type I (substrate) binding agent. Independently of their type of binding spectra and of their maximum spectral change, however, the affinity of the three compounds for rat liver cytochrome P-450 showed a close proportional correlation with their platelet aggregation inhibitory potency. All three compounds inhibited the formation of [1?14C]thromboxane B2 from [1?14C]arachidonic acid by human platelets aggregated with collagen. The effect of metyrapone on the remaining labelled products suggested that it is a selective thromboxane synthesis inhibitor, while amphenone B exhibited activity reminiscent of cyclo-oxygenase inhibitors. SKF 525A produced complex effects possibly attributable to cyclo-oxygenase inhibition and enhanced lipid peroxidation, since it also enhanced platelet malonaldehyde formation, which the other two compounds inhibited. These data provide further support for a role of cytochrome P-450 in thromboxane synthesis and platelet aggregation.  相似文献   

14.
The microsomal fraction of dog aortas inhibited human platelet aggregation induced by arachidonic acid, ADP, or thrombin. When aortic microsomes were added to a preparation of irreversibly aggregated platelets, the aggregates dispersed after 4–6 minutes. The fact that aortic microsomes inhibit platelet aggregation induced by ADP suggests that its effect is probably on the cellular function of platelets and not in direct competition against thromboxane A2.  相似文献   

15.
Human blood platelet aggregation and the formation of icosanoids were studied in response to triethyl lead chloride (Et3PbCl). Concentrations higher than 75 microM stimulate platelets to aggregate, whereas low concentrations (less than or equal to 20 microM) caused platelet hypersensitivity to aggregating agents such as collagen or arachidonic acid. Incubation of suspensions of washed platelets with Et3PbCl resulted in a stimulated liberation and subsequent metabolism of arachidonic acid. This response was dependent on the concentration of Et3PbCl and the incubation time. Using low concentrations of Et3PbCl and up to 3 h of incubation, the lipoxygenase product 12-hydroxy-5,8,10,14-icosatetraenoic acid was the major metabolite. Under normal conditions, however, stimulation of platelets with collagen, thrombin, or arachidonic acid leads to higher amounts of the cyclooxygenase products 12-hydroxy-5,8,10-heptadecatrienoic acid and thromboxane B2. The aggregation of human platelets induced by Et3PbCl was inhibited by three different drugs: acetylsalicylic acid, forskolin and quinacrine; but only quinacrine could prevent the liberation of arachidonic acid and the appearance of its metabolites. These specific effects of the inhibitors on Et3PbCl-stimulated platelets as well as the differences in the pattern of arachidonic acid metabolites and phosphatidic acid suggest a direct stimulatory action of Et3PbCl on platelet phospholipase A2.  相似文献   

16.
The phorbol ester 12-0-tetradecanoyl-phorbol-13-acetate, a potent tumor-promoting agent, caused irreversible platelet aggregation when more than 0.02 µM was stirred with human citrated or heparinized platelet-rich plasma (PRP). With washed platelets, 1 nM was effective. The alcohol phorbol, which has little tumor-promoting activity, failed to cause platelet aggregation. With all but low concentrations of phorbol ester, aggregation was succeeded by a rapid phase. The latter was prevented or reduced by enzymes which destroy ADP and by aspirin, was associated with a change in platelet shape, and was presumably due to released ADP. At higher concentrations, only a rapid phase was seen, and these inhibitors were not effective. Low concentrations did not aggregate platelets in PRP containing sufficient EDTA or EGTA to chelate ionized calcium or in PRP from thrombasthenic patients; higher concentrations caused slight aggregation. Both the primary, non-ADP-dependent aggregation and the rapid ADP-dependent aggregation were markedly inhibited by substances which increase cyclic AMP, metabolic inhibitors, and the sulfhydryl inhibitor N-ethylmaleimide. Phorbol ester reduced platelet cyclic AMP only when it had been previously elevated by prostaglandin E1. 1 µM did not release β-glucuronidase, lactic dehydrogenase, or inflammatory material from platelets in 4–5 min despite marked aggregation, but liberated all three in 30 min. The possibility is discussed that low phorbol ester concentrations cause primary aggregation by a direct action on platelet actomyosin.  相似文献   

17.
Anti-aggregating activity of 7-ethoxycarbonyl-6,8-dimethyl-4-hydroxymethyl-1(2H)-phthalazinone (EG-626) was tested using rabbit platelets in vitro. EG-626 alone, when added before, prevented platelet aggregation induced by ADP, as did PGI2, papaverine and dipyridamole. Spontaneous disaggregation was also accelerated when EG-626 was added after the maximal aggregation induced by ADP. EG-626 alone also inhibited platelet aggregation induced by collagen and arachidonic acid. ID50s of these agents in ADP-induced aggregation were 7–9 nM for PGI2, 223 μM for EG-626, 266 μM for papaverine and 957 μM for dipyridamole. When EG-626 was used in combination with PGI2, a threshold dose (50 μM) of EG-626 potentiated the anti-aggregating effect of subthreshold dose (3 nM) of PGI2 upto 100% inhibition in collagen-induced platelet aggregation. The marked potentiating effect of EG-626 was accompanied by an accumulation of cyclic AMP in the platelets. These effects might be due to inhibition of phosphodiesterase. Papaverine and dipyridamole, other phosphodiesterase inhibitors, also potentiated the anti-aggregating activity of PGI2. The activity of papaverine, however, was one eighth of EG-626 and that of dipyridamole was much less. The most effective combination of PGI2 and EG-626 to induce 50% inhibition was obtained with 20% of ID50 of each agent, whereas that of PGI2 and papaverine or dipyridamole was 39 or 41%, respectively.  相似文献   

18.
We have investigated whether exposure of human platelets to elevated concentrations of linoleic acid, the principal dietary polyunsaturate, would influence platelet thromboxane A2 release. Platelets were incubated with albumin-bound linoleic acid at 30°C for 24 h, with prostaglandin E1 added to prevent aggregation. The linoleic acid supplemented platelets released, on averaged, 50% less thromboxane A2 in response to stimulation with thrombin than corresponding control platelets. Other fatty acids were without appreciable effect. The inhibition of thrombin-stimulated thromboxane A2 release was dependent on the time and temperature of incubation, as well as on the concentration of added linoleic acid. Supplementation increased the amount of linoleic acid in the platelet phospholipids, but the arachidonic acid content of the phospholipids was reduced. [1-14C]Linoleic acid was not converted to arachidonic acid by the platelets. Linoleic acid was released exclusively form the inositol phosphoglycerides when the enriched platelets were stimulated with thrombin. The linoleate-enriched platelets converted less [1-14C]arachidonic acid to all prostaglandin products, suggesting that the platelet cyclooxygenase was partially inhibited.  相似文献   

19.
Vitamin E (α-tocopherol) and tocopherol acetate produced a slightly increased amount of thromboxane in treated compared to untreated platelets. In tocopherol acetate-treated platelets significantly more lipoxygenase products were produced. α-tocopherol induced an increased, but not significant, production of thromboxane B2 during blood clotting. α-tocopherol was not found to affect platelet phospholipase activity as determined by its effect on the release of labelled arachidonic acid from platelet phospholipids by challenging the platelets with calcium ionophore A23,187. α-tocopherol potentiated the incorporation of labelled arachidonate in the platelet phospholipids. Inspite of having no effect on the arachidonic acid cascade in platelets, α-tocopherol inhibited aggregation induced by several aggregating agents including A23,187. Inhibition of aggregation may be explained by the ability of α-tocopherol to inhibit intracellular mobilization of sequestered calcium from the dense tubular system to the cytoplasm.  相似文献   

20.
Anandamide (AEA) presents the four double bonds in the cis configuration, deriving from the arachidonic acid moiety. In the context of an antisense strategy based on the double bond configuration, all-trans AEA (t-AEA) was synthesized in high yield starting from all-trans methyl arachidonate and ethanolamine in the presence of KCN. t-AEA was assayed on rabbit platelet aggregation, obtaining effect only at high concentrations (>10(-4) M) after an also concentration-dependent lag phase. At lower concentrations it inhibited PAF-induced rabbit platelet aggregation with an IC(50)=4.6 x 10(-6) M. In contrast to anandamide, the activation of platelets was not due to the conversion of t-AEA to trans arachidonic acid, as ascertained by negative results with FAAH inhibitors. However, t-AEA was found to be a substrate for fatty acid amide hydrolase (FAAH), the enzyme that cleaves anandamide and regulates in vivo the magnitude and duration of the signaling induced by this lipid messenger.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号