首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Chromatin structure was studied in nuclei of the endosperm of durum wheat (Triticum durum Desf., cv. Creso), where a large number of cells undergo chromosome endoreduplication during caryopsis development. Optical density profiles of interphase nuclei at different ploidy levels after Feulgen staining were determined cytophotometrically. It was observed that, within each development stage, polyploid nuclei (6–12C and 12–24C) show more condensed chromatin than euploid nuclei (3–6C): this should indicate that endoreduplication is accompanied by some reduction of nuclear activity. Within the same ploidy level, 3–6C and 6–12C nuclei become increasingly condensed with development (except for the last stage), while 12-24C nuclei are identical at all stages. DNA methylation at different stages of caryopsis development was then analyzed in genomic DNA, highly repeated sequences and ribosomal DNA, by digestion with cytosine-methylation-sensitive restriction enzymes. We observed that (i), depending on the enzyme, DNA from caryopses may show higher mean length than DNA from shoot apices and variations occur during endosperm development; (ii) highly repeated DNA sequences also show some variation in base methylation between apices and endosperms and among endosperm development stages, even though to a lesser extent than genomic DNA; (iii) rDNA shows variations only between endosperm and apices while no variation was observed among endosperm development stages in relation to chromosome endoreduplication. Our data may be explained by assuming the occurrence, during endosperm development, of processes of chromatin condensation possibly involved in silencing the activity of extra copies of DNA resulting from chromosome endoreduplication. At least in part, DNA methylation is involved in the process of chromatin condensation. rDNA shows no variation during endosperm development: this suggests that rDNA copies are actively transcribed in both triploid and endoreduplicated nuclei.  相似文献   

2.
We have analysed the chromosome organization in endosperm and embryo of bread wheat (Triticum aestivum L.), in order to compare these tissues with developing anthers, in which the centromeres associate, and the developing root xylem vessel cells, in which the chromosomes endoreduplicate to become polytene and associate via their centromeres. Both endosperm and embryo showed a typical Rabl configuration and a degree of non-homologous centromere association and the endosperm also showed extensive telomere association. Wheat endosperm is initially triploid and during its development a percentage of the nuclei increase their DNA content to 6C and 12C. 6C nuclei showed twice as many centromeres as 3C nuclei and the centromere number increased further in 12C nuclei. The higher the C-content of a nucleus the more the telomeres associated in endosperm. The vast majority of 12C nuclei showed six rye chromosome arms, although a few showed three associated groups of rye chromosome arms. This means that during endosperm development wheat nuclei show both polyploidization and polytenization.  相似文献   

3.
Examination of the embryo and endosperm development in triploidChondrilla juncea L. (2n=15) from Poland confirmed the occurrence of autonomous apomixis in this species. Numerous degenerated embryos were formed which might be one of the factors which increased the observed seed sterility. In addition, twin embryos were often found at young developmental stages and in germinating seeds. Endosperm developed from polar nuclei or from the secondary nucleus. These processes have been proved by counting chromosome numbers in early developmental stages of the endosperm. The problems of the prevailing type of endosperm (nuclear or cellular), the correlation of embryo and endosperm development and the period of cellularization of nuclear endosperm have remained unsolved.  相似文献   

4.
B. M. Kapoor 《Genetica》1966,37(1):557-568
A study of the cytology of endosperm ofPisum sativum, pea, fixed at different stages of development reveals that it remains free nuclear throughout its entire life. The nuclei are extremely polymorphic and differ in size from each other. The nuclei increase proportionately in size with the advancement in endosperm age.The haploid chromosome number of the taxon was verified asn=7. The endosperm nuclei were normally triploid with 3n=21 chromosomes, but higher polyploidy (6n and 12n) and aneuploidy were also recorded in small proportions. Nuclear fusions and aberrations such as irregular separation of chromosomes, sticky bridges and laggards are believed to be responsible for the origin of polyploid nuclei.Accumulation of mitotic aberrations including bridges and laggards are considered to result in reduced divisional activity thereby leading to endosperm breakdown with the consequent low seed set in some cases.  相似文献   

5.
Summary Facultative heterochromatin occurs not only in certain animals in connection with sex determination but also in members of at least one plant genus,Gagea (Liliaceae s. str.), but here in the course of embryo sac development, fertilization, and endosperm formation. The present contribution intends to provide undebatable photographic and cytometric evidence, previously not available, for the events in the course of which three whole genomes in the pentaploid endosperm nuclei ofGagea lutea become heterochroma-tinized. In this plant, embryo sac formation usually follows the Fritillaria type, i.e., the embryo sac is tetrasporic, and a 1 + 3 position of the spore nuclei is followed by a mitosis in which the three chalazal spindles fuse and two triploid nuclei are formed. A triploid chalazal polar nucleus is derived from one of these, which contributes to the pentaploid endosperm. These nuclei in the chalazal part of the embryo sac show stronger condensation compared with the micropylar ones. The pycnosis of the triploid polar nucleus is maintained and even enhanced during endosperm proliferation, while the micropylar polar nucleus and the sperm nucleus maintain their euchromatic condition. The origin of the heterochromatic masses in the endosperm nuclei from the three chalazal genomes of the central cell is unambiguously evident from the distribution of heterochromatic chromosomes in the first endosperm mitosis and the following interphase. DNA content measurements confirm a 3 2 relationship of heterochromatic and euchromatic chromosome sets, which is usually maintained up to the cellularized endosperm. Pycnotic nuclei in the chalazal part of megagametophytes are characteristic of several embryo sac types, but only forGagea spp. it is documented that such nuclei can take part in fertilization and endosperm formation.Dedicated to Professor Walter Gustav Url on the occasion of his 70th birthday  相似文献   

6.
The reproduction system inSpiranthes sinensis (Orchidaceae), collected at various localities in Japan, was revealed to be of a peculiar new type which is not to be found in other angiosperms. None of generative cell nuclei has been observed to dividede novo throughout the progamic phase, although they do participate in fertilization. Neither fertilization of the generative cell nucleus with the central nucleus nor formation of endosperm occurred in this plant. Although the chromosome number in the developing proembryonic cells numbered 2n=30, exhibiting diploidy, the number of marker chromosomes was equal to the sum of half the number of marker chromosomes of the parental clones. From the results described above, we may conclude that the reproduction system of this species represents a new type of single fertilization (non-double fertilization) between egg cell and sperm cell nuclei caused by the omission of generative cell division and the formation of only one sperm cell nucleus.  相似文献   

7.
We describe in this report a novel class of mutants that should facilitate the identification of genes required for progression through the mitotic cell cycle during seed development in angiosperms. Three non-allelic titan ( ttn ) mutants with related but distinct phenotypes are characterized. The common feature among these mutants is that endosperm nuclei become greatly enlarged and highly polyploid. The mutant embryo is composed of a few giant cells in ttn1 , several small cells in ttn2 , and produces a normal plant in ttn3 . Condensed chromosomes arrested at prophase of mitosis are found in the free nuclear endosperm of ttn1 and ttn2 seeds. Large mitotic figures with excessive numbers of chromosomes are visible in ttn3 endosperm. The ttn1 mutation appears to disrupt cytoskeletal organization because endosperm nuclei fail to migrate to the chalazal end of the seed. How double fertilization leads to the establishment of distinct patterns of mitosis and cytokinesis in the embryo and endosperm is a central question in plant reproductive biology. Molecular isolation of TITAN genes should help to answer this question, as well as related issues concerning cell cycle regulation, chromosome movement and endosperm identity in angiosperms.  相似文献   

8.
Cytological observations on the endosperm ofZephyranthes grandiflora have shown that the endosperm is triploid in general, with 3n=36 chromosomes, but that nuclei of higher polyploidy also occur. Wall formation started at 7 days after pollination and the 9 day old endosperm was completely cellular. Maximum variation in size and shape of nuclei was recorded in the 8 day old endosperm. No, similar variation was observed in the root tip nuclei. Polyploidy by endomitosis, and probably also by fusion of nuclei, together with aneuploidy may be responsible for the nuclear variation in the endosperm. The low seed setting has been attributed to the failure of endosperm resulting from the mitotic irregularities which characterized the collapsing endosperm.  相似文献   

9.
 The nuclear DNA content (ploidy level) of maize leaf-epidermal cells was investigated by Feulgen cytophotometry in two lines, Illinois High Protein (IHP) and Illinois Low Protein (ILP), their reciprocal hybrids, and their F2s. Epidermal cells have a 2C, 4C or 8C nuclear DNA content. The mean DNA content per nucleus in IHP was significantly higher than in ILP; the mean DNA content per nucleus in hybrids was intermediate between the parental lines, and the same DNA content was measured in reciprocal crosses. In F2s the same mean DNA content as in F1s was observed but with larger variability than in the F1, possibly indicating genetic segregation. It is inferred that the ploidy level in the leaf epidermis is inherited, and incomplete dominance occurs in hybrids. The same behaviour in the different genotypes was observed for epidermal cell-surface area, except that an increase of mean surface area occurred in the F1, probably due to heterotic effects. The difference in the accumulation of 4C and 8C nuclei in leaf epidermis parallels that reported between two genotypes for the endosperm tissue: to the greater chromosome endoreduplication found in the endosperm there were correspondingly higher frequencies of 4C and 8C nuclei in the leaf epidermis, indicating a higher general tendency to chromosome endoreduplication in IHP than in ILP. It is suggested that the accumulation of 4C nuclei (G2-block) in the leaf epidermis may be regarded as the initial step of chromosome endoreduplication, the two phenomena being related to the control of the sequence DNA synthesis-mitosis, possibly involving the same genes in both endosperm and leaf. However, the inheritance of DNA content per nucleus in epidermal tissue seems to be different from that observed in endosperm tissue of the same genotypes, suggesting that differences may occur in the regulation of the activity of these genes. Received: 19 November 1996 / Accepted: 29 November 1996  相似文献   

10.
玉兰减数分裂观察及染色体构型分析   总被引:2,自引:1,他引:1  
采用去壁低渗方法,观察研究了玉兰Magnolia denudata有丝分裂和减数分裂的细胞学特征。实验结果证实玉兰存在两种染色体倍性,即2n=4x=76和2n=6x=114。通常,在木兰属甚至整个木兰科每个物种只具有一种染色体数目。玉兰有丝分裂间期核为复杂染色中心型,其中期染色体较小。玉兰在减数分裂中期I的构型表现出多样性,其中最主要的特点是比同源多倍体预期的二价体出现的频率更高些,其次是在减数分裂中期I可以观察到1或2个环状和(或)链状六价体。这些特征与同源异源六倍体或部分的异源六倍体种北美红杉Sequ  相似文献   

11.
Abnormal mitosis occurs in maize tapetum, producing binucleate cells that later disintegrate, following a pattern of programmed cell death. FISH allowed us to observe chromosome nondisjunction and micronucleus formation in binucleate cells, using DNA probes specific to B chromosomes (B's), knobbed chromosomes, and the chromosome 6 (NOR) of maize. All chromosome types seem to be involved in micronucleus formation, but the B's form more micronuclei than do knobbed chromosomes and knobbed chromosomes form more than do chromosomes without knobs. Micronuclei were more frequent in 1B plants and in a genotype selected for low B transmission rate. Nondisjunction was observed in all types of FISH-labeled chromosomes. In addition, unlabeled bridges and delayed chromatids were observed in the last telophase before binucleate cell formation, suggesting that nondisjunction might occur in all chromosomes of the maize complement. B nondisjunction is known to occur in the second pollen mitosis and in the endosperm, but it was not previously reported in other tissues. This is also a new report of nondisjunction of chromosomes of the normal set (A's) in tapetal cells. Our results support the conclusion that nondisjunction and micronucleus formation are regular events in the process of the tapetal cell death program, but B's strongly increase A chromosome instability.  相似文献   

12.
Multinucleate (MN) cells were induced in PtK1 cells by colcemid treatment. A large percentage of cells developed nuclear asynchrony both in relation to DNA synthesis and mitosis within one cell cycle. Asynchrony could be traced even in metaphase and anaphase cells in which interphase nuclei, PCC of S-phase nuclei and less condensed prophase-like chromosomes could be observed along with normally condensed chromosomes. The occurrence of such abnormalities in these large MN cells may be explained on the basis of an uneven distribution of inducer molecules of DNA synthesis and mitosis due to cytoplasmic compartmentation. The less condensed form of all the chromosomes except chromosome 4 could be traced in asynchronous metaphase. The failure of the less condensed chromosomes to undergo complete condensation does not always appear to result from late entry of nuclei containing these chromosomes into G2 phase. It is likely that chromosome 4 carries gene(s) for chromosome condensation, as this chromosome itself never appears in a less condensed form. The inducers for chromosome condensation may not always be available at equal concentrations to all chromosomes located in separate nuclei, thus they may sometimes fail to undergo complete condensation before other nuclei reach the end of prophase, when the nuclear envelopes of all nuclei present in the cell break down simultaneously.  相似文献   

13.
Baroux C  Fransz P  Grossniklaus U 《Planta》2004,220(1):38-46
Somatic polyploidization is recognized as a means to increase gene expression levels in highly active metabolic cells. The most common mechanisms are endoreplication, endomitosis and cell fusion. In animals and plants the nuclei of multinucleate cells are usually prevented from fusing. Here, we report that the nuclei from the syncytial cyst of the chalazal endosperm of Arabidopsis thaliana (L.) Heynh. are polyploid with some intermediate ploidy levels that cannot be attributed to endoreplication, suggesting nuclear fusion. Analysis of isolated nuclei, together with fluorescent in situ hybridization (FISH), revealed that nuclei from the chalazal endosperm are two or three times bigger than the nuclei from the peripheral endosperm and have a corresponding increase in ploidy. Together with the consistent observation of adjoined nuclei, we propose that nuclear fusion contributes, at least in part, to the process of polyploidization in the chalazal endosperm. Confocal analysis of intact seeds further suggested that free nuclei from the peripheral endosperm get incorporated into the chalazal cyst and likely participate in nuclear fusions.Abbreviations BAC Bacterial artificial chromosome - CZE Chalazal endosperm - DAPI 4,6-Diamino-2-phenylindole - FISH Fluorescent in situ hybridization - NOR Nucleolar organizing region - NCD Nuclear cytoplasmic domain - PEN Peripheral endosperm  相似文献   

14.
The mature embryo sac is surrounded by endothelium tapetum. It is composed or an egg apparatus, one central cell with secondary nucleus, and 1–6 antipodal cells. About the 6th hour after pollination, female and male nuclei fuse with each other. The syngamy occurred almost simultaneously with the fusion of an other sperm nucleus and the secondary nucleus, but the velocity of the latter is faster than that of the syngamy. The fertilization of Stevia rebaudiana Bertani belongs to the premitotic type. About the 8th hour after pollination, primary endosperm nucleus is in mitosis, its dividing orientation may parallel or at right angle to the long axis of the embryo sac, and gives rise to two initial endosperm cells. The first five divisions of the endosperm cells are of synchronism. At the stage of heart-shaped embryo, the endosperm cells show the signs of digestion and absorbed. The endosperm development is of the cellular type. About the 10th hour after pollination, zygote divides for the first time. The division of the zygote is always transverse. The embryo development conforms to the Asterad type.  相似文献   

15.
The present paper reports the early development of embryo and endosperm of Paeonia lactiflora. The main conclusions are as follows: 1 The zygote nucleus divides directly to form a coenocytic proembryo with different number of free nuclei. The result confirms the conclusion of Yakovlev[6] as well as Yakovlev and Yoffe[7] On the occurnce of coenocytic proembryo in Paeonia suffruticosa Andr. (P. moutan Sims), P. albiflora Pall. (P. lactiflora Pall), P. officinalis L., P. tenuifolia L., P. anomala L., P. veitchii Lynch (P. beresowskii Komarov), P. wittmanniana, also it agrees with the report of Cave et al.[4] on the occurence of the coenocytie proembryo in Paeonia californica and P. brownii. From the result of our investigation, there is no basis to support Murgai's conclusion obtained in certain species of Paeonia, i.e., the first division of zygote nucleus is accompanied by wall formation and the coenocyte is a suspensor. The primary endosperm nucleus of P. lactiflora divides often earlier than zygote nucleus, or almost at the same time or later in a few cases; 2 Both mitosis and amitosis occur in the free nuclei in the coenocytic proembryo, and mitosis is dominant. In the later stage of development the amitosis occurs at the micropylar region of the coenocytic proembryo, in the free nuclear endosperm at the chalazal region and the appressed part of the chalazal end of the coenocytic proembryo. In addition, in the region of conenocytic proembryo and endosperm polyploid nuclei, irregular nuclei are also frequently met with; 3 Cell wall formation in the coenocyte and the endosperm initiates by means of both cell plate and freely growthing walls, but in the coenocyte wall formation is earlier than in the free nuclear endosperm. At first, wall formation of the coenocytic proembryo begins at the chalazal end, and then extends toward the micropylar region, and in endosperm it begins at the part appressed to the part of the chalazal end of coenocytic proembryo, and then extends toward the chalazal end. We support Cave’s suggestion of the parallel evolution for Paeonia possessed the coenocytic proembryo has no relation to the coenocytic proembryo of the gymnosperms. Further we consider the evolution tendency of the coenocytic proembryo of Paeonia toward a functional specialization.  相似文献   

16.
花生胚乳细胞化的超微结构观察   总被引:4,自引:1,他引:3  
花生(ArachishypogeaeL.)心形胚期的胚乳游离核多瓣裂,或具长尾状结构。胚乳细胞质内有大量线粒体、质体、高尔基体、小泡及少量内质网。中央细胞壁有壁内突。球胚及心形胚期常见胚乳瘤。心形胚晚期,胚乳开始细胞化,胚乳细胞壁形成有3种方式,分别存在于不同的胚珠中:(1)从胚囊壁产生自由生长壁形成初始垂周壁,具有明显的电子密度深的中层,其生长主要靠末端的高尔基体小泡及内质网囊泡的融合。两相邻的自由生长壁末端或其分枝末端相连形成胚乳细胞。(2)核有丝分裂后产生细胞板,细胞板向外扩展并可分枝。间期的非姊妹核间也观察到形成了细胞板。小泡与微管参与细胞板的扩展,高尔基体和内质网是小泡的主要来源。细胞板的扩展末端相互连接,形成胚乳细胞的前身。小泡继续加入细胞板的组成,以后形成胚乳细胞壁。(3)胚乳细胞质中,出现一些比较大的不规则形的片段性泡状结构,它们可能来源于高尔基体小泡,这些片段性泡状结构随机相连形成细胞壁,未见微管参与。胚乳细胞外切向壁及经向壁上有壁内突。  相似文献   

17.
The titan (ttn) mutants of Arabidopsis exhibit striking alterations in chromosome dynamics and cell division during seed development. Endosperm defects include aberrant mitoses and giant polyploid nuclei. Mutant embryos differ in cell size, morphology and viability, depending on the locus involved. Here we demonstrate that three TTN genes encode chromosome scaffold proteins of the condensin (SMC2) and cohesin (SMC1 and SMC3) classes. These proteins have been studied extensively in yeast and animal systems, where they modulate chromosome condensation, chromatid separation, and dosage compensation. Arabidopsis contains single copies of SMC1 and SMC3 cohesins. We used forward genetics to identify duplicate T-DNA insertions in each gene. These mutants (ttn7 and ttn8) have similar titan phenotypes: giant endosperm nuclei and arrested embryos with a few small cells. A single SMC2 knockout (ttn3) was identified and confirmed by molecular complementation. The weak embryo phenotype observed in this mutant may result from expression of a related gene (AtSMC2) with overlapping functions. Further analysis of titan mutants and the SMC gene family in Arabidopsis should provide clues to chromosome mechanics in plants and insights into the regulation of nuclear activity during endosperm development.  相似文献   

18.
Diversity of TITAN functions in Arabidopsis seed development.   总被引:3,自引:0,他引:3       下载免费PDF全文
The titan mutants of Arabidopsis exhibit striking defects in seed development. The defining feature is the presence of abnormal endosperm with giant polyploid nuclei. Several TTN genes encode structural maintenance of chromosome proteins (condensins and cohesins) required for chromosome function at mitosis. Another TTN gene product (TTN5) is related to the ARL2 class of GTP-binding proteins. Here, we identify four additional TTN genes and present a general model for the titan phenotype. TTN1 was cloned after two tagged alleles were identified through a large-scale screen of T-DNA insertion lines. The predicted gene product is related to tubulin-folding cofactor D, which interacts with ARL2 in fission yeast (Schizosaccharomyces pombe) and humans to regulate tubulin dynamics. We propose that TTN5 and TTN1 function in a similar manner to regulate microtubule function in seed development. The titan phenotype can therefore result from disruption of chromosome dynamics (ttn3, ttn7, and ttn8) or microtubule function (ttn1 and ttn5). Three other genes have been identified that affect endosperm nuclear morphology. TTN4 and TTN9 appear to encode plant-specific proteins of unknown function. TTN6 is related to the isopeptidase T class of deubiquitinating enzymes that recycle polyubiquitin chains following protein degradation. Disruption of this gene may reduce the stability of the structural maintenance of chromosome complex. Further analysis of the TITAN network should help to elucidate the regulation of microtubule function and chromosome dynamics in seed development.  相似文献   

19.
The parental investment in angiosperms comprises the endosperm, a nutrient reserve that is used during seed development. The endosperm contains genes from both parents. The most common endosperm form is the 3n Polygonum -type with more maternal genetic influence than paternal, i.e. with two maternal nuclei and one paternal nucleus. The evolutionary original state is thought to be a diploid endosperm with equal influence of the parents. We focus on the evolution of the triploid endosperm and show that a gene for triploid endosperm would have an initial advantage in a population of diploid endosperm type plants, and increase to fixation. We assume that endosperm amount is controlled by endosperm genes. Then a gene causing triploid endosperm will increase the influence of the mother plant on parental investment. The production of endosperm with two copies of the maternal genes will modify the inheritance of endosperm amount and cause an increased production of seeds.  相似文献   

20.
We have identified an F-actin cytoskeletal network that remains throughout interphase, mitosis, and cytokinesis of higher plant endosperm cells. Fluorescent labeling was obtained using actin monoclonal antibodies and/or rhodamine-phalloidin. Video-enhanced microscopy and ultrastructural observations of immunogold-labeled preparations illustrated microfilament-microtubule co-distribution and interactions. Actin was also identified in cell crude extract with Western blotting. During interphase, microfilament and microtubule arrays formed two distinct networks that intermingled. At the onset of mitosis, when microtubules rearranged into the mitotic spindle, microfilaments were redistributed to the cell cortex, while few microfilaments remained in the spindle. During mitosis, the cortical actin network remained as an elastic cage around the mitotic apparatus and was stretched parallel to the spindle axis during poleward movement of chromosomes. This suggested the presence of dynamic cross-links that rearrange when they are submitted to slow and regular mitotic forces. At the poles, the regular network is maintained. After midanaphase, new, short microfilaments invaded the equator when interzonal vesicles were transported along the phragmoplast microtubules. Colchicine did not affect actin distribution, and cytochalasin B or D did not inhibit chromosome transport. Our data on endosperm cells suggested that plant cytoplasmic actin has an important role in the cell cortex integrity and in the structural dynamics of the poorly understood cytoplasm-mitotic spindle interface. F-actin may contribute to the regulatory mechanisms of microtubule-dependent or guided transport of vesicles during mitosis and cytokinesis in higher plant cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号