首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Enhanced sensitivity to caffeine is part of the standard tests for susceptibility to malignant hyperthermia (MH) in humans and pigs. The caffeine sensitivity of skeletal muscle contraction and Ca2+ release from the sarcoplasmic reticulum is enhanced, but surprisingly, the caffeine sensitivity of purified porcine ryanodine receptor Ca2+-release channels (RyRs) is not affected by the MH mutation (Arg615Cys). In contrast, we show here that native malignant hyperthermic pig RyRs (incorporated into lipid bilayers with RyR-associated lipids and proteins) were activated by caffeine at 100- to 1,000-fold lower concentrations than native normal pig RyRs. In addition, the results show that the mutant ryanodine receptor channels were less sensitive to high-affinity activation by a peptide (CS) that corresponds to a part of the II–III loop of the skeletal dihydropyridine receptor (DHPR). Furthermore, subactivating concentrations of peptide CS enhanced the response of normal pig and rabbit RyRs to caffeine. In contrast, the caffeine sensitivity of MH RyRs was not enhanced by the peptide. These novel results showed that in MH-susceptible pig muscles 1) the caffeine sensitivity of native RyRs was enhanced, 2) the sensitivity of RyRs to a skeletal II–III loop peptide was depressed, and 3) an interaction between the caffeine and peptide CS activation mechanisms seen in normal RyRs was lost. calcium ion homeostasis; excitation-contraction coupling; ryanodine receptor polymorphisms; muscle contraction  相似文献   

2.
This study examines whether fluid pressure (FP) modulates the L-type Ca2+ channel in cardiomyocytes and investigates the underlying cellular mechanism(s) involved. A flow of pressurized (16 dyn/cm2) fluid, identical to that bathing the myocytes, was applied onto single rat ventricular myocytes using a microperfusion method. The Ca2+ current (ICa) and cytosolic Ca2+ signals were measured using a whole cell patch-clamp and confocal imaging, respectively. It was found that the FP reversibly suppressed ICa (by 25%) without altering the current-voltage relationships, and it accelerated the inactivation of ICa. The level of ICa suppression by FP depended on the level and duration of pressure. The Ba2+ current through the Ca2+ channel was only slightly decreased by the FP (5%), suggesting an indirect inhibition of the Ca2+ channel during FP stimulation. The cytosolic Ca2+ transients and the basal Ca2+ in field-stimulated ventricular myocytes were significantly increased by the FP. The effects of the FP on the ICa and on the Ca2+ transient were resistant to the stretch-activated channel inhibitors, GsMTx-4 and streptomycin. Dialysis of myocytes with high concentrations of BAPTA, the Ca2+ buffer, eliminated the FP-induced acceleration of ICa inactivation and reduced the inhibitory effect of the FP on ICa by 80%. Ryanodine and thapsigargin, abolishing sarcoplasmic reticulum Ca2+ release, eliminated the accelerating effect of FP on the ICa inactivation, and they reduced the inhibitory effect of FP on the ICa. These results suggest that the fluid pressure indirectly suppresses the Ca2+ channel by enhancing the Ca2+-induced intracellular Ca2+ release in rat ventricular myocytes. L-type Ca2+ current; fluid pressure; ventricular myocytes; cytosolic Ca2+ transient  相似文献   

3.
The hyperpolarization-activated, cyclic nucleotide-gated (HCN) channels, or cardiac (If)/neuronal (Ih) time- and voltage-dependent inward cation current channels, are conventionally considered as monovalent-selective channels. Recently we discovered that calcium ions can permeate through HCN4 and Ih channels in neurons. This raises the possibility of Ca2+ permeation in If, the Ih counterpart in cardiac myocytes, because of their structural homology. We performed simultaneous measurement of fura-2 Ca2+ signals and whole cell currents produced by HCN2 and HCN4 channels (the 2 cardiac isoforms present in ventricles) expressed in HEK293 cells and by If in rat ventricular myocytes. We observed Ca2+ influx when HCN/If channels were activated. Ca2+ influx was increased with stronger hyperpolarization or longer pulse duration. Cesium, an If channel blocker, inhibited If and Ca2+ influx at the same time. Quantitative analysis revealed that Ca2+ flux contributed to 0.5% of current produced by the HCN2 channel or If. The associated increase in Ca2+ influx was also observed in spontaneously hypertensive rat (SHR) myocytes in which If current density is higher than that of normotensive rat ventricle. In the absence of EGTA (a Ca2+ chelator), preactivation of If channels significantly reduced the action potential duration, and the effect was blocked by another selective If channel blocker, ZD-7288. In the presence of EGTA, however, preactivation of If channels had no effects on action potential duration. Our data extend our previous discovery of Ca2+ influx in Ih channels in neurons to If channels in cardiac myocytes. calcium ion flux; hyperpolarization-activated, cyclic nucleotide-gated/cardiac time- and volume-dependent cation current channels  相似文献   

4.
Much less is known about the contributions of the Na+/Ca2+ exchanger (NCX) and sarcoplasmic reticulum (SR) Ca2+ pump to cell relaxation in neonatal compared with adult mammalian ventricular myocytes. Based on both biochemical and molecular studies, there is evidence of a much higher density of NCX at birth that subsequently decreases during the next 2 wk of development. It has been hypothesized, therefore, that NCX plays a relatively more important role for cytosolic Ca2+ decline in neonates as well as, perhaps, a role in excitation-contraction coupling in reverse mode. We isolated neonatal ventricular myocytes from rabbits in four different age groups: 3, 6, 10, and 20 days of age. Using an amphotericin-perforated patch-clamp technique in fluo-3-loaded myocytes, we measured the caffeine-induced inward NCX current (INCX) and the Ca2+ transient. We found that the integral of INCX, an indicator of SR Ca2+ content, was greatest in myocytes from younger age groups when normalized by cell surface area and that it decreased with age. The velocity of Ca2+ extrusion by NCX (VNCX) was linear with [Ca2+] and did not indicate saturation kinetics until [Ca2+] reached 1–3 µM for each age group. There was a significantly greater time delay between the peaks of INCX and the Ca2+ transient in myocytes from the youngest age groups. This observation could be related to structural differences in the subsarcolemmal microdomains as a function of age. ontogeny of cardiac excitation-contraction coupling; sodium/calcium exchanger; cytosolic calcium concentration; subsarcolemmal calcium concentration; sarcoplasmic reticulum calcium content  相似文献   

5.
We examined the effectsof metabolic inhibition on intracellular Ca2+ release insingle pulmonary arterial smooth muscle cells (PASMCs). Severemetabolic inhibition with cyanide (CN, 10 mM) increased intracellularcalcium concentration ([Ca2+]i) and activatedCa2+-activated Cl currents[ICl(Ca)] in PASMCs, responses that were greatlyinhibited by BAPTA-AM or caffeine. Mild metabolic inhibition with CN (1 mM) increased spontaneous transient inward currents andCa2+ sparks in PASMCs. In Xenopus oocytes, CNalso induced Ca2+ release and activatedICl(Ca), and these responses were inhibited by thapsigarginand cyclopiazonic acid to deplete sarcoplasmic reticulum (SR)Ca2+, whereas neither heparin nor anti-inositol1,4,5-trisphosphate receptor (IP3R) antibodies affected CNresponses. In both PASMCs and oocytes, CN-evoked Ca2+release was inhibited by carbonyl cyanidem-chlorophenylhydrazone (CCCP) and oligomycin or CCCP andthapsigargin. Whereas hypoxic stimuli resulted in Ca2+release in pulmonary but not mesenteric artery myocytes, CN induced release in both cell types. We conclude that metabolic inhibition withCN increases [Ca2+]i in both pulmonary andsystemic artery myocytes by stimulating Ca2+ release fromthe SR and mitochondria.

  相似文献   

6.
We investigatedthe relationship between voltage-operatedCa2+ channel current and thecorresponding intracellular Ca2+concentration([Ca2+]i)change (Ca2+ transient) in guineapig gastric myocytes. Fluorescence microspectroscopy was combined withconventional whole cell patch-clamp technique, and fura 2 (80 µM) wasadded to CsCl-rich pipette solution. Step depolarization to 0 mVinduced inward Ca2+ current(ICa) andconcomitantly raised[Ca2+]i.Both responses were suppressed by nicardipine, an L-typeCa2+ channel blocker, and thevoltage dependence of Ca2+transient was similar to the current-voltage relation ofICa. When pulseduration was increased by up to 900 ms, peakCa2+ transient increased andreached a steady state when stimulation was for longer. The calculatedfast Ca2+ buffering capacity(B value), determined as the ratio ofthe time integral ofICa divided bythe amplitude of Ca2+ transient,was not significantly increased after depletion of Ca2+ stores by the cyclicapplication of caffeine (10 mM) in the presence of ryanodine (4 µM).The addition of cyclopiazonic acid (CPA, 10 µM), a sarco(endo)plasmicreticulum Ca2+-ATPase inhibitor,decreased B value by ~20% in areversible manner. When KCl pipette solution was used,Ca2+-activatedK+ current[IK(Ca)]was also recorded during step depolarization. CPA sensitivelysuppressed the initial peak and oscillations of IK(Ca) withirregular effects on Ca2+transients. The above results suggest that, in guinea pig gastric myocyte, Ca2+ transient is tightlycoupled to ICaduring depolarization, and global[Ca2+]iis not significantly affected byCa2+-inducedCa2+ release from sarcoplasmicreticulum during depolarization.

  相似文献   

7.
In cardiac-specific Na+-Ca2+ exchanger (NCX) knockout (KO) mice, the ventricular action potential (AP) is shortened. The shortening of the AP, as well as a decrease of the L-type Ca2+ current (ICa), provides a critical mechanism for the maintenance of Ca2+ homeostasis and contractility in the absence of NCX (Pott C, Philipson KD, Goldhaber JI. Excitation-contraction coupling in Na+-Ca2+ exchanger knockout mice: reduced transsarcolemmal Ca2+ flux. Circ Res 97: 1288–1295, 2005). To investigate the mechanism that underlies the accelerated AP repolarization, we recorded the transient outward current (Ito) in patch-clamped myocytes isolated from wild-type (WT) and NCX KO mice. Peak Ito was increased by 78% and decay kinetics were slowed in KO vs. WT. Consistent with increased Ito, ECGs from KO mice exhibited shortened QT intervals. Expression of the Ito-generating K+ channel subunit Kv4.2 and the K+ channel interacting protein was increased in KO. We used a computer model of the murine AP (Bondarenko VE, Szigeti GP, Bett GC, Kim SJ, and Rasmusson RL. Computer model of action potential of mouse ventricular myocytes. Am J Physiol Heart Circ Physiol 287: 1378–1403, 2004) to determine the relative contributions of increased Ito, reduced ICa, and reduced NCX current (INCX) on the shape and kinetics of the AP. Reduction of ICa and elimination of INCX had relatively small effects on the duration of the AP in the computer model. In contrast, AP repolarization was substantially accelerated when Ito was increased in the computer model. Thus, the increase in Ito, and not the reduction of ICa or INCX, is likely to be the major mechanism of AP shortening in KO myocytes. The upregulation of Ito may comprise an important regulatory mechanism to limit Ca2+ influx via a reduction of AP duration, thus preventing Ca2+ overload in situations of reduced myocyte Ca2+ extrusion capacity. genetically altered mice; cardiac myocytes; short QT interval; transient outward current  相似文献   

8.
It has been suggested that L-type Ca2+ channels play an important role in cell swelling-induced vasoconstriction. However, there is no direct evidence that Ca2+ channels in vascular smooth muscle are modulated by cell swelling. We tested the hypothesis that L-type Ca2+ channels in rabbit portal vein myocytes are modulated by hypotonic cell swelling via protein kinase activation. Ba2+ currents (IBa) through L-type Ca2+ channels were recorded in smooth muscle cells freshly isolated from rabbit portal vein with the conventional whole cell patch-clamp technique. Superfusion of cells with hypotonic solution reversibly enhanced Ca2+ channel activity but did not alter the voltage-dependent characteristics of Ca2+ channels. Bath application of selective inhibitors of protein kinase C (PKC), Ro-31–8425 or Go-6983, prevented IBa enhancement by hypotonic swelling, whereas the specific protein kinase A (PKA) inhibitor KT-5720 had no effect. Bath application of phorbol 12,13-dibutyrate (PDBu) significantly increased IBa under isotonic conditions and prevented current stimulation by hypotonic swelling. However, PDBu did not have any effect on IBa when cells were first exposed to hypotonic solution. Furthermore, downregulation of endogenous PKC by overnight treatment of cells with PDBu prevented current enhancement by hypotonic swelling. These data suggest that hypotonic cell swelling can enhance Ca2+ channel activity in rabbit portal vein smooth muscle cells through activation of PKC. cell swelling; protein kinases; calcium current  相似文献   

9.
Phospholamban(PLB) ablation is associated with enhanced sarcoplasmic reticulum (SR)Ca2+ uptake and attenuation of thecardiac contractile responses to -adrenergic agonists. In thepresent study, we compared the effects of isoproterenol (Iso) on theCa2+ currents(ICa) ofventricular myocytes isolated from wild-type (WT) and PLB knockout(PLB-KO) mice. Current density and voltage dependence ofICa were similarbetween WT and PLB-KO cells. However, ICa recorded fromPLB-KO myocytes had significantly faster decay kinetics. Iso increasedICa amplitude inboth groups in a dose-dependent manner (50% effective concentration,57.1 nM). Iso did not alter the rate ofICa inactivationin WT cells but significantly prolonged the rate of inactivation inPLB-KO cells. When Ba2+ was usedas the charge carrier, Iso slowed the decay of the current in both WTand PLB-KO cells. Depletion of SRCa2+ by ryanodine also slowed therate of inactivation ofICa, and subsequent application of Iso further reduced the inactivation rate ofboth groups. These results suggest that enhancedCa2+ release from the SR offsetsthe slowing effects of -adrenergic receptor stimulation on the rateof inactivation ofICa.

  相似文献   

10.
It has been suggested that the sodium/calcium exchanger NCX1 may have a more important physiological role in embryonic and neonatal hearts than in adult hearts. However, in chick heart sarcolemmal vesicles, sodium-dependent calcium transport is reported to be small and, moreover, to be 3–12 times smaller in hearts at embryonic day (ED) 4–5 than at ED18, the opposite of what would be expected of a transporter that is more important in early development. To better assess the role of NCX1 in calcium regulation in the chick embryonic heart, we measured the activity of NCX1 in chick embryonic hearts as extracellular calcium-activated exchanger current (INCX) under controlled ionic conditions. With intracellular calcium concentration ([Ca2+]i) = 47 nM, INCX density increased from 1.34 ± 0.28 pA/pF at ED2 to 3.22 ± 0.55 pA/pF at ED11 (P = 0.006); however, with [Ca2+]i = 481 nM, the increase was small and statistically insignificant, from 4.54 ± 0.77 to 5.88 ± 0.73 pA/pF (P = 0.20, membrane potential = 0 mV, extracellular calcium concentration = 2 mM). Plots of INCX density against [Ca2+]i were well fitted by the Michaelis-Menton equation and extrapolated to identical maximal currents for ED2 and ED11 cells (extracellular calcium concentration = 1, 2, or 4 mM). Thus the increase in INCX at low [Ca2+]i appeared to reflect a developmental change in allosteric regulation of the exchanger by intracellular calcium rather than an increase in the membrane density of NCX1. Supporting this conclusion, RT-PCR demonstrated little change in the amount of mRNA encoding NCX1 expression from ED2 through ED18. NCX1; chick embryo; allosteric regulation; sodium/calcium exchange current  相似文献   

11.
The present study describes the first characterization of Ca2+-activated Cl currents (IClCa) in single smooth muscle cells from a murine vascular preparation (portal veins). IClCa was recorded using the perforated patch version of the whole cell voltage-clamp technique and was evoked using membrane depolarization. Generation of IClCa relied on Ca2+ entry through dihydropyridine-sensitive Ca2+ channels because IClCa was abolished by 1 µM nicardipine and enhanced by raising external Ca2+ concentration or by application of BAY K 8644. IClCa was characterized by the sensitivity to Cl channel blockers and the effect of altering the external anion on reversal potential. Activation of IClCa after membrane depolarization was dependent on Ca2+ release from intracellular stores. Thus the amplitude of IClCa was diminished by the SR-ATPase inhibitor cyclopiazonic acid, the inositol 1,4,5-trisphosphate receptor antagonist 2-aminoethoxydiphenyl borate (2-APB), and the ryanodine receptor blocker tetracaine. The degree of inhibition produced by the application of 2-APB and tetracaine together was significantly greater than the effect of each agent applied alone. In current-clamp mode, injection of depolarizing current elicited a biphasic action potential, with the later depolarization being sensitive to niflumic acid (NFA; 10 µM). In isometric tension recordings, NFA inhibited spontaneous contractions. These data support a role for this conductance in portal vein excitability.  相似文献   

12.
Previous studies have shown that inhibition of L-type Ca2+ current (ICa) by cytosolic free Mg2+ concentration ([Mg2+]i) is profoundly affected by activation of cAMP-dependent protein kinase pathways. To investigate the mechanism underlying this counterregulation of ICa, rat cardiac myocytes and tsA201 cells expressing L-type Ca2+ channels were whole cell voltage-clamped with patch pipettes in which [Mg2+] ([Mg2+]p) was buffered by citrate and ATP. In tsA201 cells expressing wild-type Ca2+ channels (1C/2A/2), increasing [Mg2+]p from 0.2 mM to 1.8 mM decreased peak ICa by 76 ± 4.5% (n = 7). Mg2+-dependent modulation of ICa was also observed in cells loaded with ATP--S. With 0.2 mM [Mg2+]p, manipulating phosphorylation conditions by pipette application of protein kinase A (PKA) or phosphatase 2A (PP2A) produced large changes in ICa amplitude; however, with 1.8 mM [Mg2+]p, these same manipulations had no significant effect on ICa. With mutant channels lacking principal PKA phosphorylation sites (1C/S1928A/2A/S478A/S479A/2), increasing [Mg2+]p had only small effects on ICa. However, when channel open probability was increased by 1C-subunit truncation (1C1905/2A/S478A/S479A/2), increasing [Mg2+]p greatly reduced peak ICa. Correspondingly, in myocytes voltage-clamped with pipette PP2A to minimize channel phosphorylation, increasing [Mg2+]p produced a much larger reduction in ICa when channel opening was promoted with BAY K8644. These data suggest that, around its physiological concentration range, cytosolic Mg2+ modulates the extent to which channel phosphorylation regulates ICa. This modulation does not necessarily involve changes in channel phosphorylation per se, but more generally appears to depend on the kinetics of gating induced by channel phosphorylation. voltage-gated Ca2+ channel; cardiac myocytes; human embryonic kidney cells; protein kinase A; protein phosphatase 2A  相似文献   

13.
During the cardiac action potential, Ca2+ entry through dyhidropyridine receptor L-type Ca2+ channels (DHPRs) activates ryanodine receptors (RyRs) Ca2+-release channels, resulting in massive Ca2+ mobilization from the sarcoplasmic reticulum (SR). This global Ca2+ release arises from spatiotemporal summation of many localized elementary Ca2+-release events, Ca2+ sparks. We tested whether DHPRs modulate Ca2+sparks in a Ca2+ entry-independent manner. Negative modulation by DHPR of RyRs via physical interactions is accepted in resting skeletal muscle but remains controversial in the heart. Ca2+ sparks were studied in cat cardiac myocytes permeabilized with saponin or internally perfused via a patch pipette. Bathing and pipette solutions contained low Ca2+ (100 nM). Under these conditions, Ca2+ sparks were detected with a stable frequency of 3–5 sparks·s–1·100 µm–1. The DHPR blockers nifedipine, nimodipine, FS-2, and calciseptine decreased spark frequency, whereas the DHPR agonists Bay-K8644 and FPL-64176 increased it. None of these agents altered the spatiotemporal characteristics of Ca2+ sparks. The DHPR modulators were also without effect on SR Ca2+ load (caffeine-induced Ca2+ transients) or sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) activity (Ca2+ loading rates of isolated SR microsomes) and did not change cardiac RyR channel gating (planar lipid bilayer experiments). In summary, DHPR modulators affected spark frequency in the absence of DHPR-mediated Ca2+ entry. This action could not be attributed to a direct action of DHPR modulators on SERCA or RyRs. Our results suggest that the activity of RyR Ca2+-release units in ventricular myocytes is modulated by Ca2+ entry-independent conformational changes in neighboring DHPRs. exitation-contraction coupling; ryanodine receptor; sarco(endo)plasmic reticulum Ca2+-ATPase; dihydropyridine receptor; sarcoplasmic reticulum  相似文献   

14.
We found mRNA for the three isoforms ofthe cyclic nucleotide-gated nonselective cation channel expressed inthe mucosal layer of the rat intestine from the duodenum to the colonand in intestinal epithelial cell lines in culture. Because thesechannels are permeable to sodium and calcium and are stimulated by cGMPor cAMP, we measured 8-bromo-cGMP-stimulated sodium-mediatedshort-circuit current (Isc) inproximal and distal colon and unidirectional45Ca2+fluxes in proximal colon to determine whether these channels couldmediate transepithelial sodium and calcium absorption across the colon.Sodium-mediatedIsc, stimulatedby 8-bromo-cGMP, were inhibited by dichlorobenzamil andl-cis-diltiazem, blockers of cyclicnucleotide-gated cation channels, suggesting that these ion channelscan mediate transepithelial sodium absorption. Sodium-mediated Isc and nettransepithelial45Ca2+absorption were stimulated by heat-stable toxin fromEscherichia coli that increases cGMP.Addition of l-cis-diltiazem inhibited the enhanced transepithelial absorption of both ions. These results suggest that cyclic nucleotide-gated cation channels simultaneously increase net sodium and calcium absorption in the colon of the rat.

  相似文献   

15.
To investigate the mechanisms regulating excitation-metabolic coupling in rabbit epicardial, midmyocardial, and endocardial ventricular myocytes we extended the LabHEART model (Puglisi JL and Bers DM. Am J Physiol Cell Physiol 281: C2049–C2060, 2001). We incorporated equations for Ca2+ and Mg2+ buffering by ATP and ADP, equations for nucleotide regulation of ATP-sensitive K+ channel and L-type Ca2+ channel, Na+-K+-ATPase, and sarcolemmal and sarcoplasmic Ca2+-ATPases, and equations describing the basic pathways (creatine and adenylate kinase reactions) known to communicate the flux changes generated by intracellular ATPases. Under normal conditions and during 20 min of ischemia, the three regions were characterized by different INa, Ito, IKr, IKs, and IKp channel properties. The results indicate that the ATP-sensitive K+ channel is activated by the smallest reduction in ATP in epicardial cells and largest in endocardial cells when cytosolic ADP, AMP, PCr, Cr, Pi, total Mg2+, Na+, K+, Ca2+, and pH diastolic levels are normal. The model predicts that only KATP ionophore (Kir6.2 subunit) and not the regulatory subunit (SUR2A) might differ from endocardium to epicardium. The analysis suggests that during ischemia, the inhomogeneous accumulation of the metabolites in the tissue sublayers may alter in a very irregular manner the KATP channel opening through metabolic interactions with the endogenous PI cascade (PIP2, PIP) that in turn may cause differential action potential shortening among the ventricular myocyte subtypes. The model predictions are in qualitative agreement with experimental data measured under normal and ischemic conditions in rabbit ventricular myocytes. ATP-sensitive K+ channel; creatine and adenylate kinase reactions; phosphatidylinositol phosphates; heart; mathematical model  相似文献   

16.
Hyperpolarization in human leukemia THP-1 monocytes adherent tovascular cell adhesion molecule (VCAM)-1 is due to an induction ofinwardly rectifying K+ currents(Iir) (Colden-Stanfield M and Gallin EK,Am J Physiol Cell Physiol 275: C267-C277, 1998).We determined whether the VCAM-1-induced hyperpolarization issufficient to augment the increase in intracellular free calcium([Ca2+]i) produced by Ca2+ storedepletion with thapsigargin (TG) and readdition of external CaCl2 in fura 2-loaded THP-1 monocytes. Whereas there was a2.1-fold increase in [Ca2+]i in monocytesbound to glass for 5 h in response to TG and CaCl2 addition, adherence to VCAM-1 produced a 5-fold increase in[Ca2+]i. Depolarization of monocytes adherentto VCAM-1 by Iir blockade or exposure to high[K+] abolished the enhancement of the peak[Ca2+]i response. In monocytes bound toglass, hyperpolarization of the membrane potential with valinomycin, aK+ ionophore, to the level of hyperpolarization seen incells adherent to VCAM-1 produced similar changes in peak[Ca2+]i. Adherence of monocytes to E-selectinproduced a similar peak [Ca2+]i to cellsbound to glass. Thus monocyte adherence to the physiological substrateVCAM-1 produces a hyperpolarization that is sufficient to enhanceCa2+ entry and may impact Ca2+-dependentmonocyte function.

  相似文献   

17.
We have previously demonstrated that the sarcolemmalNa+-K+pump current(Ip) in cardiacmyocytes is stimulated by cell swelling induced by exposure tohyposmolar solutions. However, the underlying mechanism has not beenexamined. Because cell swelling activates stretch-sensitive ionchannels and intracellular messenger pathways, we examined their rolein mediating Ipstimulation during exposure of rabbit ventricular myocytes to ahyposmolar solution.Ip was measuredby the whole cell patch-clamp technique. Swelling-induced pumpstimulation altered the voltage dependence ofIp. Pumpstimulation persisted in the absence of extracellularNa+ and under conditions designedto minimize changes in intracellular Ca2+, excluding an indirectinfluence on Ipmediated via fluxes through stretch-activated channels. Pumpstimulation was protein kinase C independent. The tyrosine kinaseinhibitor tyrphostin A25, the phosphatidylinositol 3-kinase inhibitorLY-294002, and the protein phosphatase-1 and -2A inhibitor okadaic acidabolished Ipstimulation. Our findings suggest that swelling-induced pumpstimulation involves the activation of tyrosine kinase,phosphatidylinositol 3-kinase, and a serine/threonine proteinphosphatase. Activation of this messenger cascade maycause activation by the dephosphorylation of pump units.  相似文献   

18.
The effect of -adrenergic stimulation on cardiac Na+/Ca2+ exchange has been controversial. To clarify the effect, we measured Na+/Ca2+ exchange current (INCX) in voltage-clamped guinea pig, mouse, and rat ventricular cells. When INCX was defined as a 5 mM Ni2+-sensitive current in guinea pig ventricular myocytes, 1 µM isoproterenol apparently augmented INCX by 32%. However, this increase was probably due to contamination of the cAMP-dependent Cl current (CFTR-Cl current, ICFTR-Cl), because Ni2+ inhibited the activation of ICFTR-Cl by 1 µM isoproterenol with a half-maximum concentration of 0.5 mM under conditions where INCX was suppressed. Five or ten millimolar Ni2+ did not inhibit ICFTR-Cl activated by 10 µM forskolin, an activator of adenylate cyclase, suggesting that Ni2+ acted upstream of adenylate cyclase in the -adrenergic signaling pathway. Furthermore, in a low-extracellular Cl bath solution, 1 µM isoproterenol did not significantly alter the amplitude of Ni2+-sensitive INCX at +50 mV, which is close to the reversal potential of ICFTR-Cl. No change in INCX amplitude was induced by 10 µM forskolin. When INCX was activated by extracellular Ca2+, it was not significantly affected by 1 µM isoproterenol in guinea pig, mouse, or rat ventricular cells. We concluded that -adrenergic stimulation does not have significant effects on INCX in guinea pig, mouse, or rat ventricular myocytes. cystic fibrosis transmembrane conductance regulator; nickel ion  相似文献   

19.
We previously reported thatlysoplasmenylcholine (LPlasC) altered the action potential (AP) andinduced afterdepolarizations in rabbit ventricular myocytes. In thisstudy, we investigated how LPlasC alters excitation-contractioncoupling using edge-motion detection, fura-PE3 fluorescent indicator,and perforated and whole cell patch-clamp techniques. LPlasC increasedcontraction, myofilament Ca2+ sensitivity, systolic anddiastolic free Ca2+ levels, and the magnitude ofCa2+ transients concomitant with increases in the maximumrates of shortening and relaxation of contraction and the rising anddeclining phases of Ca2+ transients. In some cells, LPlasCinduced arrhythmias in a pattern consistent with early and delayedaftercontractions. LPlasC also augmented the caffeine-inducedCa2+ transient with a reduction in the decay rate.Furthermore, LPlasC enhanced L-type Ca2+ channel current(ICa,L) and outward currents. LPlasC-induced alterations in contraction and ICa,L wereparalleled by its effect on the AP. Thus these results suggest thatLPlasC elicits distinct, potent positive inotropic, lusitropic, andarrhythmogenic effects, resulting from increases in Ca2+influx, Ca2+ sensitivity, sarcoplasmic reticular (SR)Ca2+ release and uptake, SR Ca2+ content, andprobably reduction in sarcolemmal Na+/Ca2+ exchange.

  相似文献   

20.
We have reported that ryanodine receptor (RyR) channels display three different responses to cytoplasmic free Ca2+ concentration ([Ca2+]) depending on their redox state (Marengo JJ, Hidalgo C, and Bull R. Biophys J 74: 1263–1277, 1998), with low, moderate, and high maximal fractional open times (Po). Activation by ATP of single RyR channels from rat brain cortex was tested in planar lipid bilayers with 10 or 0.1 µM cytoplasmic [Ca2+]. At 10 µM [Ca2+], low-Po channels presented lower apparent affinity to activation by ATP [[ATP] for half-maximal activation (KaATP) = 422 µM] than moderate-Po channels (KaATP = 82 µM). Oxidation of low-Po channels with thimerosal or 2,2'-dithiodipyridine (DTDP) gave rise to moderate-Po channels and decreased KaATP from 422 to 82 µM. At 0.1 µM cytoplasmic [Ca2+], ATP induced an almost negligible activation of low-Po channels. After oxidation to high-Po behavior, activation by ATP was markedly increased. Noise analysis of single-channel fluctuations of low-Po channels at 10 µM [Ca2+] plus ATP revealed the presence of subconductance states, suggesting a conduction mechanism that involves four independent subchannels. On oxidation the subchannels opened and closed in a concerted mode. subconductance states; calcium ion release channels; calcium ion regulation; thimerosal; 2,2'-dithiodipyridine  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号