首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ab initio molecular orbital calculations have been performed on the reaction profile for the addition/elimination reaction between ammonia and formic acid, proceeding via a tetrahedral intermediate: NH3 + HCO2H----H2NCH(OH)2----NH2CHO + H2O. Calculated transition state energies for the first addition step of the reaction revealed that a lone pair on the oxygen of the OH group, which is antiperiplanar to the attacking nitrogen, stabilized the transition state by 3.9 kcal/mol, thus supporting the hypothesis of stereoelectronic control for this reaction. In addition, a secondary, counterbalancing stereoelectronic effect stabilizes the second step, water elimination, transition state by 3.1 kcal/mol if the lone pair on the leaving water oxygen is not antiperiplanar to the C-N bond. The best conformation for the transition states was thus one with a lone pair antiperiplanar to the adjacent scissile bond and also one without a lone-pair orbital on the scissile bond oxygen or nitrogen antiperiplanar to the adjacent polar bond. The significance of these stereoelectronic effects for the mechanism of action of serine proteases is discussed.  相似文献   

2.
The hydrolysis reaction of guanosine triphosphate (GTP) by p21(ras) (Ras) has been modeled by using the ab initio type quantum mechanical-molecular mechanical simulations. Initial geometry configurations have been prompted by atomic coordinates of the crystal structure (PDBID: 1QRA) corresponding to the prehydrolysis state of Ras in complex with GTP. Multiple searches of minimum energy geometry configurations consistent with the hydrogen bond networks have been performed, resulting in a series of stationary points on the potential energy surface for reaction intermediates and transition states. It is shown that the minimum energy reaction path is consistent with an assumption of a two-step mechanism of GTP hydrolysis. At the first stage, a unified action of the nearest residues of Ras and the nearest water molecules results in a substantial spatial separation of the gamma-phosphate group of GTP from the rest of the molecule (GDP). This phase of hydrolysis process proceeds through the low barrier (16.7 kcal/mol) transition state TS1. At the second stage, the inorganic phosphate is formed in consequence of proton transfers mediated by two water molecules and assisted by the Gln61 residue from Ras. The highest transition state at this segment, TS3, is estimated to have an energy 7.5 kcal/mol above the enzyme-substrate complex. The results of simulations are compared to the previous findings for the GTP hydrolysis in the Ras-GAP (p21(ras)-p120(GAP)) protein complex. Conclusions of the modeling lead to a better understanding of the anticatalytic effect of cancer causing mutation of Gln61 from Ras, which has been debated in recent years.  相似文献   

3.
The mechanism and potential energy surface for the Baeyer-Villiger oxidation of acetone with hydrogen peroxide catalyzed by a Ser105-Ala mutant of Candida antarctica Lipase B has been determined using ab initio and density functional theories. Initial substrate binding has been studied using an automated docking procedure and molecular dynamics simulations. Substrates were found to bind to the active site of the mutant. The activation energy for the first step of the reaction, the nucleophilic attack of hydrogen peroxide on the carbonyl carbon of hydrogen peroxide, was calculated to be 4.4 kcal x mol(-1) at the B3LYP/6-31+G* level. The second step, involving the migration of the alkyl group, was found to be the rate-determining step with a computed activation energy of 19.9 kcal x mol(-1) relative the reactant complex. Both steps were found to be lowered considerably in the reaction catalyzed by the mutated lipase, compared to the uncatalyzed reaction. The first step was lowered by 36.0 kcal x mol(-1) and the second step by 19.5 kcal x mol(-1). The second step of the reaction, the rearrangement step, has a high barrier of 27.7 kcal x mol(-1) relative to the Criegee intermediate. This could lead to an accumulation of the intermediate. It is not clear whether this result is an artifact of the computational procedure, or an indication that further mutations of the active site are required. Figure Second TS (18TS) in the Baeyer-Villiger oxidation in a mutant of CALB. Distances in A  相似文献   

4.
5.
Hybrid quantum mechanical/molecular mechanical (QM/MM) calculations using restricted and unrestricted Hartree-Fock and B3LYP ab initio (QM) and Amber force field (MM), respectively, have been applied to study the catalytic site of papain in both free and substrate bonded forms. Ab initio geometry optimizations have been performed for the active site of papain and the N-methyl-acetamide (NMA)-papain complex within the molecular mechanical treatment of the protein environment. A covalent tetrahedral intermediate structure could be obtained only when the amide N atom of the substrate molecule was protonated through a proton transfer from the His-159 in the catalytic site. Our results support the previous assumption that a proton transfer from His-159 to the amide N atom of the substrate occurs prior to or concerted with the nucleophilic attack of the Cys-25 sulfur atom to the carbonyl group of the substrate. The electron correlation effect will reduce the proton transfer barrier. Therefore, this proton transfer can be easily observed in the B3LYP/6-31G* calculations. The HF/6-31G* method overestimates the reaction barrier against this proton transfer. The sulfur atom of Cys-25 and the imidazole ring of His-159 are found to be coplanar in the free form of the enzyme. However, the rotation of the imidazole ring of His-159 was observed during the formation of the tetrahedral intermediate. Without the papain environment, the coplanar thiolate-imidazolium ion pair RS-...ImH+ is much less stable than the neutral form of RSH....Im. Within the protein environment, however, the thiolate-imidazolium ion pair becomes more stable than its neutral form by 4.1 and 0.4 kcal/mol in HF/6-31G* and B3LYP/6-31G* calculations, respectively. The barrier of proton transfer from S-H group of Cys-25 to the imidazole ring of His-159 was reduced from 22.0 kcal/mol to 15.2 kcal/mol by the protein environment in HF/6-31G* calculations. This barrier is found to be much smaller (2.5 kcal/mol) in B3LYP/6-31G* calculations.  相似文献   

6.
Homoprotocatechuate (HPCA) dioxygenases are enzymes that take part in the catabolism of aromatic compounds in the environment. They use molecular oxygen to perform the ring cleavage of ortho-dihydroxylated aromatic compounds. A theoretical investigation of the catalytic cycle for HPCA 2,3-dioxygenase isolated from Brevibacterium fuscum (Bf 2,3-HPCD) was performed using hybrid DFT with the B3LYP functional, and a reaction mechanism is suggested. Models of different sizes were built from the crystal structure of the enzyme and were used in the search for intermediates and transition states. It was found that the enzyme follows a reaction pathway similar to that for other non-heme iron dioxygenases, and for the manganese-dependent analog MndD, although with different energetics. The computational results suggest that the rate-limiting step for the whole reaction of Bf 2,3-HPCD is the protonation of the activated oxygen, with an energy barrier of 17.4 kcal/mol, in good agreement with the experimental value of 16 kcal/mol obtained from the overall rate of the reaction. Surprisingly, a very low barrier was found for the O-O bond cleavage step, 11.3 kcal/mol, as compared to 21.8 kcal/mol for MndD (sextet spin state). This result motivated additional studies of the manganese-dependent enzyme. Different spin coupling between the unpaired electrons on the metal and on the evolving substrate radical was observed for the two enzymes, and therefore the quartet spin state potential energy surface of the MndD reaction was studied. The calculations show a crossing between the sextet and the quartet surfaces, and it was concluded that a spin transition occurs and determines a barrier of 14.4 kcal/mol for the O-O bond cleavage, which is found to be the rate-limiting step in MndD. Thus the two 83% identical enzymes, using different metal ions as co-factors, were found to have similar activation energies (in agreement with experiment), but different rate-limiting steps.  相似文献   

7.
Wong KY  Gao J 《The FEBS journal》2011,278(14):2579-2595
Molecular dynamics simulations employing a combined quantum mechanical and molecular mechanical potential have been carried out to elucidate the reaction mechanism of the hydrolysis of a cyclic nucleotide cAMP substrate by phosphodiesterase 4B (PDE4B). PDE4B is a member of the PDE superfamily of enzymes that play crucial roles in cellular signal transduction. We have determined a two-dimensional potential of mean force (PMF) for the coupled phosphoryl bond cleavage and proton transfer through a general acid catalysis mechanism in PDE4B. The results indicate that the ring-opening process takes place through an S(N)2 reaction mechanism, followed by a proton transfer to stabilize the leaving group. The computed free energy of activation for the PDE4B-catalyzed cAMP hydrolysis is about 13 kcal·mol(-1) and an overall reaction free energy is about -17 kcal·mol(-1), both in accord with experimental results. In comparison with the uncatalyzed reaction in water, the enzyme PDE4B provides a strong stabilization of the transition state, lowering the free energy barrier by 14 kcal·mol(-1). We found that the proton transfer from the general acid residue His234 to the O3' oxyanion of the ribosyl leaving group lags behind the nucleophilic attack, resulting in a shallow minimum on the free energy surface. A key contributing factor to transition state stabilization is the elongation of the distance between the divalent metal ions Zn(2+) and Mg(2+) in the active site as the reaction proceeds from the Michaelis complex to the transition state.  相似文献   

8.
Diazomethyl ketones are one of the most effective irreversible inhibitors of cysteine proteinases and are therefore very important in drug design. In the present study a mechanism of inactivation is proposed based on the results of model MNDO calculations of the possible pathways. It was found that the mercaptide nucleophile, on approaching the carbonyl carbon as in the catalytic reaction path, binds to the inner diazo nitrogen. The intermediate thus formed can rearrange giving a stable product, -thioketone, and molecular nitrogen, with a considerable energy gain. The energy barrier to this process is equal to 36.9 kcal/mol, and corresponds to a pyramidal transition state with the vertex at the methylene carbon and the base formed by the carbonyl, thiol, and diazo groups. The energy barrier can be lowered on deprotonation of the intermediate. Based on the results obtained it was concluded that good irreversible inhibitors of cysteine proteases must fulfil two structural requirements: i) the dimensions and charge distribution must be similar to those of the peptide bond and ii) a second electrophilic center must be present in the neighbourhood of the carbonyl carbon. These are requirements which are satisfied by other strong cysteine proteinase inhibitors: -chloroketones and -ketooxiranes.  相似文献   

9.
Inteins are autocatalytic protein cleavage and splicing elements. A cysteine to alanine mutation at the N-terminal of inteins inhibits splicing and isolates the C-terminal cleavage reaction. Experiments indicate an enhanced C-terminal cleavage reaction rate upon decreasing the solution pH for the cleavage mutant, which cannot be explained by the existing mechanistic framework. We use intein crystal structure data and the information about conserved amino acids to perform semiempirical PM3 calculations followed by high-level density functional theory calculations in both gas phase and implicit solvent environments. Based on these calculations, we propose a detailed “low pH” mechanism for intein C-terminal cleavage. Water plays an important role in the proposed reaction mechanism, acting as an acid as well as a base. The protonation of the scissile peptide bond nitrogen by a hydronium ion is an important first step in the reaction. That step is followed by the attack of the C-terminal asparagine side chain on its carbonyl carbon, causing succinimide formation and simultaneous peptide bond cleavage. The computed reaction energy barrier in the gas phase is ~33 kcal/mol and reduces to ~25 kcal/mol in solution, close to the 21 kcal/mol experimentally observed at pH 6.0. This mechanism is consistent with the observed increase in C-terminal cleavage activity at low pH for the cleavage mutant of the Mycobacterium tuberculosis RecA mini-intein.  相似文献   

10.
The pyramidal inversion mechanism of simple sulfoxides was studied, employing ab initio and DFT methods. The convergence of the geometrical and energetic parameters of H2SO and DMSO with respect to the Hamiltonian and basis set was analyzed in order to determine a computational level suitable for methyl phenyl sulfoxide (3), methyl 4-cyanophenyl sulfoxide (4), diphenyl sulfoxide (5), 4,4'-dicyanodiphenyl sulfoxide (6), benzyl methyl sulfoxide (7) and benzyl phenyl sulfoxide (8). The DFT B3LYP/6-311G(d,p) level was chosen for further calculations of larger sulfoxides. The barriers DeltaE calculated for the pyramidal inversion mechanism of sulfoxides 3-8 are in the range of 38.7-47.1 kcal/mol. These values are in good agreement with the experimental barriers for racemization via the pyramidal inversion mechanism. A resonance effect of a phenyl ring selectively stabilizes the transition state conformations, decreasing the energy barrier for pyramidal inversion by about 3 kcal/mol, compared to a similar molecule without a phenyl substituent. Introducing electron withdrawing groups (cyano) at the para positions of the phenyl ring(s) causes a further decrease of the energy barrier.  相似文献   

11.
Tulub AA 《Biofizika》2005,50(1):62-68
Quantum chemistry calculations [DFT-B3LYP QM/MM method, 6-31G** basis set, + ab initio molecular dynamics] were used to study the action of Mg2+ on tubulin properties. It was shown that the hydration of the guanosine triphosphate-tubulin forms a protein zone structure, which includes a electron-occupied zone and a conductivity zone. The binding of Mg2+ to guanosine triphosphate-tubulin results in the unpairing of electrons in the occupied zone (triplet state formation) followed by their transition to the conductivity zone in which the inversion of spin occurs (singlet state formation). The formation of triplet state is the initial step in the subsequent protein dynamics in the picosecond range of time. The dynamics shows up as a coherent oscillating transition of tubulin between the triplet and singlet states, which is evidence of a simultaneous adjustment between nuclear and electron configurations of the protein (ab initio molecular dynamics calculations). The barrier between the triplet and singlet states does not exceed 0.60 kcal x mol(-1). The barrier overcome is considered as electron tunneling through the Fermi surface, which separates the occupied and conductivity zones. Zone formation occurs in the presence of the shell of biological water surrounding the protein.  相似文献   

12.
We present results of the modeling for the hydrolysis reaction of guanosine triphosphate (GTP) in the RAS-GAP protein complex using essentially ab initio quantum chemistry methods. One of the approaches considers a supermolecular cluster composed of 150 atoms at a consistent quantum level. Another is a hybrid QM/MM method based on the effective fragment potential technique, which describes interactions between quantum and molecular mechanical subsystems at the ab initio level of the theory. Our results show that the GTP hydrolysis in the RAS-GAP protein complex can be modeled by a substrate-assisted catalytic mechanism. We can locate a configuration on the top of the barrier corresponding to the transition state of the hydrolysis reaction such that the straightforward descents from this point lead either to reactants GTP+H(2)O or to products guanosine diphosphate (GDP)+H(2)PO(4)(-). However, in all calculations such a single-step process is characterized by an activation barrier that is too high. Another possibility is a two-step reaction consistent with formation of an intermediate. Here the Pgamma-O(Pbeta) bond is already broken, but the lytic water molecule is still in the pre-reactive state. We present arguments favoring the assumption that the first step of the GTP hydrolysis reaction in the RAS-GAP protein complex may be assigned to the breaking of the Pgamma-O(Pbeta) bond prior to the creation of the inorganic phosphate.  相似文献   

13.
The reaction mechanisms of two inhibitor TFK(+) and TFK(0) binding to H447I mutant mouse acetylcholinesterase (mAChE) have been investigated by using a combined ab initio quantum mechanical/molecular mechanical (QM/MM) approach and classical molecular dynamics (MD) simulations. TFK(+) binding to the H447I mutant may proceed with a different reaction mechanism from the wild-type. A water molecule takes over the role of His447 and participates in the bond breaking and forming as a "charge relayer". Unlike in the wild-type mAChE case, Glu334, a conserved residue from the catalytic triad, acts as a catalytic base in the reaction. The calculated energy barrier for this reaction is about 8kcal/mol. These predictions await experimental verification. In the case of the neutral ligand TFK(0), however, multiple MD simulations on the TFK(0)/H447I complex reveal that none of the water molecules can be retained in the active site as a "catalytic" water. Taken together our computational studies confirm that TFK(0) is almost inactive in the H447I mutant, and also provide detailed mechanistic insights into the experimental observations.  相似文献   

14.
J Aqvist  A Warshel 《Biochemistry》1989,28(11):4680-4689
Calculations of the free energy profile for the first two (rate-limiting) steps of the staphylococcal nuclease catalyzed reaction are reported. The calculations are based on the empirical valence bond method in combination with free energy perturbation molecular dynamics simulations. The calculated activation free energy is in good agreement with experimental kinetic data, and the catalytic effect of the enzyme is reproduced without any arbitrary adjustment of parameters. The enormous reduction of the activation barrier (relative to the reference reaction in water) appears to be largely associated with the strong electrostatic effect of the Ca2+ ion and the two arginine residues in the active site. This favorable electrostatic environment reduces the cost of the general-base catalysis step by almost 15 kcal/mol (by stabilizing the OH- nucleophile) and then stabilizes the developing negative charge on the 5'-phosphate group in the second step of the reaction by about 19 kcal/mol. The basic features of the originally postulated enzyme mechanism (Cotton et al., 1979) are found to be compatible with the observed activation free energy. However, the proposed modification of the mechanism (Sepersu et al., 1987), in which Arg 87 interacts only with the pentacoordinated transition state, is supported by the simulations. Further calculations on the D21E mutant also give results in good agreement with kinetic data.  相似文献   

15.
The direct ion-dipolar interactions between potassium ion (K(+)) and the two hydroxyl groups of the substrate are the most striking feature of the crystal structure of coenzyme B(12)-dependent diol dehydratase. We carried out density-functional-theory computations to determine whether K(+) can assist the 1,2-shift of the hydroxyl group in the substrate-derived radical. Between a stepwise abstraction/recombination reaction proceeding via a direct hydroxide abstraction by K(+) and a concerted hydroxyl group migration assisted by K(+), only a transition state for the latter concerted mechanism was found from our computations. The barrier height for the transition state from the complexed radical decreases by only 2.3 kcal/mol upon coordination of the migrating hydroxyl group to K(+), which corresponds to a 42-fold rate acceleration at 37 degrees C. The net binding energy upon replacement of the K(+)-bound water for substrate was calculated to be 10.7 kcal/mol. It can be considered that such a large binding energy is at least partly used for the substrate-induced conformational changes in the enzyme that trigger the homolytic cleavage of the Co-C bond of the coenzyme and the subsequent catalysis by a radical mechanism. We propose here a new mechanism for diol dehydratase in which K(+) plays a direct role in the catalysis.  相似文献   

16.
Density functional theory analysis was performed to elucidate the impact of one-electron reduction upon the initial step of adenosylcobalamin-dependent enzymatic catalysis. The transition state (TS) corresponding to the Co–C bond cleavage and subsequent hydrogen abstraction from the substrate was located. The intrinsic reaction coordinate calculations predicted that the reaction consisting of Co–C5′ bond cleavage in [CoIII(corrin)]–Rib (where Rib is ribosyl) and hydrogen-atom abstraction from the CH3–CH2–CHO substrate occurs in a concerted fashion. The computed activation energy barrier of the reaction (15.0 kcal/mol) was lowered by approximately 54.5% in comparison with the reaction involving the positively charged cofactor model (Im–[CoIII(corrin)]–Rib+, where Im is imidazole; energy barrier = 33.0 kcal/mol). The Im base was detached during the TS search in the reaction involving the one-electron-reduced analogue. Thus, to compare the energetics of the two reactions, the axial Im ligand detachment energy for the Im–[CoIII(corrin)]–Rib model was computed [7.6 kcal/mol (gas phase); 4.6 kcal/mol (water)]. Consequently, the effective activation energy barrier for the reaction mediated by the Im-off [CoIII(corrin)]–Rib was estimated to be 22.6 kcal/mol, which implied an overall 31.5% reduction in the energetic demands of the reaction. Considering that the lengthened Co–Naxial bond has been observed in X-ray crystal structure studies of B12-dependent mutases, the catalytic impact induced by one-electron reduction of the cofactor is expected to be higher in the presence of the enzymatic environment.  相似文献   

17.
The possible contributions of the mechanochemical triggering effect to the enzymatic activation of the carbon-cobalt bond of coenzyme B12 (5'-deoxyadenosylcobalamin, AdoCbl) for homolytic cleavage have been studied by molecular modeling and semiempirical molecular orbital calculations. Classically, this effect has envisioned enzymatic compression of the axial Co-N bond in the ground state to cause upward folding of the corrin ring and subsequent sterically induced distortion of the Co-C bond leading to its destabilization. The models of this process show that in both methylcobalamin (CH3Cbl) and AdoCbl, compression of the axial Co-N bond does engender upward folding of the corrin ring, and that the extent of such upward folding is smaller in an analog in which the normal 5,6-dimethylbenzimidazole axial ligand is replaced by the sterically smaller ligand, imidazole (CH3(lm)Cbl and Ado(lm)Cbl). Furthermore, in AdoCbl, this upward folding of the corrin is accompanied by increases in the carbon-cobalt bond length and in the Co-C-C bond angle (which are also less pronounced in Ado(Im)Cbl), and which indicate that the Co-C bond is indeed destabilized by this mechanism. However, these effects on the Co-C bond are small, and destabilization of this bond by this mechanism is unlikely to contribute more than ca. 3 kcal mol(-1) towards the enzymatic catalysis of Co-C bond homolysis, far short of the observed ca. 14 kcal mol(-1). A second version of mechanochemical triggering, in which compression of the axial Co-N bond in the transition state for Co-C bond homolysis stabilizes the transition state by increased Co-N orbital overlap, has also been investigated. Stretching the Co-C bond to simulate the approach to the transition state was found to result in an upward folding of the corrin ring, a slight decrease in the axial Co-N bond length, a slight displacement of the metal atom from the plane of the equatorial nitrogens towards the "lower" axial ligand, and a decrease in strain energy amounting to about 8 kcal mol(-1) for both AdoCbl and Ado(Im)Cbl. In such modeled transition states, compression of the axial Co-N bond to just below 2.0 A (the distance subsequently found to provide maximal stabilization of the transition state by increased orbital overlap) required about 4 kcal mol(-1) for AdoCbl, and about 2.5 kcal mol(-1) for Ado(Im)Cbl. ZINDO/1 calculations on slightly simplified structures showed that maximal electronic stabilization of the transition state by about 10 kcal mol(-1) occurred at an axial Co-N bond distance of 1.96 A for both AdoCbl and Ado(Im)Cbl. The net result is that this type of transition state mechanochemical triggering can provide 14 kcal mol(-1) of transition state stabilization for AdoCbl, and about 15.5 kcal mol(-1) for the Ado(Im)Cbl, enough to completely explain the observed enzymatic catalysis. These results are discussed in the light of current knowledge about class I AdoCbl-dependent enzymes, in which the coenzyme is bound in its "base-off" conformation, with the lower axial ligand position occupied by the imidazole moiety of an active site histidine residue, and the class II enzymes, in which AdoCbl binds to the enzyme in its "base-on" conformation, and the pendent 5,6-dimethylbenzimidazole base remains coordinated to the metal during Co-C bond activation.  相似文献   

18.
Quantum chemical computations using the ab initio molecular orbital (MO) method have been performed to investigate the molecular switching mechanism of Ras protein p21, which has an important role in intracellular signal cascades. Lys(16) was demonstrated to be crucial to the function of Ras p21, and the hydrolysis of GTP to GDP was found to be an one-step reaction. The potential energy barrier of this hydrolysis reaction from GTP to (GDP + P) was calculated to be approximately 42 kcal/mol. The role of GAP (GTPase-activating protein) was also discussed in terms of the delivery of the water molecules required for the hydrolysis.  相似文献   

19.
Conversion of iron(II) verdoheme to iron biliverdin in the presence of OH(-) was investigated using B3LYP method. Both 3-21G and 6-31G* basis sets were employed for geometry optimization calculation as well as energy stabilization estimation. Calculation at 6-31G* level was found necessary for a correct spin state estimation of the iron complexes. Two possible pathways for the conversion of iron verdoheme to iron biliverdin were considered. In one path the iron was six-coordinate while in the other it was considered to be five-coordinate. In the six-coordinated pathway, the ground state of bis imidazole iron verdoheme is singlet while that for open chain iron biliverdin it is triplet state with 4.86 kcal/mol more stable than the singlet state. The potential energy surface suggests that a spin inversion take place during the course of reaction after TS. The ring opening process in the six-coordinated pathway is in overall -2.26 kcal/mol exothermic with a kinetic barrier of 9.76 kcal/mol. In the five-coordinated pathway the reactant and product are in the ground triplet state. In this path, hydroxyl ion attacks the iron center to produce a complex, which is only 1.59 kcal/mol more stable than when OH(-) directly attacks the macrocycle. The activation barrier for the conversion of iron hydroxy species to the iron biliverdin complex by a rebound mechanism is estimated to be 32.68 kcal/mol. Large barrier for rebound mechanism, small barrier of 4.18 kcal/mol for ring opening process of the hydroxylated macrocycle, and relatively same stabilities for complexes resulted by the attack of nucleophile to the iron and macrocycle indicate that five-coordinated pathway with direct attack of nucleophile to the 5-oxo position of macrocycle might be the path for the conversion of verdoheme to biliverdin.  相似文献   

20.
The conformational behavior of 1-halovinyl azides CH2=CX-NNN (X=F, Cl and Br) were investigated by DFT-B3LYP and ab initio MP2 calculations with the 6-311++G** basis set. The molecules were predicted to exist predominantly in the trans (the vinyl CH2=CH- and the azide -NNN groups are trans to each other) conformation. The relative energy between cis and trans were calculated to decrease in order: bromide>chloride>fluoride. Full optimization was performed at the ground and transition states in the molecule at both MP2 and B3LYP levels. The barrier to internal rotation around the C-N single bond in the three molecules was calculated to be about 4-5 kcal mol(-1). The vibrational frequencies were computed at the DFT-B3LYP level and the calculated infrared and Raman spectra of the cis- trans mixture of the three molecules were plotted. Complete vibrational assignments were made on the basis of normal coordinate calculations for both stable conformers of the three molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号