首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Heterotrimeric G proteins are crucial for asymmetric cell division, but the mechanisms of signal activation remain poorly understood. Here, we establish that the evolutionarily conserved protein RIC-8 is required for proper asymmetric division of one-cell stage C. elegans embryos. Spindle severing experiments demonstrate that RIC-8 is required for generation of substantial pulling forces on astral microtubules. RIC-8 physically interacts with GOA-1 and GPA-16, two Galpha subunits that act in a partially redundant manner in one-cell stage embryos. RIC-8 preferentially binds to GDP bound GOA-1 and is a guanine nucleotide exchange factor (GEF) for GOA-1. Our analysis suggests that RIC-8 acts before the GoLoco protein GPR-1/2 in the sequence of events leading to Galpha activation. Furthermore, coimmunoprecipitation and in vivo epistasis demonstrate that inactivation of the Gbeta subunit GPB-1 alleviates the need for RIC-8 in one-cell stage embryos. Our findings suggest a mechanism in which RIC-8 favors generation of Galpha free from Gbetagamma and enables GPR-1/2 to mediate asymmetric cell division.  相似文献   

2.
Understanding of the mechanisms governing spindle positioning during asymmetric division remains incomplete. During unequal division of one-cell stage C. elegans embryos, the Galpha proteins GOA-1 and GPA-16 act in a partially redundant manner to generate pulling forces along astral microtubules. Previous work focused primarily on GOA-1, whereas the mechanisms by which GPA-16 participates in this process are not well understood. Here, we report that GPA-16 is present predominantly at the cortex of one-cell stage embryos. Using co-immunoprecipitation and surface plasmon resonance binding assays, we find that GPA-16 associates with RIC-8 and GPR-1/2, two proteins known to be required for pulling force generation. Using spindle severing as an assay for pulling forces, we demonstrate that inactivation of the Gbeta protein GPB-1 renders GPA-16 and GOA-1 entirely redundant. This suggests that the two Galpha proteins can activate the same pathway and that their dual presence is normally needed to counter Gbetagamma. Using nucleotide exchange assays, we establish that whereas GPR-1/2 acts as a guanine nucleotide dissociation inhibitor (GDI) for GPA-16, as it does for GOA-1, RIC-8 does not exhibit guanine nucleotide exchange factor (GEF) activity towards GPA-16, in contrast to its effect on GOA-1. We establish in addition that RIC-8 is required for cortical localization of GPA-16, whereas it is not required for that of GOA-1. Our analysis demonstrates that this requirement toward GPA-16 is distinct from the known function of RIC-8 in enabling interaction between Galpha proteins and GPR-1/2, thus providing novel insight into the mechanisms of asymmetric spindle positioning.  相似文献   

3.
BACKGROUND: Spindle positioning during an asymmetric cell division is of fundamental importance to ensure correct size of daughter cells and segregation of determinants. In the C. elegans embryo, the first spindle is asymmetrically positioned, and this asymmetry is controlled redundantly by two heterotrimeric Galpha subunits, GOA-1 and GPA-16. The Galpha subunits act downstream of the PAR polarity proteins, which control the relative pulling forces acting on the poles. How these heterotrimeric G proteins are regulated and how they control spindle position is still unknown. RESULTS: Here we show that the Galpha subunits are regulated by a receptor-independent mechanism. RNAi depletion of gpr-1 and gpr-2, homologs of mammalian AGS3 and Drosophila PINS (receptor-independent G protein regulators), results in a phenotype identical to that of embryos depleted of both GPA-16 and GOA-1; the first cleavage is symmetric, but polarity is not affected. The loss of spindle asymmetry after RNAi of gpr-1 and gpr-2 appears to be the result of weakened pulling forces acting on the poles. The GPR protein(s) localize around the cortex of one-cell embryos and are enriched at the posterior. Thus, asymmetric G protein regulation could explain the posterior displacement of the spindle. Posterior enrichment is abolished in the absence of the PAR polarity proteins PAR-2 or PAR-3. In addition, LIN-5, a coiled-coil protein also required for spindle positioning, binds to and is required for cortical association of the GPR protein(s). Finally, we show that the GPR domain of GPR-1 and GPR-2 behaves as a GDP dissociation inhibitor for GOA-1, and its activity is thus similar to that of mammalian AGS3. CONCLUSIONS: Our results suggest that GPR-1 and/or GPR-2 control an asymmetry in forces exerted on the spindle poles by asymmetrically modulating the activity of the heterotrimeric G protein in response to a signal from the PAR proteins.  相似文献   

4.
G-protein signaling plays important roles in asymmetric cell division. In C. elegans embryos, homologs of receptor-independent G protein activators, GPR-1 and GPR-2 (GPR-1/2), function together with Galpha (GOA-1 and GPA-16) to generate asymmetric spindle pole elongation during divisions in the P lineage. Although Galpha is uniformly localized at the cell cortex, the cortical localization of GPR-1/2 is asymmetric in dividing P cells. In this report, we show that the asymmetry of GPR-1/2 localization depends on PAR-3 and its downstream intermediate LET-99. Furthermore, in addition to its involvement in spindle elongation, Galpha is required for the intrinsically programmed nuclear rotation event that orients the spindle in the one-cell. LET-99 functions antagonistically to the Galpha/GPR-1/2 signaling pathway, providing an explanation for how Galpha-dependent force is regulated asymmetrically by PAR polarity cues during both nuclear rotation and anaphase spindle elongation. In addition, Galpha and LET-99 are required for spindle orientation during the extrinsically polarized division of EMS cells. In this cell, both GPR-1/2 and LET-99 are asymmetrically localized in response to the MES-1/SRC-1 signaling pathway. Their localization patterns at the EMS/P2 cell boundary are complementary, suggesting that LET-99 and Galpha/GPR-1/2 signaling function in opposite ways during this cell division as well. These results provide insight into how polarity cues are transmitted into specific spindle positions in both extrinsic and intrinsic pathways of asymmetric cell division.  相似文献   

5.
Correct placement and orientation of the mitotic spindle is essential for segregation of localized components and positioning of daughter cells. Although these processes are important in many cells, few factors that regulate spindle placement are known. Previous work has shown that GPB-1, the Gbeta subunit of a heterotrimeric G protein, is required for orientation of early cell division axes in C. elegans embryos. Here we show that GOA-1 (a Galphao) and the related GPA-16 are the functionally redundant Galpha subunits and that GPC-2 is the relevant Ggamma subunit that is required for spindle orientation in the early embryo. We show that Galpha and Gbetagamma are involved in controlling distinct microtubule-dependent processes. Gbetagamma is important in regulating migration of the centrosome around the nucleus and hence in orientating the mitotic spindle. Galpha is required for asymmetric spindle positioning in the one-celled embryo.  相似文献   

6.
Spindle positioning is an essential feature of asymmetric cell division. The conserved PAR proteins together with heterotrimeric G proteins control spindle positioning in animal cells, but how these are linked is not known. In C. elegans, PAR protein activity leads to asymmetric spindle placement through cortical asymmetry of Galpha regulators GPR-1/2. Here, we establish that the casein kinase 1 gamma CSNK-1 and a PIP(2) synthesis enzyme (PPK-1) transduce PAR polarity to asymmetric Galpha regulation. PPK-1 is posteriorly enriched in the one-celled embryo through PAR and CSNK-1 activities. Loss of CSNK-1 causes uniformly high PPK-1 levels, high symmetric cortical levels of GPR-1/2 and LIN-5, and increased spindle pulling forces. In contrast, knockdown of ppk-1 leads to low GPR-1/2 levels and decreased spindle forces. Furthermore, loss of CSNK-1 leads to increased levels of PIP(2). We propose that asymmetric generation of PIP(2) by PPK-1 directs the posterior enrichment of GPR-1/2 and LIN-5, leading to posterior spindle displacement.  相似文献   

7.
Heterotrimeric G-protein Galpha subunits and GoLoco motif proteins are key members of a conserved set of regulatory proteins that influence invertebrate asymmetric cell division and vertebrate neuroepithelium and epithelial progenitor differentiation. GoLoco motif proteins bind selectively to the inhibitory subclass (Galphai) of Galpha subunits, and thus it is assumed that a Galphai.GoLoco motif protein complex plays a direct functional role in microtubule dynamics underlying spindle orientation and metaphase chromosomal segregation during cell division. To address this hypothesis directly, we rationally identified a point mutation to Galphai subunits that renders a selective loss-of-function for GoLoco motif binding, namely an asparagine-to-isoleucine substitution in the alphaD-alphaE loop of the Galpha helical domain. This GoLoco-insensitivity ("GLi") mutation prevented Galphai1 association with all human GoLoco motif proteins and abrogated interaction between the Caenorhabditis elegans Galpha subunit GOA-1 and the GPR-1 GoLoco motif. In contrast, the GLi mutation did not perturb any other biochemical or signaling properties of Galphai subunits, including nucleotide binding, intrinsic and RGS protein-accelerated GTP hydrolysis, and interactions with Gbetagamma dimers, adenylyl cyclase, and seven transmembrane-domain receptors. GoLoco insensitivity rendered Galphai subunits unable to recruit GoLoco motif proteins such as GPSM2/LGN and GPSM3 to the plasma membrane, and abrogated the exaggerated mitotic spindle rocking normally seen upon ectopic expression of wild type Galphai subunits in kidney epithelial cells. This GLi mutation should prove valuable in establishing the physiological roles of Galphai.GoLoco motif protein complexes in microtubule dynamics and spindle function during cell division as well as to delineate potential roles for GoLoco motifs in receptor-mediated signal transduction.  相似文献   

8.
Hess HA  Röper JC  Grill SW  Koelle MR 《Cell》2004,119(2):209-218
Heterotrimeric G proteins promote microtubule forces that position mitotic spindles during asymmetric cell division in C. elegans embryos. While all previously studied G protein functions require activation by seven-transmembrane receptors, this function appears to be receptor independent. We found that mutating a regulator of G protein signaling, RGS-7, resulted in hyperasymmetric spindle movements due to decreased force on one spindle pole. RGS-7 is localized at the cell cortex, and its effects require two redundant Galphao-related G proteins and their nonreceptor activators RIC-8 and GPR-1/2. Using recombinant proteins, we found that RIC-8 stimulates GTP binding by Galphao and that the RGS domain of RGS-7 stimulates GTP hydrolysis by Galphao, demonstrating that Galphao passes through the GTP bound state during its activity cycle. While GTPase activators typically inactivate G proteins, RGS-7 instead appears to promote G protein function asymmetrically in the cell, perhaps acting as a G protein effector.  相似文献   

9.
Miller KG  Rand JB 《Genetics》2000,156(4):1649-1660
RIC-8 (synembryn) and GOA-1 (G(o)alpha) are key components of a signaling network that regulates neurotransmitter secretion in Caenorhabditis elegans. Here we show that ric-8 and goa-1 reduction of function mutants exhibit partial embryonic lethality. Through Nomarski analysis we show that goa-1 and ric-8 mutant embryos exhibit defects in multiple events that involve centrosomes, including one-cell posterior centrosome rocking, P(1) centrosome flattening, mitotic spindle alignment, and nuclear migration. In ric-8 reduction of function backgrounds, the embryonic lethality, spindle misalignments and delayed nuclear migration are strongly enhanced by a 50% reduction in maternal goa-1 gene dosage. Several other microfilament- and microtubule-mediated events, as well as overall embryonic polarity, appear unperturbed in the mutants. In addition, our results suggest that RIC-8 and GOA-1 do not have roles in centrosome replication, in the diametric movements of daughter centrosomes along the nuclear membrane, or in the extension of microtubules from centrosomes. Through immunostaining we show that GOA-1 (G(o)alpha) localizes to cell cortices as well as near centrosomes. Our results demonstrate that two components of a neuronal signal transduction pathway also play a role in centrosome movements during early embryogenesis.  相似文献   

10.
Mitotic spindle positioning in the Caenorhabditis elegans zygote involves microtubule-dependent pulling forces applied to centrosomes. In this study, we investigate the role of actomyosin in centration, the movement of the nucleus-centrosome complex (NCC) to the cell center. We find that the rate of wild-type centration depends equally on the nonmuscle myosin II NMY-2 and the Galpha proteins GOA-1/GPA-16. In centration- defective let-99(-) mutant zygotes, GOA-1/GPA-16 and NMY-2 act abnormally to oppose centration. This suggests that LET-99 determines the direction of a force on the NCC that is promoted by Galpha signaling and actomyosin. During wild-type centration, NMY-2-GFP aggregates anterior to the NCC tend to move further anterior, suggesting that actomyosin contraction could pull the NCC. In GOA-1/GPA-16-depleted zygotes, NMY-2 aggregate displacement is reduced and largely randomized, whereas in a let-99(-) mutant, NMY-2 aggregates tend to make large posterior displacements. These results suggest that Galpha signaling and LET-99 control centration by regulating polarized actomyosin contraction.  相似文献   

11.
Heterotrimeric G-proteins are integral to a conserved regulatory module that influences metazoan asymmetric cell division (ACD). In the Caenorhabditis elegans zygote, GOA-1 (Galpha(o)) and GPA-16 (Galpha(i)) are involved in generating forces that pull on astral microtubules and position the spindle asymmetrically. GPA-16 function has been analyzed in vivo owing notably to a temperature-sensitive allele gpa-16(it143), which, at the restrictive temperature, results in spindle orientation defects in early embryos. Here we identify the structural basis of gpa-16(it143), which encodes a point mutation (G202D) in the switch II region of GPA-16. Using Galpha(i1)(G202D) as a model in biochemical analyses, we demonstrate that high temperature induces instability of the mutant Galpha. At the permissive temperature, the mutant Galpha was stable upon GTP binding, but switch II rearrangement was compromised, as were activation state-selective interactions with regulators involved in ACD, including GoLoco motifs, RGS proteins, and RIC-8. We solved the crystal structure of the mutant Galpha bound to GDP, which indicates a unique switch II conformation as well as steric constraints that suggest activated GPA-16(it143) is destabilized relative to wild type. Spindle severing in gpa-16(it143) embryos revealed that pulling forces are symmetric and markedly diminished at the restrictive temperature. Interestingly, pulling forces are asymmetric and generally similar in magnitude to wild type at the permissive temperature despite defects in the structure of GPA-16(it143). These normal pulling forces in gpa-16(it143) embryos at the permissive temperature were attributable to GOA-1 function, underscoring a complex interplay of Galpha subunit function in ACD.  相似文献   

12.
G protein signaling pathways regulate mitotic spindle positioning during cell division in many systems. In Caenorhabditis elegans embryos, Gα subunits act with the positive regulators GPR-1/2 and LIN-5 to generate cortical pulling forces for posterior spindle displacement during the first asymmetric division. GPR-1/2 are asymmetrically localized at the posterior cortex by PAR polarity cues at this time. Here we show that LIN-5 colocalizes with GPR-1/2 in one-cell embryos during spindle displacement. Significantly, we also find that LIN-5 and GPR-1/2 are localized to the opposite, anterior cortex in a polarity-dependent manner during the nuclear centration and rotation movements that orient the forming spindle onto the polarity axis. The depletion of LIN-5 or GPR-1/2 results in decreased centration and rotation rates, indicating a role in force generation at this stage. The localization of LIN-5 and GPR-1/2 is largely interdependent and requires Gα. Further, LIN-5 immunoprecipitates with Gα in vivo, and this association is GPR-1/2 dependent. These results suggest that a complex of Gα/GPR-1/2/LIN-5 is asymmetrically localized in response to polarity cues, and this may be the active signaling complex that transmits asymmetries to the force generation machinery during both nuclear rotation and spindle displacement.  相似文献   

13.
Wilkie TM  Kinch L 《Current biology : CB》2005,15(20):R843-R854
Large G protein alpha subunits and their attendant regulators of G-protein signaling (RGS) proteins control both intercellular signaling and asymmetric cell divisions by distinct pathways. The classical pathway, found throughout higher eukaryotic organisms, mediates intercellular communication via hormone binding to G-protein-coupled receptors (GPCRs). Recent studies have led to the discovery of GPCR-independent activation of Galpha subunits by the guanine nucleotide exchange factor RIC-8 in both asymmetric cell division and synaptic vesicle priming in metazoan organisms. Protein-protein interactions and protein function in each pathway are driven through the cycle of GTP binding and hydrolysis by the Galpha subunit. This review builds a conceptual framework for understanding RIC-8-mediated pathways by comparison with the mechanism of classical G-protein activation and inhibition in GPCR signaling.  相似文献   

14.
Despite being essential for spatial cell division control, the mechanisms governing spindle positioning remain incompletely understood. In the Caenorhabditis elegans one-cell stage embryo, the spindle becomes asymmetrically positioned during anaphase through the action of as-yet unidentified cortical force generators that pull on astral microtubules and that depend on two G alpha proteins and associated proteins. We performed spindle-severing experiments following temporally restricted gene inactivation and drug exposure, and established that microtubule dynamics and dynein are both required for generating efficient pulling forces. We found that the G alpha-associated proteins GPR-1/2 and LIN-5 interact in vivo with LIS-1, a component of the dynein complex. Moreover, we discovered that the LIN-5, GPR-1/2 and the G alpha proteins promote the presence of the dynein complex at the cell cortex. Our findings suggest a mechanism by which the G alpha proteins enable GPR-1/2 and LIN-5 recruitment to the cortex, thus ensuring the presence of cortical dynein. Together with microtubule dynamics, this allows pulling forces to be exerted and proper cell division to be achieved.  相似文献   

15.
Asymmetric cell division is an evolutionarily conserved process that gives rise to daughter cells with different fates. In one-cell stage C. elegans embryos, this process is accompanied by asymmetric spindle positioning, which is regulated by anterior-posterior (A-P) polarity cues and driven by force generators located at the cell membrane. These force generators comprise two Gα proteins, the coiled-coil protein LIN-5 and the GoLoco protein GPR-1/2. The distribution of GPR-1/2 at the cell membrane is asymmetric during mitosis, with more protein present on the posterior side, an asymmetry that is thought to be crucial for asymmetric spindle positioning. The mechanisms by which the distribution of components such as GPR-1/2 is regulated in time and space are incompletely understood. Here, we report that the distribution of the Gβ subunit GPB-1, a negative regulator of force generators, varies across the cell cycle, with levels at the cell membrane being lowest during mitosis. Furthermore, we uncover that GPB-1 trafficks through the endosomal network in a dynamin- and RAB-5-dependent manner, which is most apparent during mitosis. We find that GPB-1 trafficking is more pronounced on the anterior side and that this asymmetry is regulated by A-P polarity cues. In addition, we demonstrate that GPB-1 depletion results in the loss of GPR-1/2 asymmetry during mitosis. Overall, our results lead us to propose that modulation of Gβ trafficking plays a crucial role during the asymmetric division of one-cell stage C. elegans embryos.  相似文献   

16.
Asymmetric division of Drosophila neuroblasts (NBs) and the Caenorhabditis elegans zygote uses polarity cues provided by the Par proteins, as well as heterotrimeric G-protein-signalling that is activated by a receptor-independent mechanism mediated by GoLoco/GPR motif proteins. Another key component of this non-canonical G-protein activation mechanism is a non-receptor guanine nucleotide-exchange factor (GEF) for Galpha, RIC-8, which has recently been characterized in C. elegans and in mammals. We show here that the Drosophila Ric-8 homologue is required for asymmetric division of both NBs and pl cells. Ric-8 is necessary for membrane targeting of Galphai, Pins and Gbeta13F, presumably by regulating multiple Galpha subunit(s). Ric-8 forms an in vivo complex with Galphai and interacts preferentially with GDP-Galphai, which is consistent with Ric-8 acting as a GEF for Galphai. Comparisons of the phenotypes of Galphai, Ric-8, Gbeta13Fsingle and Ric-8;Gbeta13F double loss-of-function mutants indicate that, in NBs, Ric-8 positively regulates Gai activity. In addition, Gbetagamma acts to restrict Galphai (and GoLoco proteins) to the apical cortex, where Galphai (and Pins) can mediate asymmetric spindle geometry.  相似文献   

17.
At anaphase, the mitotic spindle positions the cytokinesis furrow [1]. Two populations of spindle microtubules are implicated in cytokinesis: radial microtubule arrays called asters and bundled nonkinetochore microtubules called the spindle midzone [2-4]. In C. elegans embryos, these two populations of microtubules provide two consecutive signals that position the cytokinesis furrow: The first signal is positioned midway between the microtubule asters; the second signal is positioned over the spindle midzone [5]. Evidence for two cytokinesis signals came from the identification of molecules that block midzone-positioned cytokinesis [5-7]. However, no molecules that are only required for, and thus define, the molecular pathway of aster-positioned cytokinesis have been identified. With RNAi screening, we identify LET-99 and the heterotrimeric G proteins GOA-1/GPA-16 and their regulator GPR-1/2 [10-12] in aster-positioned cytokinesis. By using mechanical spindle displacement, we show that the anaphase spindle positions cortical LET-99, at the site of the presumptive cytokinesis furrow. LET-99 enrichment at the furrow depends on the G proteins. GPR-1 is locally reduced at the site of cytokinesis-furrow formation by LET-99, which prevents accumulation of GPR-1 at this site. We conclude that LET-99 and the G proteins define a molecular pathway required for aster-positioned cytokinesis.  相似文献   

18.
The position of the mitotic spindle plays a key role in spatial control of cell division. It is generally believed that when a spindle is positioned asymmetrically in a dividing cell, the resulting daughter cells are usually unequal in size due to eccentric cleavage of the mother cell. Molecular mechanisms underlying the generation of unequal sized daughter cells have been extensively studied in Drosophila neuroblast and Caenorhabditis elegans zygote where the Gα subunit of the heterotrimeric G proteins and its binding partner - Pins in Drosophila and GPR-1/2 in C. elegans - are shown to be critical in governing spindle positioning and asymmetric cleavage of the mother cell. In mammalian system, although Gα and LGN (mammalian Pins homolog) are also required for spindle orientation, whether they can mediate asymmetric spindle positioning or asymmetric cleavage of the mother cell is not known. Here, by artificially targeting Gαi to the apical cortex in 3-D cultured MDCK cells, we established a system where asymmetric spindle positioning can be consistently induced. Interestingly, this asymmetrically positioned spindle does not lead to asymmetric cleavage; instead it results in equal sized daughter cells. Live cell time-lapse analysis revealed that anaphase spindle elongation compensated the original asymmetric spindle positioning. Our findings demonstrate that asymmetric spindle positioning does not necessarily lead to unequal sized daughter cells in mammalian system. We discuss potential mechanisms in generating unequal sized daughter cells.  相似文献   

19.
In C. elegans, a G(o)/G(q) signaling network regulates locomotion and egg laying [1-8]. Genetic analysis shows that activated Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) is suppressed by perturbations of this network, which include loss of the GOA-1 G(o)alpha, DGK-1 diacylglycerol kinase, EAT-16 G protein gamma subunit-like (GGL)-containing RGS protein, or an unidentified protein encoded by the gene eat-11 [9]. We cloned eat-11 and report that it encodes the Gbeta(5) ortholog GPB-2. Gbeta(5) binds specifically to GGL-containing RGS proteins, and the Gbeta(5)/RGS complex can promote the GTP-hydrolyzing activity of Galpha subunits [10, 11]. However, little is known about how this interaction affects G protein signaling in vivo. In addition to EAT-16, the GGL-containing RGS protein EGL-10 participates in G(o)/G(q) signaling; EGL-10 appears to act as an RGS for the GOA-1 G(o)alpha, while EAT-16 appears to act as an RGS for the EGL-30 G(q)alpha [4, 5]. We have combined behavioral, electrophysiological, and pharmacological approaches to show that GPB-2 is a central member of the G(o)/G(q) network and that GPB-2 may interact with both the EGL-10 and EAT-16 RGS proteins to mediate the opposing activities of G(o)alpha and G(q)alpha. These interactions provide a mechanism for the modulation of behavior by antagonistic G protein networks.  相似文献   

20.
Cell divisions are sometimes oriented by extrinsic signals, by mechanisms that are poorly understood. Proteins containing TPR and GoLoco-domains (C. elegans GPR-1/2, Drosophila Pins, vertebrate LGN and AGS3) are candidates for mediating mitotic spindle orientation by extrinsic signals, but the mechanisms by which TPR-GoLoco proteins may localize in response to extrinsic cues are not well defined. The C. elegans TPR-GoLoco protein pair GPR-1/2 is enriched at a site of contact between two cells - the endomesodermal precursor EMS and the germline precursor P(2) - and both cells align their divisions toward this shared cell-cell contact. To determine whether GPR-1/2 is enriched at this site within both cells, we generated mosaic embryos with GPR-1/2 bearing a different fluorescent tag in different cells. We were surprised to find that GPR-1/2 distribution is symmetric in EMS, where GPR-1/2 had been proposed to function as an asymmetric cue for spindle orientation. Instead, GPR-1/2 is asymmetrically distributed only in P(2). We demonstrate a role for normal GPR-1/2 localization in P(2) division orientation. We show that MES-1/Src signaling plays an instructive role in P(2) for asymmetric GPR-1/2 localization and normal spindle orientation. We ruled out a model in which signaling localizes GPR-1/2 by locally inhibiting LET-99, a GPR-1/2 antagonist. Instead, asymmetric GPR-1/2 distribution is established by destabilization at one cell contact, diffusion, and trapping at another cell contact. Once the mitotic spindle of P(2) is oriented normally, microtubule-dependent removal of GPR-1/2 prevented excess accumulation, in an apparent negative-feedback loop. These results highlight the role of dynamic TPR-GoLoco protein localization as a key mediator of mitotic spindle alignment in response to instructive, external cues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号