首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 6 毫秒
1.
We investigated the possibility that blood pressure elevation induced by salt excess may be secondary to a neurogenic mechanism. The compound SK&F 64139 (50 mg/kg) known to inhibit central and peripheral phenylethanolamine N-methytransferase (PNMT) the enzyme necessary for the conversion of norepinephrine to epinephrine, was given by oral gavage to two groups of subtotally nephrectomized rats maintained for five days on either a high salt (HS) or low salt (LS) diet respectively. Blood urea nitrogen (BUN) and hematocrit were not different between the two groups, while body weight and serum Na were significantly higher in the HS animals. Baseline mean blood pressure (BP) was higher in the HS animals (HS 154 ± 4.7 vs LS 121 ± 3.7 mmHg, p<0.001) and decreased by 39 ± 6.9 mmHg one and one half hour post SK&F 64139 to normotensive levels in the HS as opposed to a decrease of 10 ± 1.8 mmHg in the LS group. Baseline heart rate (HR) was higher in the LS group (474 ± 17 beats/min) vs the HS group (408 ± 17, p<0.05), and decreased significantly after SK&F 64139 in both groups to the same extent (by 17.6% in the HS vs 13.3% in the LS). A third group of subtotally nephrectomized rats maintained for five days on a HS diet were given by oral gavage the compount SK&F 29661 (100 mg/kg), a PNMT inhibitor which does not cross the blood-brain barrier. Following SK&F 29661, there was no significant decrease in mean BP (153 ± 5 to 149 ± 4 mmHg) and a less than 2% decrease in HR. Baseline plasma norepinephrine (NE) was higher in the HS as compared to the LS group (1.50 ± 0.16 vs 0.904±0.15 ng/ml, respectively, p<0.05) and a significant correlation was found between plasma NE level and decrease in BP following SK&F 64139 (r=0.65, p<0.01). Not withstanding possible effects of some ancillary properties of SK&F 64139, these data support the hypothesis that a neurogenic component, possibly mediated via central epinephrine containing neurons, contributes to the BP elevation induced by salt excess.  相似文献   

2.
Phenylethanolamine N-methyltransferase (PNMT) catalyzes the conversion of norepinephrine (noradrenaline) to epinephrine (adrenaline) while, concomitantly, S-adenosyl-l-methionine (AdoMet) is converted to S-adenosyl-l-homocysteine. This reaction represents the terminal step in catecholamine biosynthesis and inhibitors of PNMT have been investigated, inter alia, as potential antihypertensive agents. At various times the kinetic mechanism of PNMT has been reported to operate by a random mechanism, an ordered mechanism in which norepinephrine binds first, and an ordered mechanism in which AdoMet binds first. Here we report the results of initial velocity studies on human PNMT in the absence and presence of product and dead end inhibitors. These, coupled with isothermal titration calorimetry and fluorescence binding experiments, clearly shown that hPNMT operates by an ordered sequential mechanism in which AdoMet binds first. Although the log V pH-profile was not well defined, plots of log V/K versus pH for AdoMet and phenylethanolamine, as well as the pKi versus pH for the inhibitor, SK&F 29661, were all bell-shaped indicating that a protonated and an unprotonated group are required for catalysis.  相似文献   

3.
Abstract— Phenylethanolamine N -methyltransferase (PNMT) and adrenaline (A) have been studied in organ cultures of neonatal rat sympathetic ganglia. Organ culture for 2 days without added nerve growth factor (NGF) caused a fall in noradrenaline (NA) and PNMT contents but there was no change in dopamine (DA) or A contents compared to controls. However, in the presence of dexamethasone, there was a marked increase in both PNMT activity and A content, but no change in NA or DA content. Addition of NGF to cultures stimulated with dexamethasone caused no further significant change in PNMT activity or A content, whereas both NA and DA were increased. Prolonged culture without NGF, in the presence of dexamethasone resulted in reductions in both NA and DA content, but the high levels of PNMT activity and A content were sustained. The results are consistent with the hypothesis that both PNMT and A are not contained in the noradrenergic cell bodies but are located chiefly within the small intensely fluorescent cells in sympathetic ganglia.  相似文献   

4.
Indomethacin has been reported to potentiate the release of noradrenaline from sympathetic nerve endings in vitro and to increase urinary noradrenaline excretion in rats. We have studied the influence of indomethacin on plasma catecholamine levels in 10 normal men, using measurement of plasma renin activity (PRA) as an index of the pharmacodynamic effect of indomethacin. Both in the supine and standing positions indomethacin failed to alter the plasma concentrations of noradrenaline, adrenaline or dopamine, while PRA was markedly suppressed. It is concluded that in the intact human indomethacin does not influence catecholamine concentrations.  相似文献   

5.
C Torda 《Enzyme》1977,22(6):370-377
Phenylethanolamine-N-methyltransferase activity of rat hypothalami was assayed. The enzyme was present at birth, in traces, and gradually increased during the first 2 postnatal months. Exposure to recurrent stressful situations increased PNMT activity in a statistically significant manner. Persistence of exposure to stressful events resulted in higher adult PNMT activity. Assays of hypothalamic tissue cultures revealed that part of PNMT activity increase was due to temporary potentiation by local factors, and partly to increase of tissue concentration of enzyme by increased protein synthesis. One of the submolecular chain reactions generated by stress (and able to induce protein synthesis) was identified as: release of ACTH during stress, activation of local adenylate cyclase by ACTH to synthesize cyclic AMP. When released, this cyclic AMP increased the local cyclic AMP: cyclic GMP ratio, a process known to induce protein synthesis. A potent and selective competitive inhibitor, SK&F 64139, when added to tissue cultures, prevented increase of PNMT activity by prolonged stimulation.  相似文献   

6.
The presence of the catecholamine synthetic enzyme, phenylethanolamine N-methyl transferase (PNMT), has been detected in the expansor secundariorum, a smooth muscle of the avian wing. The concentration of the enzyme was estimated over a 10-week time course from 17 days incubation to 9 weeks posthatch and found to increase rapidly up until hatch in parallel with dopamine beta-hydroxylase activity, but then to fall precipitously to very low levels. The time course of the initial increase in activity corresponds to the presence of ingrowing sympathetic nerve fibres, and denervation of the expansor results in loss of greater than 80% of the PNMT activity. It is concluded that during the period of innervation the growing nerves contain the enzyme PNMT and therefore have the capacity to synthesize adrenaline, but that shortly after innervation is complete the capacity to synthesize adrenaline is lost. Several alternate mechanisms are proposed to explain the observations.  相似文献   

7.
A Sudo 《Life sciences》1987,41(22):2477-2484
In order to examine the origin and location of adrenaline in peripheral organs of mammals, adrenaline and noradrenaline were measured in several organs of the rat after adrenalectomy, guanethidine treatment and imipramine injection. One week after bilateral adrenalectomy, adrenaline disappeared almost completely from the heart, spleen and submaxillary gland. Chronic administration of guanethidine caused decreases in both noradrenaline and adrenaline in the peripheral organs. Injection of imipramine induced a reduction of adrenaline concentration in the spleen and submaxillary gland. It is considered that adrenaline in the peripheral organs of mammals is mostly derived from the adrenal gland and that circulating adrenaline is taken up by sympathetic nerve endings in the organs. The adrenaline content of the peripheral organs increased after electric foot-shock and changed according to the time of day. The peak of the circadian rhythm appeared about 6 hours after the peak of the urinary adrenaline rhythm. These findings suggest that adrenaline in body organs plays some role in the responses of the sympathetic nervous system to stressful conditions or even to daily activities.  相似文献   

8.
The effects of phenylethanolamine N-methyltransferase (PNMT) and dopamine-β-hydroxylase (DβH) inhibition on the epinephrine content in specific regions of the brain were studied. SKF 64139, a potent PNMT inhibitor, is effective in lowering brain epinephrine levels. The time course of PNMT inhibition by SKF 64139 parallels the lowering of epinephrine levels in the brain. Diethyldithiocarbamate (DDC), a potent inhibitor of DβH, is effective in lowering norepinephrine and epinephrine levels and in elevating dopamine levels in the analyzed regions of the brain. The epinephrine levels in the brain appear to be under similar biosynthetic control as in the adrenal glands.  相似文献   

9.
P Rubin  T Blaschke 《Prostaglandins》1979,17(4):581-585
Indomethacin has been reported to potentiate the release of noradrenaline from sympathetic nerve endings in vitro and to increase urinary noradrenaline excretion in rats. We have studied the influence of indomethacin on plasma catecholamine levels in 10 normal men, using measurement of plasma renin activity (PRA) as an index of the pharmacodynamic effect of indomethacin. Both in the supine and standing positions indomethacin failed to alter the plasma concentrations of noradrenaline, adrenaline or dopamine, while PRA was markedly suppressed. It is concluded that in the intact human indomethacin does not influence catecholamine concentrations.  相似文献   

10.
The effects of nerve growth factor (NGF) and ciliary neuronotrophic factor (CNTF) on catecholamine content and in vitro activities of tyrosine hydroxylase (TH) and phenylethanolamine N-methyltransferase (PNMT) were studied in adrenal chromaffin cells cultured from 8-day-old rats. Both NGF and CNTF enhanced chromaffin cell survival and partially prevented losses of adrenaline during the 4-day culture period in a dose-dependent manner. CNTF was more potent, although cellular levels of adrenaline and noradrenaline were not maintained. NGF did not add to the effect of CNTF. The effect of CNTF on catecholamine storage was not accompanied by changes in the activities of TH and PNMT. In contrast, NGF induced TH but not PNMT activity. These data indicate differences between the mechanisms by which NGF and CNTF affect adrenal chromaffin cells.  相似文献   

11.
Phenylethanolamine N-methyltransferase (PNMT, EC 2.1.1.28) is the terminal enzyme of the catecholaminergic pathway converting noradrenaline to adrenaline. Although preferentially localized in adrenal medulla, evidence exists that PNMT activity and gene expression are also present in the rat heart, kidney, spleen, lung, skeletal muscle, thymus, retina and different parts of the brain. However, data concerning PNMT gene expression in sympathetic ganglia are still missing. In this study, our effort was focused on identification of PNMT mRNA and/or protein in stellate ganglia and, if present, testing the effect of stress on PNMT mRNA and protein levels in this type of ganglia. We identified both PNMT mRNA and protein in stellate ganglia of rats and mice, although in much smaller amounts compared with adrenal medulla. PNMT gene expression and protein levels were also increased after repeated stress exposure in stellate ganglia of rats and wild-type mice. Similarly to adrenal medulla, the immobilization-induced increase was probably regulated by glucocorticoids, as determined indirectly using corticotropin-releasing hormone knockout mice, where immobilization-induced increase of PNMT mRNA was suppressed. Thus, glucocorticoids might play an important role in regulation of PNMT gene expression in stellate ganglia under stress conditions.  相似文献   

12.
The aim of the present study was to maximise the selective depletion of adrenaline stores in the rat brainstem and spinal cord, obtained by administering inhibitors of adrenaline synthesis. Partial depletions of adrenaline in the hypothalamus and medulla were observed after a single injection of either LY134046 or SKF 64139 (40 mg/kg i.p.). The rate and extent of depletion seen in the hypothalamus 3 or 6 h after a single dose of LY134046 could be increased by simultaneous exposure to cold or by lowering blood pressure, but not by prior administration of the synthesis inhibitor at 12 h intervals for 3 days. None of the treatments used were able to significantly lower spinal cord adrenaline levels, despite at least 80% inhibition of spinal cord PNMT activity. These results suggest that the ability to reduce central adrenaline stores by synthesis inhibition is limited, especially in the spinal cord.  相似文献   

13.
BACKGROUND: Adrenaline is localized to specific regions of the central nervous system (CNS), but its role therein is unclear because of a lack of suitable pharmacologic agents. Ideally, a chemical is required that crosses the blood-brain barrier, potently inhibits the adrenaline-synthesizing enzyme PNMT, and does not affect other catecholamine processes. Currently available PNMT inhibitors do not meet these criteria. We aim to produce potent, selective, and CNS-active PNMT inhibitors by structure-based design methods. The first step is the structure determination of PNMT. RESULTS: We have solved the crystal structure of human PNMT complexed with a cofactor product and a submicromolar inhibitor at a resolution of 2.4 A. The structure reveals a highly decorated methyltransferase fold, with an active site protected from solvent by an extensive cover formed from several discrete structural motifs. The structure of PNMT shows that the inhibitor interacts with the enzyme in a different mode from the (modeled) substrate noradrenaline. Specifically, the position and orientation of the amines is not equivalent. CONCLUSIONS: An unexpected finding is that the structure of PNMT provides independent evidence of both backward evolution and fold recruitment in the evolution of a complex enzyme from a simple fold. The proposed evolutionary pathway implies that adrenaline, the product of PNMT catalysis, is a relative newcomer in the catecholamine family. The PNMT structure reported here enables the design of potent and selective inhibitors with which to characterize the role of adrenaline in the CNS. Such chemical probes could potentially be useful as novel therapeutics.  相似文献   

14.
Abstract— Phenylethanolamine N -methyltransferase (PNMT) activity assayed by a sensitive radiochemical method was found to be distributed unevenly in the adult rat brain. Highest activities of this enzyme were located in the medulla and the hypothalamus. Small amounts of adrenaline were identified in the hypothalamus using a sensitive enzymatic radiochemical assay procedure, whereas in the medulla and other brain regions the values for adrenaline were at the limits of the sensitivity of the assay for this amine. The daily administration of dexamethasone (1 mg/kg) to adult rats for 13 days significantly increased PNMT activity in medulla and hypothalamus and also increased the adrenaline content of the hypothalamus. Five daily injections of dexamethasone (0·1 mg/kg) to newborn rats did not alter the PNMT activity or the catecholamine content of the brain, but markedly increased the PNMT activity and adrenaline content of superior cervical ganglia. Higher doses of dexamethasone given to newborn rats (6 daily injections of 1 mg/kg) increased PNMT activity both in the medulla and in the hypothalamus.  相似文献   

15.
The experiments were designed to detect somatopetal transport of [14C]noradrenaline in the postganglionic sympathetic nerves supplying the cat spleen and sheep eye. The animals were treated with nialamide to protect the radioactive noradrenaline, after uptake into the nerve terminals, from monoamine oxidase. In the spleen, the transmitter stores were labelled by infusion of [14C]noradrenaline into a branch of the splenic artery. The branches of the nerves to the infused and non-infused sides of the spleen were ligated in an attempt to arrest, distal to the constriction, any noradrenaline transported somatopetally in the axons from their terminals. After 24 hr, however, there was less radioactivity in the nerves distal compared to proximal to the constriction, despite heavier labelling of the terminal transmitter stores in the infused portion of the spleen. The proximal accumulation of radioactivity could be attributed to a somatofugal transport of [14C]noradrenaline. Experiments were also done on the intact sympathetic nerve supply of the sheep eye. The sympathetic nerve terminals in the smooth muscle of the left eye were heavily labelled 5 days after the injection of [14C]noradrenaline into the left vitreous humour. However, both superior cervical ganglia were only lightly labelled, and there was no significant difference in the radioactivity present in the two ganglia. The results provide no support for a bidirectional transport of noradrenaline in sympathetic nerves but are consistent with a somatofugal transport of the amine storage vesicles from their site of synthesis in the soma to the axon terminals.  相似文献   

16.
Summary The presence of dopamine--hydroxylase (DBH) and phenylethanol-amine-N-methyltransferase (PNMT) immunoreactivity in specific neurones of the snail Helix aspersa has been demonstrated. In addition, high performance liquid chromatography and electrochemical detection have revealed the presence of noradrenaline and adrenaline in the snail central nervous system, although the major catecholamine is dopamine. These results suggest that adrenaline, and perhaps noradrenaline, have transmitter or modulatory functions in the snail nervous system.  相似文献   

17.
The content of adrenaline and noradrenaline in the tissues of the heart, adrenal glands, spleen and brain of rats was studied in experimental myocardial infarction. A significant decrease in the catecholamine levels was revealed in the tissues. Malaben promoted normalization of the catecholamine tissue content in myocardial infarction. It is suggested that the said effect of malaben is due to its antihistaminic properties.  相似文献   

18.
The ascending noradrenaline-containing neuronal system from the locus coeruleus to the cerebral cortex was unilaterally lesioned by an intracerebral injection of 8 μg 6-hydroxydopamine in the dorsomedial reticular formation in the caudal mesencephalon. The 6-hydroxydopamine caused injury to axons of the dorsal catecholamine bundle associated with its specific neurotoxic action, while very limited unspecific tissue necrosis was observed. Following this treatment the endogenous noradrenaline in the ipsilateral cerebral cortex (neocortex) increased acutely (up to 2 days), as observed both with noradrenaline assay and fluorescence histochemistry. The noradrenaline concentration then gradually decreased to 15 per cent of the contralateral side 15 days after the lesion. At this time interval and up to at least 90 days no fluorescent catecholamine nerve terminals could be detected. The acute noradrenaline increase could be blocked partially by tyrosine hydroxylase inhibition produced by α-methyl-p-tyrosine. The disappearance of endogenous noradrenaline following tyrosine hydroxylase inhibition was also reduced after the 6-hydroxydopamine lesion. Studies on the in vitro uptake of [3H]noradrenaline (0.1 μM for 5 min) in slices from the neocortex after the 6-hydroxydopamine lesion showed a gradual decline in uptake reaching maximal reduction (35-40 per cent of the contralateral side) after 15 days. No recovery of [3H]noradrenaline uptake was seen up to 90 days after the lesion. The formation of [3H]noradrenaline from [3H]dopamine in vitro was reduced to 15 per cent of the contralateral side after a chronic lesion. The present results indicate that the disappearance of noradrenaline uptake-storage mechanisms in the neocortex is due to an anterograde degeneration of axons and nerve terminals of the dorsal catecholamine bundle. The data on endogenous noradrenaline and noradrenaline synthesis suggest that approx. 15 per cent of the noradrenaline nerve terminals in the neocortex remain intact following the lesion, while the [3H]noradrenaline uptake data reflect uptake in other tissue structures in addition to noradrenaline nerve terminals, e.g. dopamine nerve terminals, pericytes and/or glial cells.  相似文献   

19.
Abstract— A fraction containing noradrenaline storage vesicles of the sympathetic nerve terminals in the rat heart was obtained by differential centrifugation. In this preparation, 17% of the dopamine β-hydroxylase was present in a soluble form. Cold exposure (3°C) for periods from 5 to 30 min led to an increase in the activity of soluble dopamine β-hydroxylase by about 50%, while the activity of membrane-bound dopamine β-hydroxylase was simultaneously decreased by approx 30%. The nor-adrenaline content of the vesicles rose concomitantly with the increase in the activity of soluble dopamine β-hydroxylase. This rise in noradrenaline content was caused by an enhanced synthesis and not by an alteration in the subcellular distribution. The results are discussed with respect to the fate of dopamine β-hydroxylase during enhanced sympathetic nerve activity.  相似文献   

20.
《Biochemical medicine》1982,27(3):317-324
The activity of phenylethanolamine N-methyltransferase (PNMT) with noradrenaline and S-adenosylmethionine as substrates was measured in various areas of human brain by high-performance liquid chromatography with electrochemical detection. Commercially available noradrenaline contained about 0.27% adrenaline and was purified for reducing the blank value to increase the sensitivity. Enzymatically formed adrenaline and 3,4-dihydroxybenzylamine (added to the incubation mixture as an internal standard after the reaction) were adsorbed on an aluminum oxide column, eluted with 0.5 m hydrochloric acid and separated by high-performance reversed-phase paired-ion chromatography and measured with electrochemical detection. This assay was very sensitive and PNMT activity was detected in various areas of the human brain including the spinal cord. The enzyme activity was significantly reduced in brain tissues from patients with Parkinson's disease and striatonigral degeneration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号