首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The rates of phosphatidylcholine biosynthesis in the isolated hamster hearts under ischemic and hypoxic conditions were examined. Global ischemia was produced by perfusion of the heart with a reduced flow, whereas hypoxia was produced by perfusion with a N2-saturated buffer. A 51% reduction in the biosynthesis of phosphatidylcholine was observed in the ischemic heart. The reduction was caused by a severe decrease in ATP level which resulted in a diminished conversion of choline into phosphocholine. A 22% reduction in the biosynthetic rate of phosphatidylcholine was also detected in the hypoxic heart. The reduction was caused by a diminished level of CTP which resulted in a decreased conversion of phosphocholine to CDP-choline. No compensatory mechanism was triggered during ischemia, but the CTP: phosphocholine cytidylyltransferase activity was enhanced in the hypoxic heart. Our results demonstrate the possible rate-limiting role of choline kinase and reconfirm the regulatory role of the cytidylyltransferase in the biosynthesis of phosphatidylcholine. (Mol Cell Biochem116: 53–58, 1992)  相似文献   

2.
The effects of stearic, oleic, and arachidonic acids on phosphatidylcholine biosynthesis in the hamster heart were investigated. When hamster hearts were perfused with labelled choline in the presence of fatty acids, biosynthesis of phosphatidylcholine was stimulated only by stearic acid. Stearic acid was found to accumulate in unesterified (free) form in the hamster heart after perfusion. The stimulation by stearic acid was mediated in vivo by an enhancement of CTP:phosphocholine cytidylyltransferase activity in the microsomal fraction of the hamster heart and the enzyme activity in the cytosolic fraction was not affected. In contrast with the observations in rat hepatocytes, cytidylyltransferase from the hamster heart was not stimulated directly by stearic acid. The selective activation of the microsomal enzyme when the heart was perfused with stearic acid suggests that activation of the enzyme was mediated via the modification of the membrane by stearic acid.  相似文献   

3.
The effect of an analogue of cAMP on the uptake and metabolism of choline in the heart was studied in isolated cardiac cells. The cells were obtained from 7-day-old chick embryos and maintained in culture. The effects of cAMP were studied using the dibutyryl cAMP analogue and the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine. After a 2-h incubation with [3H]choline, about 85% of the label was recovered in phosphocholine, with most of the rest in phospholipid. During a subsequent chase incubation, [3H]phosphocholine was transferred to phosphatidylcholine with little accumulation in CDP-choline. This suggests the rate-limiting step for the conversion of phosphocholine to phosphatidylcholine in these cells is the synthesis of CDP-choline. cAMP decreased the incorporation of choline into phosphatidylcholine, but did not change the flux of metabolites through the step catalyzed by CTP:phosphocholine cytidylyltransferase. cAMP had little effect on choline uptake at low (1-25 microM) extracellular choline concentrations, but significantly (p less than 0.05) decreased choline uptake at higher (37.5-50 microM) extracellular choline concentrations. Thus, cardiac cells take up and metabolize choline to phosphocholine, with CTP:phosphocholine cytidylyltransferase being the rate-limiting step in phosphatidylcholine biosynthesis. cAMP decreases [3H]choline uptake and its subsequent incorporation into phosphocholine and phospholipid. However, the metabolism of choline within the cell is unaffected.  相似文献   

4.
The genomes of Treponema denticola and Treponema pallidum contain a gene, licCA, which is predicted to encode a fusion protein containing choline kinase and CTP:phosphocholine cytidylyltransferase activities. Because both organisms have been reported to contain phosphatidylcholine, this raises the possibility that they use a CDP-choline pathway for the biosynthesis of phosphatidylcholine. This report shows that phosphatidylcholine is a major phospholipid in T. denticola, accounting for 35-40% of total phospholipid. This organism readily incorporated [14C]choline into phosphatidylcholine, indicating the presence of a choline-dependent biosynthetic pathway. The licCA gene was cloned, and recombinant LicCA had choline kinase and CTP:phosphocholine cytidylyltransferase activity. The licCA gene was disrupted in T. denticola by erythromycin cassette mutagenesis, resulting in a viable mutant. This disruption completely blocked incorporation of either [14C]choline or 32Pi into phosphatidylcholine. The rate of production of another phospholipid in T. denticola, phosphatidylethanolamine, was elevated considerably in the licCA mutant, suggesting that the elevated level of this lipid compensated for the loss of phosphatidylcholine in the membranes. Thus it appears that T. denticola does contain a licCA-dependent CDP-choline pathway for phosphatidylcholine biosynthesis.  相似文献   

5.
The purpose of this study was to examine the effect of exogenous CDP-choline on choline metabolism and phosphatidylcholine biosynthesis in adult rat ventricular myocytes. Choline uptake and metabolism were examined, using [methyl3 H] choline. CDP-choline in the medium produced a concentration dependent reduction in the amount of radio-label in phosphocholine and phospholipid but it did not alter choline uptake into the myocytes. CDP-choline also did not antagonize the effect of hypoxia on phosphatidylcholine synthesis; rather it accentuated the hypoxia-induced reductions in cellular phosphocholine and phosphatidylcholine biosynthesis. These results indicate that the exogenous administration of CDP-choline alters choline metabolism in the heart by reducing the formation of phosphocholine and phosphatidylcholine without altering choline uptake and suggest an effect of a CDP-choline metabolite on choline metabolism which is not effective in opposing the effect of hypoxia on phosphatidylcholine biosynthesis.  相似文献   

6.
The aims of this study were to (i) elucidate the biosynthetic pathways for the formation of plasmenylcholine in the mammalian heart and (ii) investigate whether the control of choline glycerophospholipid production is different in hearts with high plasmenylcholine content. Guinea pig hearts were used throughout this study, since 34% of the cardiac choline glycerophospholipids in this species is present in the plasmenylcholine form. By perfusion of the guinea pig heart in the Langendorff mode with labeled choline, we demonstrated that the majority of plasmenylcholine in the heart was synthesized via the CDP-choline pathway. The ability of the heart to form plasmenylcholine from CDP-choline and 1-alkenyl-2-acylglycerol was also shown. We postulate that 1-alkenyl-2-acylglycerol in the guinea pig heart might originate from the hydrolysis of plasmenylethanolamine. In mammalian liver and other tissues, the CDP-choline pathway is the major pathway for phosphatidylcholine biosynthesis and the rate-limiting step is catalyzed by CTP:phosphocholine cytidylyltransferase. The results obtained from the present study support this supposition. In addition, evidence was obtained indicating that phosphorylation of choline by choline kinase in the CDP-choline pathway may also be rate limiting. Although the involvement of choline kinase as a rate-limiting enzyme in the CDP-choline pathway has been shown in a number of cell cultures, the rate-limiting role of this enzyme in intact mammalian organs has not been previously reported. The rationale for the presence of more than one rate-limiting step in the CDP-choline pathway in the guinea pig heart remains undefined.  相似文献   

7.
After a 3-h incubation of Krebs II ascitic cells in the presence of phospholipase C from Clostridium welchii under nonlytic conditions, the incorporation of [3H] choline into phosphatidylcholine was increased 1.7-fold as compared to untreated cells. The total amounts of phosphatidylcholine, phosphatidylethanolamine, and sphingomyelin were unchanged up to 3 h of incubation. The limiting step in phosphatidylcholine biosynthesis was the formation of CDP-choline catalyzed by CTP:choline-phosphate cytidylyltransferase (EC 2.7.7.15) as monitored by the decrease in phosphocholine labeling following phospholipase C treatment of cells prelabeled with [3H]choline. The specific activity of homogenate cytidylyltransferase was increased about 1.6-fold in phospholipase C-treated cells. Specific activity of the membrane fraction was increased 2-fold, whereas cytosolic specific activity decreased in phospholipase C-treated cells. The activation of cytidylyltransferase was concomitant with translocation of the enzyme from the cytosol to the membrane fraction. The latter was further fractionated using a Percoll gradient that allowed an efficient separation between endoplasmic reticulum and other subcellular membranes. In control cells, particulate cytidylyltransferase activity co-migrated with the endoplasmic reticulum and ribosome markers and not with the plasma membrane. Also, in treated cells, the stimulation of cytidylyltransferase activity occurred at the endoplasmic reticulum level and did not involve either the external cell membrane or other cellular organelles including the Golgi apparatus, lysosomes, or mitochondria. Thus, our results demonstrate that a stimulus acting on the plasma membrane promotes the translocation of the soluble form of cytidylyltransferase specifically to the endoplasmic reticulum.  相似文献   

8.
Treatment of Chinese hamster ovary cells with phospholipase C was previously shown to stimulate the CDP-choline pathway for phosphatidylcholine biosynthesis, and to cause activation of the CTP:phosphocholine cytidylyltransferase with a concomitant change in subcellular location of the enzyme (Sleight, R., and Kent, C. (1983) J. Biol. Chem. 258, 831-835). This paper presents a detailed analysis of the early events in the phospholipase C treatment, and provides evidence that the increased cytidylyltransferase activity causes the increased flux through the pathway. The time courses for the increase in cytidylyltransferase activity, increase in amount of membrane-associated enzyme, decrease in phosphocholine levels, and increase in phosphatidylcholine synthesis were similar, with all changes occurring within 30 min after addition of phospholipase C. These events preceded a decrease in cellular choline levels which correlated with a decreased capacity for choline uptake. The rate at which radioactive label was lost from pulse-labeled phosphocholine was the same as the rate at which label was incorporated into phosphatidylcholine, and these rates were stimulated 2.2-fold by phospholipase C treatment. We have also shown that the association of cytidylyltransferase with membranes was rapidly reversible when phospholipase C was removed from the cultures, and that the rate of decrease in phosphatidylcholine synthesis paralleled the rate of decrease in cytidylyltransferase activity. Cytidylyltransferase became reassociated with membranes when phospholipase C was added back to cultures from which it was previously removed. These results represent the first detailed account of the time frame involved in regulating phosphatidylcholine synthesis by the reversible association of cytidylyltransferase with cellular membranes.  相似文献   

9.
The acyl specificity of 1,2-diacylglycerol: CDP-choline phosphocholine transferase (EC 2.7.8.2) for the formation of phosphatidylcholine with the appropriate acyl groups in hamster heart was investigated. Enzyme activity was determined in the microsomal fraction with 1,2-diacylglycerols of known acyl content. Maximum enzyme activity was obtained with diacylglycerol containing a monoenoic acyl group at the C-2 position of the glycerol moiety, regardless of the acyl group at the C-1 position. The specificity of the enzymes was also investigated by perfusing the isolated hamster heart with labelled glycerol. Comparison of the molecular species of the labelled diacylglycerols and phosphatidylcholine subsequent to perfusion revealed that the specificity of phosphocholine transferase was not limited to the monoenoic species of diacylglycerol. The difference in specificity observed between the in vitro assay and the perfusion study may partly be attributed to the presence of detergent in the enzyme assay mixture (to facilitate solubility of diacylglycerol). It is concluded that in the hamster heart, phosphocholine transferase has only limited ability to select the appropriate acyl groups for phosphatidylcholine biosynthesis. It appears that the majority of the newly formed phosphatidylcholine in the heart via the CDP-choline pathway is subsequently resynthesized by deacylation-reacylation process.  相似文献   

10.
A rapid and sensitive assay for CTP and phosphocholine was required for us to determine the concentration of these compounds in tissues and cell cultures. Such a procedure was devised with CTP:phosphocholine cytidylyltransferase, an enzyme which is highly specific for CTP and phosphocholine. The 0--22% ammonium sulfate precipitate of a cytosolic extract from rat liver was used as the source of the enzyme. The amount of CTP in an extract was estimated by the conversion of [3H]phosphocholine to 3H-labelled CDP-choline. Similarly, the concentration of phosphocholine was estimated by the formation of 3H-labelled CDP-choline from 3H-labelled CTP. The conversion of CTP and phosphocholine to CDP-choline was 90% when inorganic pyrophosphatase was added to the incubations. The formation of CDP-choline was linear between 1 and 10 nmol of CTP or phosphocholine. The concentration of CTP was determined in rat liver (62 nmol/g wet weight) and baby hamster kidney 21 (BHK-21) cells (161 nmol/g wet weight). The concentration of phosphocholine in rat liver was 1.16 mumol/g wet weight whereas in BHK-21 cells it was much less (69 nmol/g wet weight). By this procedure, it may be possible to establish the importance of CTP and phosphocholine in the control of phosphatidylcholine biosynthesis.  相似文献   

11.
木文研究了多种氨基酸、乙醇胺和甲基乙醇胺对细胞摄取胆碱和合成磷脂酰胆碱(PC)的影响,发现多种氨基酸非竞争性地抑制细胞摄取胆碱。含胆碱代谢物的分析显示胆碱转变成CDP-胆碱,随之形成PC均不受氨基酸影响。乙醇胺竞争性地抑制胆碱摄取,且存在剂量依赖关系。乙醇胺能明显抑制胆碱激酶活性,但细胞内胆碱和磷酸胆碱的代谢池并不改变,提示乙醇胺不影响胆碱转变成磷酸胆碱。根据CDP-胆碱和PC的比放射性分布,乙醇胺也不影响PC的生物合成。甲基乙醇胺抑制胆碱摄入的程度强于乙醇胺,并抑制胆碱激酶和CTP:磷酸胆碱胞苷转移酶活性,含胆碱代谢物以CDP-胆碱下降最显著;提示甲基乙醇胺不仅抑制胆碱摄入而且还干扰了CDP-胆碱通路。  相似文献   

12.
CTP:phosphocholine cytidylyltransferase was located in both the cytosolic and particulate fractions from Chinese hamster ovary cells. The activity of the cytosolic form of the enzyme was greatly enhanced by incubation with sonicated preparations of several different lipids, although incubations with either phosphatidylcholine or 1,2-sn-diolein did not increase activity. The activation of the cytidylyltransferase in Chinese hamster ovary cells treated with phospholipase C from Clostridium perfringens occurred with a concomitant shift in the subcellular distribution of the enzyme from cytosolic to particulate fractions. This shift was rapid and did not require protein synthesis. Removal of phospholipase C from the cell cultures resulted in a return to basal levels of incorporation of [3H]choline into phosphatidylcholine, a decrease in the activity of cytidylyltransferase, and a loss of the membrane-bound form of the enzyme. Similar experiments with LM cells, which are resistant to exogenous phospholipase C, showed no change in subcellular distribution of cytidylyltransferase, suggesting that the activation of CTP:phosphocholine cytidylyltransferase required a change in membrane phospholipid composition. The results presented are discussed in terms of a mechanism of regulation of phosphatidylcholine production involving monitoring of membrane phospholipid composition.  相似文献   

13.
The effect of expression of the Harvey-ras oncogene on phosphatidylcholine metabolism in C3H10T1/2 mouse fibroblast cells was examined. There were multiple changes in the CDP-choline pathway for phosphatidylcholine biosynthesis in the ras-expressing cells. The activity of the first enzyme in the pathway, choline kinase, was stimulated 1.9-fold, while the activity of the second enzyme, CTP:phosphocholine cytidylyltransferase, was decreased by one-half. High levels of intracellular phosphocholine measured in the ras cells were consistent with the altered activities of choline kinase and cytidylyltransferase. The overall rate of phosphatidylcholine synthesis appeared to be increased because the turnover rate of phosphocholine from the intracellular pool was higher in the ras-transfected cells. There also appeared to be an increased rate of phosphatidylcholine degradation in ras-expressing C3H10T1/2 cells. Very high levels of glycerophosphocholine (6-fold increased over control cells) suggested that phospholipase A was activated in these cells. These results indicate that the ras oncogene product directly or indirectly causes an increased turnover of phosphatidylcholine in C3H10T1/2 cells.  相似文献   

14.
The specificity of the phospholipid head-group for feedback regulation of CTP: phosphocholine cytidylyltransferase was examined in rat hepatocytes. In choline-deficient cells there is a 2-fold increase in binding of cytidylyltransferase to cellular membranes, compared with choline-supplemented cells. Supplementation of choline-deficient cells with choline, dimethylethanolamine, monomethylethanolamine or ethanolamine resulted in an increase in the concentration of the corresponding phospholipid. Release of cytidylyltransferase into cytosol was only observed in hepatocytes supplemented with choline or dimethylethanolamine. The apparent EC50 values (concn. giving half of maximal effect) for cytidylyltransferase translocation were similar for choline and dimethylethanolamine (25 and 27 microM respectively). The maximum amount of cytidylyltransferase released into cytosol with choline supplementation (1.13 m-units/mg membrane protein) was twice that (0.62) observed with dimethylethanolamine. Supplementation of choline-deficient hepatocytes with NN'-diethylethanolamine, N-ethylethanolamine or 3-aminopropanol also did not cause release of cytidylyltransferase from cellular membranes. The translocation of cytidylyltransferase appeared to be mediated by the concentration of phosphatidylcholine in the membranes and not the ratio of phosphatidylcholine to phosphatidylethanolamine. The results provide further evidence for feedback regulation of phosphatidylcholine biosynthesis by phosphatidylcholine.  相似文献   

15.
Regulation of phosphatidylcholine metabolism in mammalian hearts   总被引:1,自引:0,他引:1  
Phosphatidylcholine is the major phospholipid in the mammalian heart. Over 90% of the cardiac phosphatidylcholine is synthesized via the CDP-choline pathway. The rate-limiting step of this pathway is catalyzed by CTP:phosphocholine cytidylyltransferase. Current evidence suggests that phosphatidylcholine biosynthesis in the heart is regulated by the availability of CTP and the modulation of cytidylyltransferase activity. Phosphatidylcholine is degraded mainly by the actions of phospholipase A1 and A2, with the formation of lysophosphatidylcholine. Lysophosphatidylcholine may be further deacylated by lysophospholipase or reacylated back into the parent phospholipid by the action of acyltransferase. The accumulation of lysophosphatidylcholine in the heart may be one of the biochemical factors for the production of cardiac arrhythmias.  相似文献   

16.
A new model system for the study of phosphatidylcholine biosynthesis is presented. Young rats were fed a diet that contained 5% cholesterol and 2% cholate. After 6 days there was a 2-fold increase in the concentration of plasma phospholipid (243 mg/dl compared to 132 mg/dl for control animals) and a 3-fold increase in the concentration of plasma phosphatidylcholine. The rate of phosphatidylcholine biosynthesis was measured after injection of [Me-3H]choline into the portal veins. The incorporation of tritium into choline, phosphocholine and betaine by liver was similar for experimental and control animals, whereas there was a 3-fold increased incorporation into phosphatidylcholine of the cholesterol/cholate-fed rats. The activities of the enzymes of phosphatidylcholine biosynthesis in cytosol and microsomes were assayed. The only change detected was in the cytosolic and microsomal activities of CTP: phosphocholine cytidylyltransferase which were increased more than 2-fold in specific activity. When total cytidylyltransferase activity per liver was determined, a dramatic translocation of the enzyme to microsomes was observed. The control livers had 24% of the cytidylyltransferase activity associated with microsomes, whereas this value was 61% in the livers from cholesterol/cholate-fed rats. When the cytosolic cytidylyltransferase was assayed in the presence of phospholipid, the enzyme was stimulated several-fold and the difference in specific activity between control and cholesterol/cholate-fed rats was abolished. The increased activity in cytosol appears to be the result of a 2-fold increase in the amount of phospholipid in the cytosol from cholesterol/cholate-fed rats. The data strongly support the hypothesis that the special diet stimulates phosphatidylcholine biosynthesis by causing a translocation of the cytidylyltransferase from cytosol to microsomes where it is activated.  相似文献   

17.
The regulation of phosphatidylcholine degradation as a function of the route of phosphatidylcholine (PC) synthesis and changing environmental conditions has been investigated in the yeast Saccharomyces cerevisiae. In the wild-type strains studied, deacylation of phosphatidylcholine to glycerophosphocholine is induced when choline is supplied to the culture medium and, also, when the culture temperature is raised from 30 to 37 degrees C. In strains bearing mutations in any of the genes encoding enzymes of the CDP-choline pathway for phosphatidylcholine biosynthesis (CKI1, choline kinase; CPT1, 1, 2-diacylglycerol choline phosphotransferase; PCT1, CTP:phosphocholine cytidylyltransferase), no induction of phosphatidylcholine turnover and glycerophosphocholine production is seen in response to choline availability or elevated temperature. In contrast, the induction of phosphatidylcholine deacylation does occur in a strain bearing mutations in genes encoding enzymes of the methylation pathway for phosphatidylcholine biosynthesis (i.e. CHO2/PEM1 and OPI3/PEM2). Whereas the synthesis of PC via CDP-choline is accelerated when shifted from 30 to 37 degrees C, synthesis of PC via the methylation pathway is largely unaffected by the temperature shift. These results suggest that the deacylation of PC to GroPC requires an active CDP-choline pathway for PC biosynthesis but not an active methylation pathway. Furthermore, the data indicate that the synthesis and turnover of CDP-choline-derived PC, but not methylation pathway-derived PC, are accelerated by the stress of elevated temperature.  相似文献   

18.
The mechanism of the inhibition of phosphatidylcholine biosynthesis by the phospholipid analogue, hexadecylphosphocholine, was investigated in Madin-Darby canine kidney cells. In the presence of 50 mumol/liter hexadecylphosphocholine, there was a translocation of CTP:choline-phosphate cytidylyltransferase (EC 22.7.7.15) activity from the membranes to the cytosol of the cells. Since we recently demonstrated that hexadecylphosphocholine also inhibits protein kinase C in vitro, [methyl-3H]choline labeling experiments were repeated with phorbol ester-desensitized cells. In these cells the same inhibitory effect of hexadecylphosphocholine was measured. As a consequence of inhibition, the [methyl-3H]choline incorporation into the phosphocholine pool was increased time-dependently. In addition, there was no evidence for a difference between the choline uptake of control and hexadecylphosphocholine-treated cells. Likewise, the amount of diacylglycerol, a known activator of the translocation process, was not reduced. Finally, we showed that the inhibitory effect of hexadecylphosphocholine on CTP:choline-phosphate cytidylyltransferase translocation cannot be explained by the detergent properties of this phospholipid analogue. Therefore, we suggest a direct inhibitory effect of hexadecylphosphocholine on the translocation of CTP:choline-phosphate cytidylyltransferase.  相似文献   

19.
The effect of exogenous ethanolamine on phosphatidylcholine biosynthesis in the isolated hamster heart was investigated. Hamster hearts were perfused with [Me-3H]choline in the presence of 0.05-0.5 mM ethanolamine. Incorporation of label into phosphatidylcholine was decreased 26-63% at 0.1-0.5 mM ethanolamine. Similar decreases in the labelling of the metabolites of the CDP-choline pathway were observed at these ethanolamine concentrations. The observed decrease in phosphatidylcholine labelling at 0.1-0.5 mM ethanolamine was attributed to an inhibition of labelled choline uptake by ethanolamine. The inhibitory role of ethanolamine to choline uptake was examined by comparison to hemicholinium-3. Both compounds inhibited choline uptake in a competitive manner. Intracellular choline, phosphocholine and CDP-choline concentrations were not altered under all experimental conditions. It can be concluded that exogenous ethanolamine has no immediate effect on the rate of phosphatidylcholine biosynthesis in the isolated hamster heart. The reduced labelling of phosphatidylcholine in the presence of ethanolamine is a direct result of the reduction of labelled choline taken up by the heart.  相似文献   

20.
The production and characterization of an antibody to rat liver CTP:phosphocholine cytidylyltransferase is described. This antibody quantitatively precipitated cytidylyltransferase from both rat liver and HeLa cell cytosol. Following affinity purification, the antibody was used to demonstrate, for the first time, the phosphorylation of cytidylyltransferase in vivo. Following the immunoprecipitation of cytidylyltransferase from HeLa cells, acid hydrolysis, and thin layer electrophoresis of the amino acids, only [32P]phosphoserine was detected. The phosphorylation state of cytidylyltransferase in HeLa cells was examined following treatment with phorbol ester for 1 h. In agreement with previous studies, the incorporation of [3H]choline into phosphatidylcholine via the CDP-choline pathway was stimulated 5-fold in cultures of HeLa cells following treatment with phorbol ester for 1 h. However, no appreciable translocation of cytidylyltransferase was detected, despite the utilization of two different methods of cell lysis. Furthermore, the inclusion of phosphatase inhibitors and chelators of divalent cations in the homogenization buffers had no effect on the observed distribution or activity of the enzyme. Immunoprecipitated cytidylyltransferase was phosphorylated to the same extent, and on serine residues only, in both control and 12-O-tetradecanoyl phorbol-13-acetate (TPA)-treated cells. Measurement of the pool sizes of the aqueous intermediates of the CDP-choline pathway, following TPA treatment, revealed a modest decrease in the phosphocholine pool only, consistent with an activation of cytidylyltransferase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号