首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Agonist binding to the CC chemokine receptor 5 (CCR5) induces the phosphorylation of four distinct serine residues that are located in the CCR5 C terminus. We established a series of clonal RBL-2H3 cell lines expressing CCR5 with alanine mutations of Ser(336), Ser(337), Ser(342), and Ser(349) in various combinations and explored the significance of phosphorylation sites for the ability of the receptor to interact with beta-arrestins and to undergo desensitization and internalization upon ligand binding. Receptor mutants that lack any two phosphorylation sites retained their ability to recruit endogenous beta-arrestins to the cell membrane and were normally sequestered, whereas alanine mutation of any three C-terminal serine residues abolished both beta-arrestin binding and rapid agonist-induced internalization. In contrast, RANTES (regulated on activation normal T cell expressed and secreted) stimulation of a S336A/S349A mutant triggered a sustained calcium response and enhanced granular enzyme release. This mutational analysis implies that CCR5 internalization largely depends on a beta-arrestin-mediated mechanism that requires the presence of any two phosphorylation sites, whereas receptor desensitization is independently regulated by the phosphorylation of distinct serine residues. Surface plasmon resonance analysis further demonstrated that purified beta-arrestin 1 binds to phosphorylated and nonphosphorylated C-tail peptides with similar affinities, suggesting that beta-arrestins use additional receptor sites to discriminate between nonactivated and activated receptors. Surface plasmon resonance analysis revealed beta-arrestin 1 binding to the second intracellular loop of CCR5, which required an intact Asp-Arg-Tyr triplet. These results suggest that a conserved sequence motif within the second intracellular loop of CCR5 that is known to be involved in G protein activation plays a significant role in beta-arrestin binding to CCR5.  相似文献   

2.
Beta-arrestin mediates desensitization and internalization of beta-adrenergic receptors (betaARs), but also acts as a scaffold protein in extracellular signal-regulated kinase (ERK) cascade. Thus, we have examined the role of beta-arrestin2 in the betaAR-mediated ERK signaling pathways. Isoproterenol stimulation equally activated cytoplasmic and nuclear ERK in COS-7 cells expressing beta1AR or beta2AR. However, the activity of nuclear ERK was enhanced by co-expression of beta-arrestin2 in beta2AR-but not beta1AR-expressing cells. Pertussis toxin treatment and blockade of Gbetagamma action inhibited beta-arrestin2-enhanced nuclear activation of ERK, suggesting that beta-arrestin2 promotes nuclear ERK localization in a Gbetagamma dependent mechanism upon receptor stimulation. beta2AR containing the carboxyl terminal region of beta1AR lost the beta-arrestin2-promoted nuclear translocation. As the carboxyl terminal region is important for beta-arrestin binding, these results demonstrate that recruitment of beta-arrestin2 to carboxyl terminal region of beta2AR is important for ERK localization to the nucleus.  相似文献   

3.
Structure-function studies of rhodopsin indicate that both intradiscal and transmembrane (TM) domains are required for retinal binding and subsequent light-induced structural changes in the cytoplasmic domain. Further, a hypothesis involving a common mechanism for activation of G-protein-coupled receptor (GPCR) has been proposed. To test this hypothesis, chimeric receptors were required in which the cytoplasmic domains of rhodopsin were replaced with those of the beta(2)-adrenergic receptor (beta(2)-AR). Their preparation required identification of the boundaries between the TM domain of rhodopsin and the cytoplasmic domain of the beta(2)-AR necessary for formation of the rhodopsin chromophore and its activation by light and subsequent optimal activation of beta(2)-AR signaling. Chimeric receptors were constructed in which the cytoplasmic loops of rhodopsin were replaced one at a time and in combination. In these replacements, size of the third cytoplasmic (EF) loop critically determined the extent of chromophore formation, its stability, and subsequent signal transduction specificity. All the EF loop replacements showed significant decreases in transducin activation, while only minor effects were observed by replacements of the CD and AB loops. Light-dependent activation of beta(2)-AR leading to Galphas signaling was observed only for the EF2 chimera, and its activation was further enhanced by replacements of the other loops. The results demonstrate coupling between light-induced conformational changes occurring in the transmembrane domain of rhodopsin and the cytoplasmic domain of the beta(2)-AR.  相似文献   

4.
M Bouvier  N Guilbault  H Bonin 《FEBS letters》1991,279(2):243-248
Phorbol-esters have been shown to modulate the beta-adrenergic-stimulated adenylyl cyclase in a number of cell lines. Here, using site directed mutagenesis, we investigate the role of the beta 2-adrenergic receptor phosphorylation by protein kinase C in this regulatory process. Mutation of the serine-261, -262, -344 and -345 of the beta 2-adrenergic receptor prevented the phorbol-ester-induced phosphorylation of the receptor. This mutation also abolished the phorbol-ester-induced decrease in high-affinity agonist binding and potency of the beta 2-adrenergic receptor. We suggest that protein kinase C mediated phosphorylation of the receptor promotes its functional uncoupling.  相似文献   

5.
Plasmon-waveguide resonance (PWR) spectroscopy is an optical technique that can be used to probe the molecular interactions occurring within anisotropic proteolipid membranes in real time without requiring molecular labeling. This method directly monitors mass density, conformation, and molecular orientation changes occurring in such systems and allows determination of protein-ligand binding constants and binding kinetics. In the present study, PWR has been used to monitor the incorporation of the human beta(2)-adrenergic receptor into a solid-supported egg phosphatidylcholine lipid bilayer and to follow the binding of full agonists (isoproterenol, epinephrine), a partial agonist (dobutamine), an antagonist (alprenolol), and an inverse agonist (ICI-118,551) to the receptor. The combination of differences in binding kinetics and the PWR spectral changes point to the occurrence of multiple conformations that are characteristic of the type of ligand, reflecting differences in the receptor structural states produced by the binding process. These results provide new evidence for the conformational heterogeneity of the liganded states formed by the beta(2)-adrenergic receptor.  相似文献   

6.
Members of the seven-transmembrane receptor (7TMR) superfamily are sequestered from the plasma membrane following stimulation both to limit cellular responses as well as to initiate novel G protein-independent signaling pathways. The best studied mechanism for 7TMR internalization is via clathrin-coated pits, where clathrin and adaptor protein complex 2 nucleate and polymerize upon encountering the membrane phospholipid phosphatidylinositol 4,5-bisphosphate (PIP(2)) to form the outer layer of the clathrin-coated vesicle. Activated receptors are recruited to clathrin-coated pits by beta-arrestins, scaffolding proteins that interact with agonist-occupied 7TMRs as well as adaptor protein complex 2 and clathrin. We report here that following stimulation of the beta2-adrenergic receptor (beta2-AR), a prototypical 7TMR, beta-arrestins bind phosphatidylinositol 4-phosphate 5-kinase (PIP5K) Ialpha, a PIP(2)-producing enzyme. Furthermore, beta-arrestin2 is required to form a complex with PIP5K Ialpha and agonist-occupied beta2-AR, and beta-arrestins synergize with the kinase to produce PIP(2) in response to isoproterenol stimulation. Interestingly, beta-arrestins themselves bind PIP(2), and a beta-arrestin mutant deficient in PIP(2) binding no longer internalizes 7TMRs, fails to interact with PIP5K Ialpha, and is not associated with PIP kinase activity assayed in vitro. However, a chimeric protein in which the core kinase domain of PIP5K Ialpha has been fused to the same beta-arrestin mutant rescues internalization of beta2-ARs. Collectively, these data support a model in which beta-arrestins direct the localization of PIP5K Ialpha and PIP(2) production to agonist-activated 7TMRs, thereby regulating receptor internalization.  相似文献   

7.
beta-Arrestins are multifunctional adaptor proteins known to regulate internalization of agonist-stimulated G protein-coupled receptors by linking them to endocytic proteins such as clathrin and AP-2. Here we describe a previously unappreciated mechanism by which beta-arrestin orchestrates the process of receptor endocytosis through the activation of ADP-ribosylation factor 6 (ARF6), a small GTP-binding protein. Involvement of ARF6 in the endocytic process is demonstrated by the ability of GTP-binding defective and GTP hydrolysis-deficient mutants to inhibit internalization of the beta(2)-adrenergic receptor. The importance of regulation of ARF6 function is shown by the ability of the ARF GTPase-activating protein GIT1 to inhibit and of the ARF nucleotide exchange factor, ARNO, to enhance receptor endocytosis. Endogenous beta-arrestin is found in complex with ARNO. Upon agonist stimulation of the receptor, beta-arrestin also interacts with the GDP-liganded form of ARF6, thereby facilitating ARNO-promoted GTP loading and activation of the G protein. Thus, the agonist-driven formation of a complex including beta-arrestin, ARNO, and ARF6 provides a molecular mechanism that explains how the agonist-stimulated receptor recruits a small G protein necessary for the endocytic process and controls its activation.  相似文献   

8.
Beta1-adrenergic receptors, expressed at high levels in the human heart, have a carboxyl-terminal ESKV motif that can directly interact with PDZ domain-containing proteins. Using the beta1-adrenergic receptor carboxyl terminus as bait, we identified the novel beta1-adrenergic receptor-binding partner GIPC in a yeast two-hybrid screen of a human heart cDNA library. Here we demonstrate that the PDZ domain-containing protein, GIPC, co-immunoprecipitates with the beta1-adrenergic receptor in COS-7 cells. Essential for this interaction is the Ser residue of the beta1-adrenergic receptor carboxyl-terminal ESKV motif. Our data also demonstrate that beta1-adrenergic receptor stimulation activates the mitogen-activated protein kinase, ERK1/2. beta1-adrenergic receptor-mediated ERK1/2 activation was inhibited by pertussis toxin, implicating Gi, and was substantially decreased by the expression of GIPC. Expression of GIPC had no observable effect on beta1-adrenergic receptor sequestration or receptor-mediated cAMP accumulation. This GIPC effect was specific for the beta1-adrenergic receptor and was dependent on an intact PDZ binding motif. These data suggest that GIPC can regulate beta1-adrenergic receptor-stimulated, Gi-mediated, ERK activation while having no effect on receptor internalization or Gs-mediated cAMP signaling.  相似文献   

9.
Both beta(2)- and beta(3)-adrenergic receptors (ARs) are able to activate the extracellular signal-regulated kinase (ERK) pathway. We previously showed that c-Src is required for ERK activation by beta(2)AR and that it is recruited to activated beta(2)AR through binding of the Src homology 3 (SH3) domain to proline-rich regions of the adapter protein beta-arrestin1. Despite the absence of sites for phosphorylation and beta-arrestin binding, ERK activation by beta(3)AR still requires c-Src. Agonist activation of beta(2)AR, but not beta(3)AR, led to redistribution of green fluorescent protein-tagged beta-arrestin to the plasma membrane. In beta-arrestin-deficient COS-7 cells, beta-agonist-dependent co-precipitation of c-Src with the beta(2)AR required exogenous beta-arrestin, but activated beta(3)AR co-precipitated c-Src in the absence or presence of beta-arrestin. ERK activation and Src co-precipitation with beta(3)AR also occurred in adipocytes in an agonist-dependent and pertussis toxin-sensitive manner. Protein interaction studies show that the beta(3)AR interacts directly with the SH3 domain of Src through proline-rich motifs (PXXP) in the third intracellular loop and the carboxyl terminus. ERK activation and Src co-precipitation were abolished in cells expressing point mutations in these PXXP motifs. Together, these data describe a novel mechanism of ERK activation by a G protein-coupled receptor in which the intracellular domains directly recruit c-Src.  相似文献   

10.
We constructed and expressed in a permanent cell line a beta 2-adrenergic receptor with a valine substitution for cysteine 184 of the second putative extracellular loop. The mutant receptor was partially uncoupled from adenylyl cyclase with impaired ability to form the high affinity agonist-receptor-G protein complex, yet displayed more rapid and extensive agonist-induced desensitization. The enhanced desensitization was accompanied by increased agonist promoted, but not cAMP promoted, receptor phosphorylation in intact cells. Thus, not only is impaired desensitization associated with decreased phosphorylation, as we have shown with several mutant beta 2-adrenergic receptors recently, but enhanced desensitization is accompanied by increased agonist promoted receptor phosphorylation. In the case of this cysteine mutant, this may be due to the greater accessibility of the uncoupled receptor for phosphorylation by the beta-adrenergic receptor kinase.  相似文献   

11.
Previous work in the beta(2)-adrenergic receptor demonstrated critical interactions between Ser-204 and Ser-207 in the fifth membrane-spanning segment and the meta-OH and para-OH, respectively, of catecholamine agonists (Strader, C. D., Candelore, M. R., Hill, W. S., Sigal, I. S., and Dixon, R. A. (1989) J. Biol. Chem. 264, 13572-13578). Using the substituted cysteine accessibility method in the beta(2)-adrenergic receptor, we have found that in addition to Ser-204 and Ser-207, Ser-203 is also accessible on the surface of the binding-site crevice and is occluded by bound agonist. Mutation of Ser-203 to Ala, Val, or Cys reduced the binding affinity and adenylyl cyclase-activating potency of agonists containing a meta-OH, whereas their affinities and potencies were largely preserved by mutation of Ser-203 to Thr, which maintained an OH at this position. Thus both Ser-203 and Ser-204 appear to interact with the meta-OH of catecholamines, perhaps through a bifurcated H bond. Furthermore, the removal of the OH at position 203 led to a significant loss of affinity of antagonists with nitrogen in their heterocyclic ring structure. The greatest effect was seen with pindolol, a partial agonist, suggesting that a H bond between the heterocyclic ring and Ser-203 may play a role in partial agonism. In contrast, the affinities of antagonists such as propranolol or alprenolol, which have cyclic structures without H-bonding capability, were unaltered after mutation of Ser-203.  相似文献   

12.
Mao YM  Zhou HH 《生理科学进展》2006,37(3):229-232
β2肾上腺素受体(β2-adrenergic receptor,132-AR)对血管和支气管平滑肌的紧张性起着重要的调节作用,能介导心脏的正性变力和变时效应。近年来研究发现,人类β2-AR具有遗传多态性,而使受体表现出不同的生物学特性。本文主要对β2-AR的遗传多态性及遗传药理学的研究进展进行简要概述。  相似文献   

13.
Beta(1)- and beta(2)-adrenergic receptors (beta(1)AR and beta(2)AR) are co-expressed in numerous tissues where they play a central role in the responses of various organs to sympathetic stimulation. Although the two receptor subtypes share some signaling pathways, each has been shown to have specific signaling and regulatory properties. Given the recent recognition that many G protein-coupled receptors can form homo- and heterodimers, the present study was undertaken to determine whether the beta(1)AR and beta(2)AR can form dimers in cells and, if so, to investigate the potential functional consequences of such heterodimerization. Using co-immunoprecipitation and bioluminescence resonance energy transfer, we show that beta(1)AR and beta(2)AR can form heterodimers in HEK 293 cells co-expressing the two receptors. Functionally, beta-adrenergic stimulated adenylyl cyclase activity was found to be identical in cells expressing beta(1)AR, beta(2)AR, or both receptors at similar levels, indicating that heterodimerization did not affect this signaling pathway. When considering ERK1/2 MAPK activity, a significant agonist-promoted activation was detected in beta(2)AR- but not beta(1)AR-expressing cells. Similarly to what was observed in cells expressing the beta(1)AR alone, no beta-adrenergic stimulated ERK1/2 phosphorylation was observed in cells co-expressing the two receptors. A similar inhibition of agonist-promoted internalization of the beta(2)AR was observed upon co-expression of the beta(1)AR, which by itself internalized to a lesser extent. Taken together, our data suggest that heterodimerization between beta(1)AR and beta(2)AR inhibits the agonist-promoted internalization of the beta(2)AR and its ability to activate the ERK1/2 MAPK signaling pathway.  相似文献   

14.
p-(Bromoacetamido)benzyl-1-[125I]iodocarazolol (125I-pBABC) is a potent derivative of the beta-adrenergic receptor antagonist p-aminobenzylcarazolol. Treatment of the receptor with 125I-pBABC results in efficient covalent incorporation of the ligand into the receptor binding site. Extensive degradation of 125I-pBABC-labeled beta 2-adrenergic receptor with either cyanogen bromide or Staphylococcus aureus V8 protease results in specifically labeled fragments having Mr's of about 1600 and 3500, respectively. Because the primary structure of the beta 2-adrenergic receptor is known, and these proteolytic reagents are highly sequence specific, the site of 125I-pBABC incorporation may be deduced from the sizes of the specifically labeled fragments. Thus the fragment generated by cyanogen bromide cleavage corresponds to residues 83-96, a region of 14 amino acids included in the second membrane spanning domain (helix II) of the beta 2-adrenergic receptor. This assignment was confirmed by direct amino acid sequencing of this labeled fragment, though the actual amino acid modified could not be determined. These data permit the assignment of a part of the hormone binding region of the beta 2-adrenergic receptor.  相似文献   

15.
Homologous desensitization of beta2-adrenergic and other G-protein-coupled receptors is a two-step process. After phosphorylation of agonist-occupied receptors by G-protein-coupled receptor kinases, they bind beta-arrestins, which triggers desensitization and internalization of the receptors. Because it is not known which regions of the receptor are recognized by beta-arrestins, we have investigated beta-arrestin interaction and internalization of a set of mutants of the human beta2-adrenergic receptor. Mutation of the four serine/threonine residues between residues 355 and 364 led to the loss of agonist-induced receptor-beta-arrestin2 interaction as revealed by fluorescence resonance energy transfer (FRET), translocation of beta-arrestin2 to the plasma membrane, and receptor internalization. Mutation of all seven serine/threonine residues distal to residue 381 did not affect agonist-induced receptor internalization and beta-arrestin2 translocation. A beta2-adrenergic receptor truncated distal to residue 381 interacted normally with beta-arrestin2, whereas its ability to internalize in an agonist-dependent manner was compromised. A similar impairment of internalization was observed when only the last eight residues of the C terminus were deleted. Our experiments show that the C terminus distal to residue 381 does not affect the initial interaction between receptor and beta-arrestin, but its last eight amino acids facilitate receptor internalization in concert with beta-arrestin2.  相似文献   

16.
beta-arrestin-biased agonism at the beta2-adrenergic receptor   总被引:3,自引:0,他引:3  
Classically, the beta 2-adrenergic receptor (beta 2AR) and other members of the seven-transmembrane receptor (7TMR) superfamily activate G protein-dependent signaling pathways in response to ligand stimulus. It has recently been discovered, however, that a number of 7TMRs, including beta 2AR, can signal via beta-arrestin-dependent pathways independent of G protein activation. It is currently unclear if among beta 2AR agonists there exist ligands that disproportionately signal via G proteins or beta-arrestins and are hence "biased." Using a variety of approaches that include highly sensitive fluorescence resonance energy transfer-based methodologies, including a novel assay for receptor internalization, we show that the majority of known beta 2AR agonists exhibit relative efficacies for beta-arrestin-associated activities (beta-arrestin membrane translocation and beta 2AR internalization) identical to the irrelative efficacies for G protein-dependent signaling (cyclic AMP generation). However, for three betaAR ligands there is a marked bias toward beta-arrestin signaling; these ligands stimulate beta-arrestin-dependent receptor activities to a much greater extent than would be expected given their efficacy for G protein-dependent activity. Structural comparison of these biased ligands reveals that all three are catecholamines containing an ethyl substitution on the alpha-carbon, a motif absent on all of the other, unbiased ligands tested. Thus, these studies demonstrate the potential for developing a novel class of 7TMR ligands with a distinct bias for beta-arrestin-mediated signaling.  相似文献   

17.
Insulin stimulates a rapid phosphorylation and sequestration of the beta(2)-adrenergic receptor. Analysis of the signaling downstream of the insulin receptor with enzyme inhibitors revealed roles for both phosphatidylinositol 3-kinase and pp60Src. Inhibition of Src with PP2, like the inhibition of phosphatidylinositol 3-kinase with LY294002 [2-(4-morpholynyl)-8-phenyl-4H-1-benzopyran-4-one], blocked the activation of Src as well as insulin-stimulated sequestration of the beta(2)-adrenergic receptor. Depletion of Src with antisense morpholinos also suppressed insulin-stimulated receptor sequestration. Src is shown to be phosphorylated/activated in response to insulin in human epidermoid carcinoma A431 cells as well as in mouse 3T3-L1 adipocytes and their derivative 3T3-F422A cells, well-known models of insulin signaling. Inhibition of Src with PP2 blocks the ability of insulin to sequester beta(2)-adrenergic receptors and the translocation of the GLUT4 glucose transporters. Insulin stimulates Src to associate with the beta(2)-adrenergic receptor/AKAP250/protein kinase A/protein kinase C signaling complex. We report a novel positioning of Src, mediating signals from insulin to phosphatidylinositol 3-kinase and to beta(2)-adrenergic receptor trafficking.  相似文献   

18.
Tao J  Wang HY  Malbon CC 《The EMBO journal》2003,22(24):6419-6429
A-kinase-anchoring protein 250 (AKAP250; gravin) acts as a scaffold that binds protein kinase A (PKA), protein kinase C and protein phosphatases, associating reversibly with the beta(2)-adrenergic receptor. The receptor-binding domain of the scaffold and the regulation of the receptor-scaffold association was revealed through mutagenesis and biochemical analyses. The AKAP domain found in other members of this superfamily is essential for the scaffold-receptor interactions. Gravin constructs lacking the AKAP domain displayed no binding to the receptor. Metabolic labeling studies in vivo demonstrate agonist-stimulated phosphorylation of gravin and enhanced gravin-receptor association. Analysis of the AKAP domain revealed two canonical PKA sites phosphorylated in response to elevated cAMP, blocked by PKA inhibitor, and essential for scaffold-receptor association and for resensitization of the receptor. The AKAP appears to provide the catalytic PKA activity responsible for phosphorylation of the scaffold in response to agonist activation of the receptor as well as for the association of the scaffold with the receptor, a step critical to receptor resensitization.  相似文献   

19.
Similar to other G protein-coupled receptors, rapid phosphorylation of the delta-opioid receptor in the presence of agonist has been reported. Hence, agonist-induced desensitization of the delta-opioid receptor has been suggested to be via the receptor phosphorylation, arrestin-mediated pathway. However, due to the highly efficient coupling between the delta-opioid receptor and the adenylyl cyclase, the direct correlation between the rates of receptor phosphorylation and receptor desensitization as measured by the adenylyl cyclase activity could not be established. In the current studies, using an ecdysone-inducible expression system to control the delta-opioid receptor levels in HEK293 cells, we could demonstrate that the rate of deltorphin II-induced receptor desensitization is dependent on the receptor level. Only at receptor concentrations 相似文献   

20.
Clathrin is a major component of clathrin-coated pits and serves as a binding scaffold for endocytic machinery through the binding of a specific sequence known as the clathrin-binding motif. This motif is also found in cellular signaling proteins other than endocytic components, including G protein-coupled receptor kinase 2 (GRK2), which phosphorylates G protein-coupled receptors and promotes uncoupling of receptor-G protein interaction. However, the functions of clathrin in the regulation of GRK2 are unknown. Here we demonstrated that overexpression of GRK2 mutated at the clathrin-binding motif with alanine (GRK2-5A) results in inhibition of phosphorylation and internalization of the beta2-adrenergic receptor (beta2AR). However, the interaction of beta2AR with GRK2-5A is the same as that of wild type GRK2 as determined by bioluminescence resonance energy transfer. Furthermore, GRK2-5A phosphorylates rhodopsin essentially to the same extent as wild type GRK2 in vitro. Depletion of the clathrin heavy chain using small interference RNA inhibits agonist-induced phosphorylation and internalization of beta2AR. Thus, clathrin works as a regulator of GRK2 in cells. These results indicate that clathrin is a novel player in cellular functions in addition to being a component of endocytosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号