首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The structures and conformational peculiarities of five members of the callatostatin family of neuropeptides, i.e. Leu- and Met-callatostatins, ranging in size from 8 to 16 amino acid residues have been investigated by a theoretical conformational analysis method. A comparative analysis of the conformational flexibilities of Met-callatostatin with those of the hydroxylated analogues, [Hyp2]- and [Hyp3]-Met-callatostatin has been carried out. Helically packed C-terminal pentapeptide in the structure of all investigated Leu-callatostatins are shown to be possible. The reason for the great number low-energy conformers for the callatostatin N-terminus is discussed.  相似文献   

2.
[3H]PK 11195 binding to peripheral type benzodiazepine binding sites in kidney membranes is inhibited by the histidine blocking agent diethylpyrocarbonate. This reagent irreversibly decreases the Bmax for [3H]PK 11195 without affecting the affinity. By contrast binding of [3H]RO5-4864 is not affected by diethylpyrocarbonate treatment. However RO5-4864 can protect in a concentration dependent manner the [3H]PK 11195 binding site from diethylpyrocarbonate whereas clonazepam and RO15-1788 are not active. These results suggest that PK 11195 and RO5-4864 interact with different conformational states of the receptors that RO5-4864. This is in agreement with our previous hypothesis that PK 11195 is an antagonist and RO5-4864 an agonist at the "peripheral type" benzodiazepine receptors.  相似文献   

3.
[3H]Pirenzepine [( 3H]PZ) and [3H] (-)Quinuclidinylbenzilate [( 3H] (-)QNB) specific binding to soluble rat brain muscarinic cholinergic receptors was assessed as a function of time subsequent to receptor solubilization. The soluble brain muscarinic receptor is stable at 4 degrees C when assayed by [3H] (-)QNB binding (t 1/2 = 80 hrs). In contrast the pirenzepine state of the receptor decays rapidly (t 1/2 = 3.0 hrs). Prior occupation of the receptor with [3H] (-)QNB or [3H]PZ increases the receptor stability by two to five fold (t 1/2 QNB greater than 1,000 hrs; t 1/2 PZ = 6.5 hrs). These data indicate that pirenzepine binds to an allosteric state of the muscarinic receptor and that caution should be employed in the assignment of receptor subtypes based solely upon the binding of ligands which recognize unique conformational states.  相似文献   

4.
Abstract

Two RNA sequences, AAA and AUG, were studied by the conformational search program CICADA and by molecular dynamics (MD) in the framework of the AMBER force field, and also via thorough PDB database search. CICADA was used to provide detailed information about conformers and conformational interconversions on the energy surfaces of the above molecules. Several conformational families were found for both sequences. Analysis of the results shows differences, especially between the energy of the single families, and also in flexibility and concerted conformational movement. Therefore, several MD trajectories (altogether 16 ns) were run to obtain more details about both the stability of conformers belonging to different conformational families and about the dynamics of the two systems. Results show that the trajectories strongly depend on the starting structure. When the MD start from the global minimum found by CICADA, they provide a stable run, while MD starting from another conformational family generates a trajectory where several different conformational families are visited. The results obtained by theoretical methods are compared with the thorough database search data. It is concluded that all except for the highest energy conformational families found in theoretical result also appear in experimental data.

Registry numbers:

adenylyl-(3′ →5′)-adenylyl-(3′ →5′)-adenosine [917-44-2]

adenylyl-(3′ →5′)-uridylyl-(3′ →5′)-guanosine [3494-35-7]  相似文献   

5.
T Yamazaki  K Nunami  M Goodman 《Biopolymers》1991,31(13):1513-1528
The conformations of cis and trans cyclic retro-inverso dipeptides--2-[(4-hydroxy)benzyl]-5-benzyl-4,6(1H,2H,3H,5H)-pyrimidinedi one (c[mTyr-gPhe]), and 2-benzyl-5-amino-5-[(4-hydroxy)benzyl]-4,6(1H,2H,3H,5H)-pyrimidinedione (c[mTyr-gPhe]), and 2-benzyl-5-amino-5-[(4-hydroxy)benzyl]-4,6(1H,2H,3H,5H)-pyrimidinedione (c[(alpha-amino)mTyr-gPhe])--and the parent cyclic dipeptides--c[tyrosyl-phenylalanine] (cis-c[L-Tyr-L-Phe]) and c[tyrosyl-D-phenylalanine] (trans-c[L-Tyr-D-Phe])--were studied by using 1H-nmr spectroscopy and semiempirical energy calculations. In the cis compounds of all the cyclic retro-inverso and parent dipeptides, the most stable conformer has both aromatic side chains sharing the space over the backbone ring in a "face-to-face" fashion. All the trans compounds predominantly assume a "sandwich" conformation in which the two aromatic rings are folded back over the backbone ring on opposite sides. However, different conformational preferences were observed for the backbones between the retro-inverso and parent cyclic dipeptides. The parent cyclic dipeptide trans-c[L-Tyr-D-Phe] adopts two types of boat structures with different side-chain orientations in almost equal amounts: one with the Tyr side chain in a pseudoaxial position and the Phe side chain in a pseudoequatorial position, the other with the Tyr side chain in a pseudoequatorial position and the Phe side chain in a pseudoaxial position. On the other hand, the cyclic retro-inverso dipeptides trans-c[mPhe-gTyr] and trans c[mTyr-gPhe] assume only one type of boat structure in which the malonyl side chain is in a pseudoequatorial and the gem-diamino side chain is in a pseudoaxial position. In addition to the preferred conformations, the conformational energies of the C alpha--C beta bonds in the malonyl and gem-diamino residues were estimated from the temperature variation of vicinal 1H--1H coupling constants for the H--C alpha--C beta--H groupings observed for the trans isomers of cyclic retro-inverso dipeptides. The energies were evaluated to be 1.1 and 1.8 kcal mol-1 for the malonyl and gem-diamino residues, respectively. Applying these energies to the parent cyclic dipeptide trans-c[L-Tyr-D-Phe], the observed fractions of three side-chain conformations are reasonably reproduced. The conformational energies as well as conformational properties of the molecules estimated in this investigation may be useful to refine force constants for both parent and retro-inverso peptides with aromatic side chains.  相似文献   

6.
The equilibrium stability and conformational unfolding kinetics of the [C40A, C95A] and [C65S, C72S] mutants of bovine pancreatic ribonuclease A (RNase A) have been studied. These mutants are analogues of two nativelike intermediates, des[40-95] and des[65-72], whose formation is rate-limiting for oxidative folding and reductive unfolding at 25 degrees C and pH 8.0. Upon addition of guanidine hydrochloride, both mutants exhibit a fast conformational unfolding phase when monitored by absorbance and fluorescence, as well as a slow phase detected only by fluorescence which corresponds to the isomerizations of Pro93 and Pro114. The amplitudes of the slow phase indicate that the two prolines, Pro93 and Pro114, are fully cis in the folded state of the mutants and furthermore that the 40-95 disulfide bond is not responsible for the quenching of Tyr92 fluorescence observed in the slow unfolding phase, contrary to an earlier proposal [Rehage, A., and Schmid, F. X. (1982) Biochemistry 21, 1499-1505]. The ratio of the kinetic unfolding m value to the equilibrium m value indicates that the transition state for conformational unfolding in the mutants exposes little solvent-accessible area, as in the wild-type protein, indicating that the unfolding pathway is not dramatically altered by the reduction of the 40-95 or 65-72 disulfide bond. The stabilities of the folded mutants are compared to that of wild-type RNase A. These stabilities indicate that the reduction of des[40-95] to the 2S species is rate-limited by global conformational unfolding, whereas that of des[65-72] is rate-limited by local conformational unfolding. The isomerization of Pro93 may be rate-limiting for the reduction of the 40-95 disulfide bond in the native protein and in the des[65-72] intermediate.  相似文献   

7.
Crystal structure analysis of a model peptide: Boc-beta-Ala-Aib-beta-Ala-NHCH3 (beta-Ala: 3-amino propionic acid; Aib: alpha-aminoisobutyric acid) revealed distinct conformational preferences for folded [phi approximately 136 degrees, mu approximately -62 degrees, psi approximately 100 degrees] and semifolded [phi approximately 83 degrees, mu approximately -177 degrees, psi approximately -117 degrees] structures of the N-and C-terminus beta-Ala residues, respectively. The overall folded conformation is stabilized by unusual Ni...H-Ni+1 and nonconventional C-H...O intramolecular hydrogen bonding interactions.  相似文献   

8.
Streptokinase (SK) activates plasminogen (Pg) by specific binding and nonproteolytic expression of the Pg catalytic site, initiating Pg proteolysis to form the fibrinolytic proteinase, plasmin (Pm). The SK-induced conformational activation mechanism was investigated in quantitative kinetic and equilibrium binding studies. Progress curves of Pg activation by SK monitored by chromogenic substrate hydrolysis were parabolic, with initial rates (v(1)) that indicated no transient species and subsequent rate increases (v(2)). The v(1) dependence on SK concentration for [Glu]Pg and [Lys]Pg was hyperbolic with dissociation constants corresponding to those determined in fluorescence-based binding studies for the native Pg species, identifying v(1) as rapid SK binding and conformational activation. Comparison of [Glu]Pg and [Lys]Pg activation showed an approximately 12-fold higher affinity of SK for [Lys]Pg that was lysine-binding site dependent and no such dependence for [Glu]Pg. Stopped-flow kinetics of SK binding to fluorescently labeled Pg demonstrated at least two fast steps in the conformational activation pathway. Characterization of the specificity of the conformationally activated SK.[Lys]Pg* complex for tripeptide-p-nitroanilide substrates demonstrated 5-18- and 10-130-fold reduced specificity (k(cat)/K(m)) compared with SK.Pm and Pm, respectively, with differences in K(m) and k(cat) dependent on the P1 residue. The results support a kinetic mechanism in which SK binding and reversible conformational activation occur in a rapid equilibrium, multistep process.  相似文献   

9.
To investigate the biologically active conformation of enkephalin, molecular-dynamics simulations were applied to [Met5]- and [D-Ala2,Met5]-enkephalins. The dynamic trajectory of monomeric extended [Met5]-enkephalin was analysed in terms of relative mobility between respective torsions of backbone chain. After 10 ps of the dynamics simulation, the conformational transition was converged into a stationary state among the beta-bend folded forms, where they are stabilized by several intramolecular hydrogen-bond formations. Similar conformational transition was also observed in the dynamics simulation of [D-Ala2,Met5]enkephalin, which is a more mu-receptor-specific peptide than [Met5]enkephalin. The geometrical correspondence between the monomeric enkephalin conformation in the stationary state and morphine molecule (a mu-specific rigid opiate) was surveyed by virtue of the triangular substructures generated by choosing three functional atoms in each molecule, and good resemblances were observed. On the other hand, the dynamics simulation of the antiparallel extended [Met5]enkephalin dimer showed a trajectory different from that of the monomeric one. Two intermolecular hydrogen bonds at Tyr1 (NH3+)...Met5(CO2-) end residues were held throughout the 100 ps simulation, the dimeric structure being consequently kept. The conformational transition of the backbone chains from the antiparallel extended form to the twisted one took place via an intermediate state. Many conformations revealed during the dynamics simulation showed that the relative orientations of each two Tyr1, Gly3, Phe4 and Met5 residues in the dimer are nearly related by a pseudo-C2-symmetry respectively, and both halves of the dimer structure could be further fitted to the monomeric folded enkephalin conformation. The monomeric and dimeric conformations of enkephalin at their stationary states are discussed in relation to the substrate-specificity for mu- and delta-opioid receptors.  相似文献   

10.
Two RNA sequences, AAA and AUG, were studied by the conformational search program CICADA and by molecular dynamics (MD) in the framework of the AMBER force field, and also via thorough PDB database search. CICADA was used to provide detailed information about conformers and conformational interconversions on the energy surfaces of the above molecules. Several conformational families were found for both sequences. Analysis of the results shows differences, especially between the energy of the single families, and also in flexibility and concerted conformational movement. Therefore, several MD trajectories (altogether 16 ns) were run to obtain more details about both the stability of conformers belonging to different conformational families and about the dynamics of the two systems. Results show that the trajectories strongly depend on the starting structure. When the MD start from the global minimum found by CICADA, they provide a stable run, while MD starting from another conformational family generates a trajectory where several different conformational families are visited. The results obtained by theoretical methods are compared with the thorough database search data. It is concluded that all except for the highest energy conformational families found in theoretical result also appear in experimental data. Registry numbers: adenylyl-(3' --> 5')-adenylyl-(3' --> 5')-adenosine [917-44-2] adenylyl-(3' --> 5')-uridylyl-(3' --> 5')-guanosine [3494-35-7].  相似文献   

11.
A new diterpenoid, limbetazulone (= (3S,4S,4aR,12bS)-1,2,3,4,4a,5,6,11,12,12b-decahydro-3-hydroxy-4-(hydroxymethyl)naphtho[1',2': 5,6]cyclohepta[1,2-b]furan-7(7H)-one; 1), with the very rare 'naphtho[2,1-f]azulene-7-one' skeleton, was isolated from the aerial parts of the Asian medicinal plant Ballota limbeta. Its structure was established by extensive spectroscopic investigations, especially 1D and 2D NMR. X-Ray diffraction studies showed the presence of two conformational isomers (1a and 1b) in the crystal.  相似文献   

12.
K Saito  E Welker  H A Scheraga 《Biochemistry》2001,40(49):15002-15008
The conformational folding of the nativelike intermediate des-[40-95] on the major oxidative folding pathway of bovine pancreatic ribonuclease A (RNase A) has been examined at various pHs and temperatures in the absence of a redox reagent. Des-[40-95] has three of the four disulfide bonds of native RNase A and lacks the bond between Cys40 and Cys95. This three-disulfide species was unfolded at low pH to inhibit any disulfide reshuffling and was refolded at higher pH, allowing both conformational folding and disulfide-reshuffling reactions to take place. As a result of this competition, 15-85% of des-[40-95], depending on the experimental conditions, undergoes intramolecular disulfide-reshuffling reactions. That portion of the des-[40-95] population which has native isomers of essential proline residues appears to fold faster than the disulfide reaction can occur. However, when the folding is retarded, conceivably by the presence of non-native isomers of essential proline residues, des-[40-95] may reshuffle before completing the conformational folding process. These results enable us to distinguish among current models for the critical structure-forming step in oxidative folding and reveal a new model for coupling proline isomerization to disulfide-bond formation. These experiments also demonstrate that the reshuffling-folding competition assay is a useful tool for detecting structured populations in conformational folding intermediates.  相似文献   

13.
The circular dichroic spectra of [Arg8]vasopressin, [Mpr1, Arg8]vasopressin, [Mpr1, D-Arg8]-vasopressin, pressinamide, deaminopressinamide, tocinamide, deaminotocinamide, [Leu4, D-Arg8]-vasotocin, [Mpr1, Leu4, D-Arg8]vasotocin and [Phe2, Lys8]vasopressin have been studied. All these substances showed a characteristic positive dichroic band at about 225 nm due to the presence of tyrosine in sequence position 2. The intensity of this band was affected by interactions between the tyrosine side-chain and other structural elements in the molecule, such as the Na-amino group, the side-chain of phenylalanine in position 3 and the linear C-terminal peptide. Analysis of the response of this band to structural modifications of the molecule and change in the solvent (particularly comparing neutral aqueous solutions with hexafluoroacetone solutions) allowed some conformational conclusions. The linear C-terminal tripeptide is probably situated over the cyclic portion of the molecule both in vasopressin and oxytocin substances. Its steric interaction with the tyrosine side-chain seems to be particularly efficient in molecules containing D-arginine in position 8. In the vasopressin series the stacking interaction of neighbouring aromatic amino acid residues furthermore limits the conformational freedom of the tyrosine side-chain and also probably distorts the dihedral angles of residues 1-3 in comparison with oxytocin. The interactions of phenylalanine and arginine with tyrosine relatively decrease the conformational effects of the primary amino group. Consequently the local conformation of vasopressin in the region of the tyrosine residue is more rigid and less sensitive to changes in medium than that of oxytocin. The circular dichroic spectra did not show any basic conformational differences in the backbone peptide chain of oxytocin and vasopressin substances. A weak negative disulphide band at about 290 nm could be observed in the spectra of both series of substances.  相似文献   

14.
We have shown previously the intercalation geometry of a series of acenaphtho [1,2-b] pyrrole derivatives with DNA double helix in vitro. In this report we chose a couple of intercalating analogues and a Chinese traditional medicine Tanshinone IIA as probes to investigate the response of DNA damage sensor ataxia-telangiectasia mutated (ATM) protein toward the DNA topological change in vivo. The two analogues (1)a (3-(4-Methyl-piperazin)-8-oxo-8H-acenaphtho [1,2-b]pyrrole -9-carbonitrile) and (3)a (3-(3-Dimethylamino-propylamino)-8-oxo-8H-acenaphtho[1,2-b]pyrrole-9- carbonitrile) could unwind double helix to different extents, whereas Tanshinone IIA could wind the double helix. Using a combination of circular dichroism (CD) studies and immunoflurescence assays, we found for the first time that the ATM protein kinase can respond to the unwinding chromatin conformational damage caused by (1)a and (3)a, while it could not be activated by the winding effects caused by Tanshinone IIA. Moreover, the amount of ATM protein phosphorylation is consistent with the degree of unwinding conformational damage. The average number of ATM foci in an MCF-7 cell is 32 +/- 1.5 at 6 microM (1)a, which is significantly higher than the 8 microM (3)a exposure (15 +/- 0.5, p < 0.5). A new couple of DNA topological probes, (1)a and (3)a have been found for the future semi-quantitative investigation of factors involved in the DNA damage pathway.  相似文献   

15.
The autoinhibition/activation of the PMCA (plasma membrane Ca2+-ATPase) involves conformational changes in the membrane region of the protein that affect the amount of lipids directly associated with the transmembrane domain. The lipid-protein-dependence of PMCA isoforms 2 and 4 expressed and obtained in purified form from Saccharomyces cerevisiae was investigated using the phosphatidylcholine analogue [125I]TID-PC/16 {l-O-hexadecanoyl-2-O-[9-[[[2-[125I]iodo-4-(trifluoromemyl-3H-diazirin-3-yl)benzyl]oxy]carbonyl]nonanoyl]-sn-glycero-3-phosphocholine}, which was incorporated into mixtures of dimyristoylphosphatidylcholine and the non-ionic detergent C12E10 [deca(ethylene glycol) dodecyl ether]. We found no differences between the recombinant PMCA4 and PMCA purified from erythrocytes (ePMCA). However, titration of the half-maximal activation by Ca2+/calmodulin of PMCA2 showed 30-fold higher affinity than PMCA4. PMCA2 exhibited a lower level of labelling in the autoinhibited conformation relative to PMCA4, indicating that the lower autoinhibition was correlated with a lower exposure to lipids in the autoinhibited state. Analysis of the lipid-protein stoichiometry showed that the lipid annulus of PMCA varies: (i) in accordance to the conformational state of the enzyme; and (ii) depending on the different isoforms of PMCA. PMCA2 during Ca2+ transport changes its conformation to a lesser extent than PMCA4, an isoform more sensitive to modulation by calmodulin and acidic phospholipids. This is the first demonstration of a dynamic behaviour of annular lipids and PMCA.  相似文献   

16.
The two C-2 monodeuterated isomers of L-carnitine were synthesized by enzymatic hydration of crotonobetaine in D2O and by enzymatic proton exchange of L-[2-2H2]carnitine in H2O. These reactions, catalyzed by an induced Escherichia coli carnitine hydrolyase proceed stereospecifically. The two isomers of L-[2-2H]carnitine were examined by 1H NMR at 500 MHz, which allowed us to independently monitor the pD dependence and coupling constants of the H-2 protons. The results obtained indicate that there is little effect of the carboxyl charge on the conformational state(s) of L-carnitine about the C-2/C-3 bond. The NMR data obtained in this study do not support previous solution studies of the pH-dependent conformational changes for DL-carnitine nor the proposed conformation of O-acetyl-DL-carnitine in the crystalline state.  相似文献   

17.
Streptokinase (SK) activates human fibrinolysis by inducing non-proteolytic activation of the serine proteinase zymogen, plasminogen (Pg), in the SK.Pg* catalytic complex. SK.Pg* proteolytically activates Pg to plasmin (Pm). SK-induced Pg activation is enhanced by lysine-binding site (LBS) interactions with kringles on Pg and Pm, as evidenced by inhibition of the reactions by the lysine analogue, 6-aminohexanoic acid. Equilibrium binding analysis and [Lys]Pg activation kinetics with wild-type SK, carboxypeptidase B-treated SK, and a COOH-terminal Lys414 deletion mutant (SKDeltaK414) demonstrated a critical role for Lys414 in the enhancement of [Lys]Pg and [Lys]Pm binding and conformational [Lys]Pg activation. The LBS-independent affinity of SK for [Glu]Pg was unaffected by deletion of Lys414. By contrast, removal of SK Lys414 caused 19- and 14-fold decreases in SK affinity for [Lys]Pg and [Lys]Pm binding in the catalytic mode, respectively. In kinetic studies of the coupled conformational and proteolytic activation of [Lys]Pg, SKDeltaK414 exhibited a corresponding 17-fold affinity decrease for formation of the SKDeltaK414.[Lys]Pg* complex. SKDeltaK414 binding to [Lys]Pg and [Lys]Pm and conformational [Lys]Pg activation were LBS-independent, whereas [Lys]Pg substrate binding and proteolytic [Lys]Pm generation remained LBS-dependent. We conclude that binding of SK Lys414 to [Lys]Pg and [Lys]Pm kringles enhances SK.[Lys]Pg* and SK.[Lys]Pm catalytic complex formation. This interaction is distinct structurally and functionally from LBS-dependent Pg substrate recognition by these complexes.  相似文献   

18.
Ganesh S  Jayakumar R 《Biopolymers》2003,70(3):336-345
Self-assembly of two tripeptide derivatives containing three nonpolar isoleucine moieties and polar oxyethylene groups are studied in methanol. Peptide A [CH3(OCH2CH2)3OCH2CO(Ile)3OCH3] and peptide B [CH3(OCH2CH2)3OCH2CO(Ile)3NH (CH2CH2O)3CH3] take a mixture of unordered and helical conformation at low concentration (8.5 x 10(-4) M). However, at high concentration (2 x 10(-3) M), both the peptide showed significant increase in the helical conformation. An interesting conformational transition of peptides A and B at various methanol contents was observed in the solvated films of these compounds by spectroscopic methods like the far-uv circular dichroism and Fourier transform infrared (FT-IR) techniques. Peptide B, which contains more polar oxyethylene groups than A, showed a highly cooperative conformational transition when the methanol content was decreased. This transition was characterized by a large increase of beta-sheet, retaining a alpha-helical contribution. Peptide A showed a conformational transition resulting in a beta-sheet in the aggregated state. From the CD spectra, the ratio in the ellipticity indicates that peptide B forms twisted antiparallel beta-sheet conformation, whereas peptide A takes a parallel beta-sheet conformation. The results obtained in this work indicates the role of polar derivatization on the conformational preference of peptides having similar sequence.  相似文献   

19.
We recorded (13)C NMR spectra of [3-(13)C]Ala- and [1-(13)C]Val-labeled bacteriorhodopsin (bR) and a variety of its mutants, E9Q, E74Q, E194Q/E204Q (2Glu), E9Q/E194Q/E204Q (3Glu), and E9Q/E74Q/E194Q/E204Q (4Glu), to clarify contributions of the extracellular (EC) Glu residues to the conformation and dynamics of bR. Replacement of Glu-9 or Glu-74 and Glu-194/204 at the EC surface by glutamine(s) induced significant conformational changes in the cytoplasmic (CP) surface structure. These changes occurred in the C-terminal alpha-helix and loops, and also those of the EC surface, as viewed from (13)C NMR spectra of [3-(13)C]Ala- and [1-(13)C]Val-labeled proteins. Additional conformational changes in the transmembrane alpha-helices were induced as modified retinal-protein interactions for multiple mutants involving the E194Q/E204Q pair. Significant dynamic changes were induced for the triple or quadruple mutants, as shown by broadened (13)C NMR peaks of [1-(13)C]Val-labeled proteins. These changes were due to acquired global fluctuation motions of the order of 10(-4)-10(-5) s as a result of disorganized trimeric form. In such mutants (13)C NMR signals from Val residues of [1-(13)C]Val-labeled triple and quadruple mutants near the CP and EC surfaces (including 8.7-A depth from the surface) were substantially suppressed, as shown by comparative (13)C NMR studies with and without 40 micro M Mn(2+) ion. We conclude that these Glu residues at the EC surface play an important role in maintaining the native secondary structure of bR in the purple membrane.  相似文献   

20.
Circular dichroism spectroscopy was used to investigate the structure of bovine prothrombin fragment 1 (BF1) and related proteins in several environments. The conformational change induced in BF1 by the addition of Mg[II] ions was found to be different from that induced by Ca[II] or Sr[II]. The Ca[II] and Sr[II] conformations appear to differ only slightly from the apo-metal conformation. The conformation of the 1-45 fragment of prothrombin, however, is markedly different than the conformation of the same fragment in the presence of either Ca[II] of Mg[II]; both of the latter structures differ substantially from one another. The presence of phospholipids has almost no effect on the structure of either BF1 or the 1-45 fragment; in the presence of both phospholipids and Ca[II] a structural change is seen for the 1-45 fragment but not BF1 (relative to the protein alone). The addition of phospholipids to the Mg[II]/BF1 structure did not induce a CD-detectable conformational change, while the addition of phospholipids to the Ca[II]/BF1 or Sr[II]/BF1 structures induced a change to a conformation similar in secondary structure composition to the relative apometal structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号