首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of prostaglandin E2 (PGE2) and indomethacin on the vascular reactivity to norepinephrine were tested in three different isolated rat vascular beds (mesenteric artery, hind limb and splenic artery) perfused with the Krebs bicarbonate solution. In these vascular beds PGE2 (0.1–64 ng/ml) or indomethacin (0.1–96 μg/ml) in the perfusate did not change the basal pressure. In the mesenteric vascular bed and the hind limb, PGE2 dose-dependently potentiated the vascular response to norepinephrine, whereas PGE2 dose-dependently inhibited the vascular response to noreinephrine in the splenic artery. In these three vascular beds indomethacin in the perfusate dose-dependently attenuated the vascular response to norepinephrine. In the mesenteric artery and the hind limb PGE2 restored the effect of indomethacin, but in the splenic artery PGE2 did not restore the inhibitory effect of indomethacin. These results indicate that the modulating effect of exogenously administrated PGE2 on the vascular action to norepinephrine varies in different vascular beds. It is also suggested that the contribution of endogenous PGE2 synthesized in the vascular wall to the vascular reactivity to norepinephrine is, as well as the effect of exogenous PGE2, different in different vascular beds.  相似文献   

2.
The effects of prostaglandin E1 (PGE1) and indomethacin on isolated fetal and neonatal lamb mesenteric artery responses to norepinephrine were investigated. PGE1 (1.5 micrometer) significantly reduced vasoconstriction responses to 0.5 to 5 micrometer norepinephrine. Indomethacin (1 micrometer) markedly potentiated the constrictor effects of 0.5 to 10 micrometer norepinephrine. PGE1 prevented the potentiating effect of indomethacin. Neither PGE1 nor indomethacin altered basal muscle tension. These results suggest that endogenous PGs modify adrenergic responses in the isolated mesenteric arteries of preterm and newborn lambs.  相似文献   

3.
Low concentrations of copper inhibited responses to norepinephrine and angiotensin (IC50 3 X 10(-6) M) but not to potassium in rat mesenteric vascular preparations perfused either with buffer or indomethacin and prostaglandin (PGE2). The dose-response curve was not shifted by indomethacin, imidazole, or PGE2 but was moved to the right by 2.8 X 10(-11) M PGE1 and to the left by 2.8 X 10(-7) M PGE1. These effects of copper are similar to the effects of PGI2 in the preparation. Copper moved the PGI2 dose-response curve against noradrenaline in parallel to the left, suggesting that the two were interacting at some point. Penicillamine, which may stimulate PGE1 synthesis, had PGE1-like interactions with the copper effect, suggesting that its value in Wilson's disease may be partly due to antagonism of the biological action of copper as well as to its copper-chelating properties.  相似文献   

4.
In physiological concentrations myo-inositol stimulated production of prostaglandin (PG)-like material in a rat mesenteric vascular bed preparation. There were five lines of evidence: 1. Inositol potentiated pressor responses to both norepinephrine and potassium in a manner similar to PGE2. 2. Inositol had no potentiating effect in preparations in which endogenous PG production was blocked by indomethacin. 3. Inositol caused no further potentiation in preparations already potentiated by arachidonic acid, the PG precursor. 4. The inhibitory effect of the PG antagonist chloroquine was reduced in an apparently competitive manner by inositol. 5. As indicated by rat stomach bioassay inositol caused a three fold rise in the outflow of PG-like material from the preparation.  相似文献   

5.
Prostaglandin (PG) E2 inhibited both phases of contraction produced by electrical field stimulation of the guinea-pig vas deferens. PGF2alpha and PGD2 were without effect on this preparation. Carbacyclin (a PGI2) analogue inhibited the first phase of contraction at higher concentrations, whereas U46619 (a thromboxane mimetic) potentiated both phases of contraction. As exogenous arachidonic acid inhibits both phases of contraction of the electrically field-stimulated guinea-pig vas deferens, it is likely that the arachidonic acid is converted to PGE2 in the vas deferens. Indomethacin, a non-specific inhibitor of prostaglandin H synthase (PGHS), attenuated the inhibitory actions of exogenous arachidonic acid when examined on the first phase of contraction. NS-398, a relatively specific inhibitor of PGHS-2, also prevented the inhibitory action of exogenous arachidonic acid. However, NS-398 was much less effective than indomethacin in this respect even though NS-398 and indomethacin inhibit PGHS-2 with similar potencies. Consequently, the findings suggest that exogenous arachidonic acid is converted to PGE2 in the guinea-pig vas deferens by the actions of PGHS-1 and, to a lesser extent, by PGHS-2.  相似文献   

6.
Infusion of norephinephrine (NE) (1 - 3 mug/ml/min) into the isolated mesenteric vascular preparation of rabbit resulted in a rise in perfusion pressure, which was associated with the release of prostaglandin E-like substance (PGE) at a concentration of 2.81 +/- 0.65 ng/ml in terms of PGE2. Indomethacin (3 mug/ml) abolished the NE-induced release of PGE. Arachidonic acid (0.2 mug/ml) in the presence of indomethacin did not restore the NE-induced release of PGE. Hydrocortisone (10 - 30 mug/ml) and dexamethasone (2 - 5 mug/ml) also inhibited the NE-induced release of PGE. The inhibitory action of both corticosteroids was abolished by arachidonic acid (0.2 mug/ml). Antigen-induced release of a prostaglandin-like substance (PGs) (43.1 +/- 3.8 ng/ml in terms of PGE2 and a rabbit aorta contracting substance (RCS) from perfused lungs of sensitized guinea pigs was completely abolished by indomethacin (5 mug/ml) or by hydrocortisone (100 mug/ml). Indomethacin, however, increased histamine release up to 280% of the control level, which was 470 +/- 54 ng/ml, while hydrocortisone diminished histamine release down to 30% of the control level. A superimposed infusion of arachidonic acid (1 mug/ml) into the pulmonary artery reversed the hydrocortisone-induced blockade of the release of RCS and PGs. It may be concluded that corticosteroids neither inhibit prostaglandin synthetase nor influence prostaglandin transport through the membranes but they do impair the availability of the substrate for the enzyme.  相似文献   

7.
Prostaglandin E2 (PGE2) and 6 keto-PGF1 alpha, the stable metabolite of prostacyclin (PGI2), have been measured in the effluent of perfused rat mesenteric arteries by the use of a sensitive and specific radioimmunoassay (RIA) method. The PGE2 and 6 keto-PGF1 alpha were continuously released by the unstimulated mesenteric artery over a period of 145 min. After 100 min of perfusion the release of PGE2 and 6 keto-PGF1 alpha was 45.1 +/- 8.4 pg/min and 254 +/- 75 pg/min respectively, which is in accord with the general belief that PGI2 is the major PG synthesized by arterial tissue. Angiotensin II (AII) (5 ng/ml) induced an increase of PGE2 and 6 keto-PGF1 alpha release without changing the perfusion pressure. The effect of norepinephrine (NE) injections on release of PGs depended on the duration of the stabilization period. The changes of perfusion pressure induced by NE were not related to changes in release of PGs. Thus, it seems that the increase of PG release induced by AII and NE was due to a direct effect of the drugs on the vascular wall. This may represent an important modulating mechanism in the regulation of vascular tone.  相似文献   

8.
Indomethacin added to the perfusing buffer inhibited pressor responses to noradrenaline, angiotensin II, arginine vasopressin, histamine, serotonin, calcium ions and potassium ions in the male rat mesenteric vascular bed. For every pressor agent the indomethacin concentration which inhibited response amplitude by 50% was about 7 microg/ml (2.1 × 10?5 M). With every pressor agent, prostaglandin (PG) E2 could restore normal responsiveness in indomethacin-blocked preparations even while the indomethacin was still present in the buffer. The concentration of PGE2 required was proportional to the concentration of indomethacin. Preparations completely inhibited by indomethacin needed about 5ng/ml PGE2 for complete restoration of normal responses. Aspirin and mefenamic acid could also inhibit responses to all pressor agents tested but with these drugs only a partial restoration could be achieved by PGE2.  相似文献   

9.
To clarify the metabolism of PGE2, prostacyclin (PGI2) and thromboxane A2 (TxA2) in small vessels in spontaneously hypertensive rats (SHR), we removed superior mesenteric vascular beds from 10 week old SHR and age matched normotensive controls (WKY). The mesenteric artery was perfused with Krebs-Henseleit buffer and samples of effluent collected every 15 minutes during 3 hours perfusion for analysis of PGE2, 6-keto-PGF1 alpha (a stable metabolite of PGI2) and TxB2 (a stable metabolite of TxA2) by specific radioimmunoassays. Levels of all three arachidonic acid (AA) metabolites, PGE2, 6-keto-PGF1 alpha and TxB2, in the mesenteric effluent were significantly reduced in SHR as compared to WKY. TxB2 was detected in all samples throughout the perfusion. 6-keto-PGF1 alpha/PGE2 ratios and TxB2/PGE2 ratios were significantly increased in SHR. 6-keto-PGF1 alpha/TxB2 ratios in the first four samples were significantly decreased in SHR as compared to WKY. These data suggest that there may be reduced availability of PG precusor AA and unbalanced synthesis of PGs in small vessels in SHR. Both may have relevance to the development of hypertension in the animals.  相似文献   

10.
Effects of prostaglandins on adrenal steroidogenesis in the rat   总被引:3,自引:0,他引:3  
To elucidate the role of prostaglandins in adrenal steroidogenesis, we studied aldosterone and corticosterone responses to 3 x 10(-8) M--3 x 10(-4) M of prostaglandin E2 (PGE2), prostaglandin F2 alpha (PGF2 alpha), prostacyclin (PGI2), and arachidonic acid (AA) in collagenase dispersed rat adrenal capsular and decapsular cells. Whereas adrenocorticotrophic hormone (ACTH) and angiotensin II (AII) stimulated aldosterone production in capsular cells and ACTH stimulated corticosterone production in decapsular cells in a dose dependent fashion, aldosterone and corticosterone production were not stimulated significantly by PGE2, PGF2 alpha, PGI2, and AA. Although preincubation of dispersed adrenal cells with indomethacin (3 x 10(-5) M) markedly inhibited PGE2 synthesis, ACTH- and AII-stimulated aldosterone production and ACTH-stimulated corticosterone production were not attenuated despite prostaglandin blockade. These results indicate that prostaglandins are unlikely to play an important role in adrenal steroidogenesis.  相似文献   

11.
The effect of endothelin(ET) on adrenergic neurotransmission was examined in isolated perfused rat mesenteric arteries. Porcine ET(10(-12) to 10(-10)M) attenuated the pressor response to sympathetic nerve stimulation (NS). It also stimulated the release of prostaglandin E2 (PGE2), but its inhibition of the pressor response to NS was not affected by indomethacin treatment. ET also caused dose-dependent inhibition of [3H]norepinephrine release during NS. Higher doses of ET rather enhanced the pressor response to NS. These results suggest that ET inhibits presynaptic adrenergic neurotransmission without mediation of PGE2, while it potentiates the responsiveness of the postsynaptic alpha-adrenergic receptor. Thus ET appears to act directly on the neuroeffector junction as well as on the peripheral vasculature.  相似文献   

12.
Intact rings and homogenates of aorta from spontaneously hypertensive rats (SHR) contain enhanced capacity over normal rats (NR) to convert arachidonic acid into PGI2. The PGI2 synthetic system in SHR is stimulated to a greater extent than NR by norepinephrine. Indomethacin blocks this stimulation. PGE2 and PGF2alpha were detected in much smaller amounts in homogenates (undetected in rings) but their formation was not enhanced by the hypertensive tissue. The identity of PGI2 was based on 1) direct pharmacological assay on the rat blood pressure. In this system identical vasodepressor responses to PGI2 are observed after intracarotid and intrajugular administration 2) indirectly as 6-keto PGF1alpha isolated after incubation of aortic homogenates with tritiated arachidonic acid and 3) indirectly by GC-MS assay of PGE2, PGF2alpha and 6-keto PGF1alpha formed during incubation of aortic homogenates with excess unlabeled arachidonic acid. These results provide additional support to our recent hypothesis that PGI2, of aortic origin, might actively participate in the regulation of systemic blood pressure. Its enhanced formation by intact hypertensive vascular tissue reflects an increase in the number of enzyme molecules immediately available to the substrate. This could probably be an adaptive response to the elevated levels of catecholamines in the circulation.  相似文献   

13.
Infusion of norephinephrine (NE) (1 – 3 μg/ml/min) into the isolated mesenteric vascular preparation of rabbit resulted in a rise in perfusion pressure, which was associated with the release of a prostaglandin E-like substance (PGE) at a concentration of 2.81 ± 0.65 ng/ml in terms of PGE2. Indomethacin (3 μg/ml) abolished the NE-induced release of PGE. Arachidonic acid (0.2 μg/ml) in the presence of indomethacin did not restore the NE-induced release of PGE. Hydrocortisone (10 – 30 μg/ml) and dexamethasone (2 – 5 μg/ml) also inhibited the NE-induced release of PGE. The inhibitory action of both corticosteroids was abolished by arachidonic acid (0.2 μg/ml). Antigen-induced release of a prostaglandin-like substance(PGs) (43.1 ± 3.8 ng/ml in terms of PGE2 and a rabbit aorta contracting substance (RCS) from perfused lungs of sensitized guinea pigs was completely abolished by indomethacin (5 μg/ml) or by hydrocortisone (100 μg/ml). Indomethacin, however, increased histamine release up to 280% of the control level, which was 470 ± 54 ng/ml, while hydrocortisone diminished histamine release down to 30% of the control level. A superimposed infusion of arachidonic acid (1 μg/ml) into the pulmonary artery reversed the hydrocortisone-induced blockade of the release of RCS and PGs. It may be concluded that corticosteroids neither inhibit prostaglandin synthetase nor influence prostaglandin transport through the membranes but they do impair the availability of the substrate for the enzyme.  相似文献   

14.
Infusion of norephinephrine (NE) (1 – 3 μg/ml/min) into the isolated mesenteric vascular preparation of rabbit resulted in a rise in perfusion pressure, which was associated with the release of a prostaglandin E-like substance (PGE) at a concentration of 2.81 ± 0.65 ng/ml in terms of PGE2. Indomethacin (3 μg/ml) abolished the NE-induced release of PGE. Arachidonic acid (0.2 μg/ml) in the presence of indomethacin did not restore the NE-induced release of PGE. Hydrocortisone (10 – 30 μg/ml) and dexamethasone (2 – 5 μg/ml) also inhibited the NE-induced release of PGE. The inhibitory action of both corticosteroids was abolished by arachidonic acid (0.2 μg/ml). Antigen-induced release of a prostaglandin-like substance (PGs) (43.1 ± 3.8 ng/ml in terms of PGE2 and a rabbit aorta contracting substance (RCS) from perfused lungs of sensitized guinea pigs was completely abolished by indomethacin (5 μg/ml) or by hydrocortisone (100 μg/ml). Indomethacin, however, increased histamine release up to 280% of the control level, which was 470 ± 54 ng/ml, while hydrocortisone diminished histamine release down to 30% of the control level. A superimposed infusion of arachidonic acid (1 μg/ml) into the pulmonary artery reversed the hydrocortisone-induced blockade of the release of RCS and PGs. It may be concluded that corticosteroids neither inhibit prostaglandin synthetase nor influence prostaglandin transport through the membranes but they do impair the availability of the substrate for the enzyme.  相似文献   

15.
Isolated pancreatic islets of the rat were either prelabeled with [3H]arachidonic acid, or were incubated over the short term with the concomitant addition of radiolabeled arachidonic acid and a stimulatory concentration of glucose (17mM) for prostaglandin (PG) analysis. In prelabeled islets, radiolabel in 6-keto-PGF1 alpha, PGE2, and 15-keto-13,14-dihydro-PGF2 alpha increased in response to a 5 min glucose (17mM) challenge. In islets not prelabeled with arachidonic acid, label incorporation in 6-keto-PGF1 alpha increased, whereas label in PGE2 decreased during a 5 min glucose stimulation; after 30-45 min of glucose stimulation labeled PGE levels increased compared to control (2.8mM glucose) levels. Enhanced labelling of PGF2 alpha was not detected in glucose-stimulated islets prelabeled or not. Isotope dilution with endogenous arachidonic acid probably occurs early in the stimulus response in islets not prelabeled. D-Galactose (17mM) or 2-deoxyglucose (17mM) did not alter PG production. Indomethacin inhibited islet PG turnover and potentiated glucose-stimulated insulin release. Islets also converted the endoperoxide [3H]PGH2 to 6-keto-PGF1 alpha, PGF2 alpha, PGE2 and PGD2, in a time-dependent manner and in proportions similar to arachidonic acid-derived PGs. In dispersed islet cells, the calcium ionophore ionomycin, but not glucose, enhanced the production of labeled PGs from arachidonic acid. Insulin release paralleled PG production in dispersed cells, however, indomethacin did not inhibit ionomycin-stimulated insulin release, suggesting that PG synthesis was not required for secretion. In confirmation of islet PGI2 turnover indicated by 6-keto-PGF1 alpha production, islet cell PGI2-like products inhibited platelet aggregation induced by ADP. These results suggest that biosynthesis of specific PGs early in the glucose secretion response may play a modulatory role in islet hormone secretion, and that different pools of cellular arachidonic acid may contribute to PG biosynthesis in the microenvironment of the islet.  相似文献   

16.
The regulation of PGE2 (prostaglandin E2) and PGI2 (prostaglandin I2; prostacyclin) formation was investigated in isolated adipocytes. The formation of both PGs was stimulated by various lipolytic agents such as isoproterenol, adrenaline and dibutyryl cyclic AMP. During maximal stimulation the production of PGE2 and PGI2 (measured as 6-oxo-PGF1 alpha) was 0.51 +/- 0.04 and 1.21 +/- 0.09 ng/2 h per 10(6) cells respectively. Thus PGI2 was produced in excess of PGE2 in rat adipocytes. The production of the PGs was inhibited by indomethacin and acetylsalicylic acid in a concentration-dependent manner. The half-maximal effective concentration of indomethacin was 328 +/- 38 nM and that of acetylsalicylic acid was 38.5 +/- 5.3 microM. The PGs were maximally inhibited by 70-75% after incubation for 2 h. In contrast with their effect on PG production, the two agents had a small potentiating effect on the stimulated lipolysis (P less than 0.05). The phospholipase inhibitors mepacrine and chloroquine inhibited both PG production and triacylglycerol lipolysis and were therefore unable to indicate whether the PG precursor, arachidonic acid, originates from phospholipids or triacylglycerols in adipocytes. Angiotensin II significantly (P less than 0.05) stimulated both PGE2 and PGI2 production in rat adipocytes without affecting triacylglycerol lipolysis. Finally, it was shown that PGE2 and PGI2 were also produced in human adipocytes, although in smaller quantities than in rat adipocytes. It is concluded that the production of PGs in isolated adipocytes is regulated by various hormones. Moreover, at least two separate mechanisms for PG production may exist in adipocytes: (1) a mechanism that is activated concomitantly with triacylglycerol lipolysis (and cyclic AMP) and (2) an angiotensin II-sensitive, but lipolysis (and cyclic AMP)-independent mechanism.  相似文献   

17.
H Goshowaki  A Ito  Y Mori 《Prostaglandins》1988,36(1):107-114
Effects of prostaglandins on the production of collagenase by rabbit uterine cervical fibroblasts were investigated. Exogenous prostaglandin E2 (PGE2) and PGF2 alpha significantly stimulated the production of collagenase in a dose dependent manner, whereas PGI2 did not. Addition of arachidonic acid in the presence of absence of indomethacin to the cell culture did not show any increase in collagenase production. Recombinant human interleukin-1 (rhIL-1) also promoted the production of cervical collagenase independently of endogenous prostaglandin(s). Furthermore both exogenous PGE2 and PGF2 alpha enhanced the rhIL-1-induced collagenase production whereas PGI2 and/or indomethacin did not. These results suggested that exogenous PGE2 and PGF2 alpha but not endogenous prostaglandin(s) participate in cervical ripening and dilation by enhancing collagenase production by rabbit uterine cervical cells.  相似文献   

18.
In anesthetized young pigs the influence of intraarterial infusion of prostaglandin E2, prostacyclin, prostaglandin F2α, and arachidonic acid on mesenteric vascular resistance was studied. Infusion of PGE2 and prostacyclin induced a dose-dependent direct decrease in resistance. Infusion of PGF2α resulted in a dose-dependent difference in response. Infusion of lower doses provoked a decrease in mesenteric vascular resistance, whereas infusion of higher doses resulted in an increase. Lower doses of arachidonic acid induced a gradual decrease in resistance, while higher doses provoked biphasic or triphasic responses. After previous blockade of the PG synthetase and lipoxygenase pathways with indomethacin and ETA, arachidonic acid only provoked a decrease in vascular resistance. The results suggest a possible role of prostaglandins and their precursors in autoregulation of mesenteric blood flow in the pig.  相似文献   

19.
The effects of prostaglandin E1 (PGE1) and indomethacin on isolated fetal and neonatal lamb mesenteric artery responses to norepinephrine were investigated. PGE1 (1.5μM) significantly reduced vasoconstriction responses to 0.5 to 5μM norepinephrine. Indomethacin (1μM) markedly potentiated the constrictor effects of 0.5 to 10μM norepinephrine. PGE1 prevented the potentiating effect of indomethacin. Neither PGE1 nor indomethacin altered basal muscle tension. These results suggest that endogenous PGs modify adrenergic responses in the isolated mesenteric arteries of preterm and newborn lambs.  相似文献   

20.
The action of prostaglandins and indomethacin on gastric mucosal cyclic nucleotide concentrations was evaluated in 18 anesthetized mongrel dogs. Prostaglandins E1 (PGE1) and E2 (PGE2) (25 microgram/kg bolus, then 2 micrograms/kg/min) were administered both intravenously (4 experiments; femoral vein) and directly into the gastric mucosal circulation (10 experiments; superior mesenteric artery). The possible synergistic effect of pre-treatment and continuous arterial infusion of indomethacin (5 mg/kg bolus for 5 min, then 5 mg/min), a prostaglandin synthetase inhibitor, with PGE2 was studied in 4 experiments. Antral and fundic mucosa were biopsied and measured by radioimmunoassay for cyclic nucleotides. Doses of PGE1 and PGE2 which inhibited histamine-stimulated canine gastric acid secretion did not significantly alter antral or fundic mucosal cyclic nucleotide concentrations. Concomitant infusion of PGE2 with indomethacin did not potentiate the mucosal nucleotide response compared to PGE2 alone. These studies fail to implicate cyclic nucleotides as mediators of the inhibitory acid response response induced by PGE1 or PGE2 in intact dog stomach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号