首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Inhibition of alphavbeta3 or alphavbeta5 integrin function has been reported to suppress neovascularization and tumor growth, suggesting that these integrins are critical modulators of angiogenesis. Here we report that mice lacking beta3 integrins or both beta3 and beta5 integrins not only support tumorigenesis, but have enhanced tumor growth as well. Moreover, the tumors in these integrin-deficient mice display enhanced angiogenesis, strongly suggesting that neither beta3 nor beta5 integrins are essential for neovascularization. We also observed that angiogenic responses to hypoxia and vascular endothelial growth factor (VEGF) are augmented significantly in the absence of beta3 integrins. We found no evidence that the expression or functions of other integrins were altered as a consequence of the beta3 deficiency, but we did observe elevated levels of VEGF receptor-2 (also called Flk-1) in beta3-null endothelial cells. These data indicate that alphavbeta3 and alphavbeta5 integrins are not essential for vascular development or pathological angiogenesis and highlight the need for further evaluation of the mechanisms of action of alphav-integrin antagonists in anti-angiogenic therapeutics.  相似文献   

2.
3.
We showed previously that blood vessel maturation in the CNS is associated with a developmental switch in brain capillary endothelial cells (BCEC), from fibronectin signalling during angiogenesis to laminin signalling in the adult. To investigate the functional significance of this switch, we have examined the response of BCEC to different extracellular matrix (ECM) proteins. This showed that BCEC proliferation was significantly promoted by fibronectin (28.2 +/- 4.0%) and by vitronectin (14.8 +/- 2.1%) compared with uncoated glass (7.2 +/- 0.7%), while BCEC survival was significantly promoted by fibronectin (1130 +/- 131 cells), vitronectin (830 +/- 63 cells), collagen IV (703 +/- 77 cells) and laminin (680 +/- 34 cells) compared with the uncoated glass (367 +/- 48 cells). Biochemical studies showed that BCEC express a limited repertoire of integrins, including the beta1 integrins, alpha3beta1, alpha5beta1 and alpha6beta1, and the alphavbeta3 integrin. Function-blocking studies showed that the response to fibronectin was mediated equally by the alpha5beta1 and alphavbeta3 integrins. Analysis of signalling pathways revealed that fibronectin stimulated activation of the p44/p42 MAP kinase signalling pathway and pharmacological inhibitors of this pathway blocked BCEC proliferation on fibronectin. Taken together, these findings show that fibronectin exerts a strong angiogenic influence on endothelial cells (EC) in the CNS, and that this is mediated through the alpha5beta1 and alphavbeta3 integrins via MAP kinase signalling. In addition to a fundamental role in development, these findings may also have implications in pathological conditions of the CNS where fibronectin is re-expressed.  相似文献   

4.
Vascular endothelial growth factor A (VEGF-A) is a potent inducer of angiogenesis. We now show that VEGF-A-induced adhesion and migration of human endothelial cells are dependent on the integrin alpha9beta1 and that VEGF-A is a direct ligand for this integrin. Adhesion and migration of these cells on the 165 and 121 isoforms of VEGF-A depend on cooperative input from alpha9beta1 and the cognate receptor for VEGF-A, VEGF receptor 2 (VEGF-R2). Unlike alpha3beta1or alphavbeta3 integrins, alpha9beta1 was also found to bind the 121 isoform of VEGF-A. This interaction appears to be biologically significant, because alpha9beta1-blocking antibody dramatically and specifically inhibited angiogenesis induced by VEGF-A165 or -121. Together with our previous findings that alpha9beta1 directly binds to VEGF-C and -D and contributes to lymphangiogenesis, these results identify the integrin alpha9beta1 as a potential pharmacotherapeutic target for inhibition of pathogenic angiogenesis and lymphangiogenesis.  相似文献   

5.
Many similarities exist in the cellular responses elicited by VEGF and governed by integrins. Here, we identify a basis for these interrelationships: VEGF activates integrins. VEGF enhanced cell adhesion, migration, soluble ligand binding, and adenovirus gene transfer mediated by alphavbeta3 and also activated other integrins, alphavbeta5, alpha5beta1, and alpha2beta1, involved in angiogenesis. Certain tumor cells exhibited high spontaneous adhesion and migration, which were attributable to a VEGF-dependent autocrine/paracrine activation of integrins. This activation was mediated by the VEGFR2 receptor and regulated via phosphatidylinositol-3-kinase, Akt, and the PTEN signaling axis. Thus, integrin activation provides a mechanism for VEGF to induce a broad spectrum of cellular responses.  相似文献   

6.
We previously reported that mouse orthologue of puromycin insensitive leucyl-specific aminopeptidase (mPILSAP) played an important role in angiogenesis by regulating the proliferation and migration of endothelial cells (ECs) (Miyashita et al., 2002. Blood 99:3241-3249). Here, we examined the mechanism as to how mPILSAP regulates the migration of ECs. Cell adhesion through integrins plays a crucial role in cell migration, and ECs use at least type-1 collagen receptor integrin alpha2beta1, fibronectin receptor alpha5beta1, and vitronectin receptors alphavbeta3 and alphavbeta5. mPILSAP antisense oligodeoxynucleotide (AS-ODN) or leucinethiol (LT), a leucyl-aminopeptidase inhibitor, did not affect the attachment but did significantly inhibit the spreading of cells of the murine endothelial cell line MSS31 when they were plated on vitronectin-, fibronectin-, or type-1 collagen, although they did not affect the expression of integrin alpha2, alpha5, alphav, beta1, beta3, and beta5 subunits on the cell surface. AS-ODN and LT also inhibited the tyrosine phosphorylation of FAK when cells were plated on vitronectin, fibronectin, or type-1 collagen. This inhibition of cell spreading and of tyrosine phosphorylation of FAK could be negated by Mg(2+). These results suggest that mPILSAP is involved in the activation of endothelial integrins.  相似文献   

7.
Interaction between integrin alphavbeta3 and extracellular matrix is crucial for endothelial cells sprouting from capillaries and for angiogenesis. Furthermore, integrin-mediated outside-in signals co-operate with growth factor receptors to promote cell proliferation and motility. To determine a potential regulation of angiogenic inducer receptors by the integrin system, we investigated the interaction between alphavbeta3 integrin and tyrosine kinase vascular endothelial growth factor receptor-2 (VEGFR-2) in human endothelial cells. We report that tyrosine-phosphorylated VEGFR-2 co-immunoprecipitated with beta3 integrin subunit, but not with beta1 or beta5, from cells stimulated with VEGF-A165. VEGFR-2 phosphorylation and mitogenicity induced by VEGF-A165 were enhanced in cells plated on the alphavbeta3 ligand, vitronectin, compared with cells plated on the alpha5beta1 ligand, fibronectin or the alpha2beta1 ligand, collagen. BV4 anti-beta3 integrin mAb, which does not interfere with endothelial cell adhesion to vitronectin, reduced (i) the tyrosine phosphorylation of VEGFR-2; (ii) the activation of downstream transductor phosphoinositide 3-OH kinase; and (iii) biological effects triggered by VEGF-A165. These results indicate a new role for alphavbeta3 integrin in the activation of an in vitro angiogenic program in endothelial cells. Besides being the most important survival system for nascent vessels by regulating cell adhesion to matrix, alphavbeta3 integrin participates in the full activation of VEGFR-2 triggered by VEGF-A, which is an important angiogenic inducer in tumors, inflammation and tissue regeneration.  相似文献   

8.
Atherosclerotic plaque develops at sites of disturbed flow. We previously showed that flow activates endothelial cell integrins, which then bind to the subendothelial extracellular matrix (ECM), and, in cells on fibronectin or fibrinogen, trigger nuclear factor-kappaB activation. Additionally, fibronectin and fibrinogen are deposited into the subendothelial ECM at atherosclerosis-prone sites at early times. We now show that flow activates ECM-specific signals that establish patterns of integrin dominance. Flow induced alpha2beta1 activation in cells on collagen, but not on fibronectin or fibrinogen. Conversely, alpha5beta1 and alphavbeta3 are activated on fibronectin and fibrinogen, but not collagen. Failure of these integrins to be activated on nonpermissive ECM is because of active suppression by the integrins that are ligated. Protein kinase A is activated specifically on collagen and suppresses flow-induced alphavbeta3 activation. Alternatively, protein kinase Calpha is activated on fibronectin and mediates alpha2beta1 suppression. Thus, integrins actively cross-inhibit through specific kinase pathways. These mechanisms may determine cellular responses to complex extracellular matrices.  相似文献   

9.
The precise role of vascular endothelial growth factor (VEGF) in regulating integrins in brain microvascular endothelial cells is unknown. Here, we analyzed VEGF effects on integrin expression and activation in human brain microvascular endothelial cells (HBMECs). Using human cDNA arrays and ribonuclease (RNase) protection assays, we observed that VEGF up-regulated the mRNA expression of alpha(6) integrin in HBMECs. VEGF significantly increased alpha(6)beta(1) integrin expression, but not alpha(6)beta(4) integrin expression in these cells. Specific down-regulation of alpha(6) integrin expression by small interfering RNA (siRNA) oligonucleotides inhibited both the capillary morphogenesis of HBMECs and their adhesion and migration. Additionally, VEGF treatment resulted in activation of alpha(6)beta(1) integrins in HBMECs. Functional blocking of alpha(6) integrin with its specific antibody inhibited the VEGF-induced adhesion and migration as well as in vivo angiogenesis, and markedly suppressed tumor angiogenesis and breast carcinoma growth in vivo. Thus, VEGF can modulate angiogenesis via increased expression and activation of alpha(6)beta(1) integrins, which may promote VEGF-driven tumor angiogenesis in vivo.  相似文献   

10.
The human CXC-chemokine CXCL4 is a potent inhibitor of tumor-induced angiogenesis. Considering that CXCL4 is sequestered in platelet alpha-granules and released following platelet activation in the vicinity of vessel wall injury, we tested the hypothesis that CXCL4 might function as a ligand for integrins. Integrins are a family of adhesion receptors that play a crucial role in angiogenesis by regulating early angiogenic processes, such as endothelial cell adhesion and migration. Here, we show that CXCL4 interacts with alphavbeta3 on the surface of alphavbeta3-CHO. More importantly, human umbilical vein endothelial cells adhere to immobilized CXCL4 through alphavbeta3 integrin, and also through other integrins, such as alphavbeta5 and alpha5beta1. We further demonstrate that CXCL4-integrin interaction is of functional significance in vitro, since immobilized CXCL4 supported endothelial cell spreading and migration in an integrin-dependent manner. Soluble CXCL4, in turn, inhibits integrin-dependent endothelial cell adhesion and migration. As a whole, our study identifies integrins as novel receptors for CXCL4 that may contribute to its antiangiogenic effect.  相似文献   

11.
Collaborative role of various fibronectin-binding integrins (alpha5beta1, alphavbeta1 and alphavbeta6) as mediators of cell adhesion and migration on fibronectin was studied using cultured HaCaT keratinocytes. This cell line spontaneously expressed all three fibronectin-binding integrins. In addition, the expression of alphavbeta6 integrin was strongly and specifically upregulated by transforming growth factor-beta1 (TGFbeta1) whereas the amount of other integrins remained practically unchanged on the cell surface. Adhesion, spreading and motility of HaCaT keratinocytes on fibronectin were promoted by TGFbeta1. Based on antibody blocking experiments, both untreated and TGFbeta1-treated HaCaT cells used alphavbeta6 integrin as their main fibronectin receptor for cell spreading. In contrast to TGFbeta1-treated cells, the untreated cells also needed alpha5beta1 integrin for maximal cell spreading on fibronectin. Combinations of antibodies blocking both of these receptors totally prevented spreading of both untreated and TGFbeta1-treated cells. Haptotactic motility of individual HaCaT cells through fibronectin-coated membranes was again mainly dependent on alphavbeta6 integrin, while alphavbeta1 and alpha5beta1 integrins played a lesser role both in untreated and TGFbeta1-treated HaCaT cells. However, unlike haptotaxis, lateral migration of HaCaT cell sheet was mainly mediated by beta1 integrins, and alphavbeta6 integrin showed a minor role. The migration process appeared to involve a number of beta1 integrins that could adaptively replace each other when blocking antibodies were present. Thus, keratinocytes appear to use different fibronectin receptors for different functions, such as cell spreading, haptotaxis and lateral migration. The cells can also adapt to a situation where one receptor is unfunctional by switching to another receptor of the same ligand.  相似文献   

12.
The effects of oxidative stress on integrin-mediated cell adhesion to the extracellular matrix (ECM) and related apoptosis were investigated using the EA.hy926 endothelial cells treated (or not) with two oxidants: the hypoxanthine/xanthine oxidase system (HX/XO) or the tert-butyl hydroperoxide (t-BHP) which both increased cell apoptosis. Cell adhesion onto vitronectin (Vn) and fibronectin (Fn) was increased at low concentrations of HX/XO (up to 5 mU/ml) or t-BHP (up to 125 microM) and prevented ROS-induced apoptosis. Flow cytometry analysis of integrin expression showed that the expression of integrin alphav and alpha5 subunits was, respectively, increased and decreased. Cell adhesion inhibition experiments using function-blocking monoclonal antibodies against integrin subunits indicated that alphavbeta1 and alphavbeta3 integrins were involved in adhesion of cells to Vn, and alphavbeta3 integrin played a major role in oxidant-treated cells. For adhesion to Fn, alpha5beta1 and alphavbeta1 integrins were required for oxidant-treated cells. Taken together, the results suggest that reactive oxygen species (ROS) produced either by HX/XO or t-BHP could affect expression and/or activation of specific integrins in the interaction of EA.hy926 cells with ECM.  相似文献   

13.
We have recently demonstrated that in breast carcinoma MCF7 cells MT1-MMP processes the alphav, alpha3, and alpha5 integrin precursors generating the respective mature S-S-linked heavy and light alpha-chains. The precursor of alpha2 integrin subunit was found resistant to MT1-MMP proteolysis. The processing of the alphav subunit by MT1-MMP facilitated alphavbeta3-dependent adhesion, activation of FAK signaling pathway, and migration of MCF7 cells on vitronectin. To elucidate further the effects of MT1-MMP on cellular integrins, we examined the functional activity of alpha5beta1 and alpha2beta1 integrins in MCF7 cells expressing MT1-MMP. Either expression of MT1-MMP alone or its coexpression with alphavbeta3 failed to affect the functionality of alpha5beta1 integrin, and adhesion of cells to fibronectin. MT1-MMP, however, profoundly affected the cross-talk involving alphavbeta3 and alpha2beta1 integrins. In MT1-MMP-deficient cells, integrin alphavbeta3 suppressed the functional activity of the collagen-binding alpha2beta1 integrin receptor and diminished cell adhesion to type I collagen. Coexpression of MT1-MMP with integrin alphavbeta3 restored the functionality of alpha2beta1 integrin and, consequently, the ability of MCF7 cells to adhere efficiently to collagen. We conclude that the MT1-MMP-controlled cross-talk between alphavbeta3 and alpha2beta1 integrins supports binding of aggressive, MT1-MMP-, and alphavbeta3 integrin-expressing malignant cells on type I collagen, the most common substratum of the extracellular matrix.  相似文献   

14.
The expression of alphavbeta6 fibronectin/tenascin receptor integrin is induced in malignant transformation of oral epithelium. In this study, we demonstrate the contribution of alphavbeta6 as well as other fibronectin receptor integrins in squamous cell carcinoma (SCC) cell adhesion and migration. Of 11 SCC cell lines isolated from the head and neck area, 8 (73%) expressed alphavbeta6 integrin on the cell surface. Three cell lines were chosen for further functional experiments: 1 with relatively high, 1 with moderate, and 1 with minimal surface expression of alphavbeta6 integrin. In addition to alphavbeta6, all 3 cell lines expressed alpha5beta1 and alphavbeta1 fibronectin receptor integrins. Function-blocking experiments with inhibitory anti-integrin antibodies showed that all these three integrins were functional in SCC cell spreading on fibronectin. Integrin alphavbeta6, however, was not used as a primary but as an alternative fibronectin receptor by SCC cells, as the inhibitory anti-beta6 integrin antibody alone had no effect on spreading. In migration, however, alphavbeta6, alpha5beta1, and alphavbeta1 integrins were all used in cooperation. The presence of alphavbeta1 integrin in SCC cells is a novel finding as is its contribution to SCC cell migration. When one or two of these three receptors were blocked, the cells demonstrated an adaptive ability to remain migratory using integrins that were not targeted by antibodies. Utilization of a combination of receptors of different affinities may be beneficial for SCC cell migration versatility.  相似文献   

15.
Antagonists of alphavbeta3 and alphavbeta5 disrupt angiogenesis in response to bFGF and VEGF, respectively. Here, we show that these alphav integrins differentially contribute to sustained Ras-extracellular signal-related kinase (Ras-ERK) signaling in blood vessels, a requirement for endothelial cell survival and angiogenesis. Inhibition of FAK or alphavbeta5 disrupted VEGF-mediated Ras and c-Raf activity on the chick chorioallantoic membrane, whereas blockade of FAK or integrin alphavbeta3 had no effect on bFGF-mediated Ras activity, but did suppress c-Raf activation. Furthermore, retroviral delivery of active Ras or c-Raf promoted ERK activity and angiogenesis, which anti-alphavbeta5 blocked upstream of Ras, whereas anti-alphavbeta3 blocked downstream of Ras, but upstream of c-Raf. The activation of c-Raf by bFGF/alphavbeta3 not only depended on FAK, but also required p21-activated kinase-dependent phosphorylation of serine 338 on c-Raf, whereas VEGF-mediated c-Raf phosphorylation/activation depended on Src, but not Pak. Thus, integrins alphavbeta3 and alphavbeta5 differentially regulate the Ras-ERK pathway, accounting for distinct vascular responses during two pathways of angiogenesis.  相似文献   

16.
We have characterized the diversity of the chicken beta 1 integrin family and studied the expression of individual receptors during development. The diversity of the beta 1 integrin family was investigated by affinity purifying the beta 1 integrins from a variety of adult and embryonic tissues. These purifications reveal the relative levels of expression and also the differential expression of the alpha subunits in those tissues. Monoclonal antibodies were generated against the prominent 'band 1' of the embryonic chicken integrins and used to characterize the expression of this alpha subunit in embryonic and adult tissues. This alpha subunit is shown to be the chicken homologue of human alpha 5 fibronectin receptor. The chicken alpha 5 beta 1 integrin is the most prominent beta 1 integrin in the embryo and is expressed on the majority of cell types through the day 17 stage. The distribution of this receptor in the embryo closely parallels the distribution of its ligand, fibronectin. In adult tissues, expression of this receptor is greatly diminished relative to the expression of other alpha subunits. The cell type distribution is highly restricted: limited primarily to the vasculature and to connective tissue regions. These studies reveal a prominent role for the alpha 5 beta 1 integrin in embryonic cell types and a down-regulation of this receptor on many cell types during development.  相似文献   

17.
Endothelium extracellular matrix (ECM) interactions can provide distinct spatial and molecular signals which control cellular proliferation, migration, and differentiation. Here, we investigated the role of fibronectin (FN), a major ECM protein, on the functions of lymphatic endothelial cells (LEC). We observed that FN, the ligand for integrin alpha5beta1, selectively promoted the growth of LEC as compared with vitronectin (VN) in the presence of the ligand for vascular endothelial growth factor receptor 3 [VEGFR-3 (VEGF-C156S)]. Upon investigating the mechanisms whereby ECM components regulate VEGFR-3 signaling, we found that FN transactivated VEGFR-3 and significantly enhanced the phosphorylation of VEGFR-3 induced by VEGF-C156S as compared to VN. An enhanced association of the integrin subunit alpha5 or beta1 with VEGFR-3, after stimulation with VEGF-C156S, was observed by co-immunoprecipitation. While blockade of integrin alpha5beta1 inhibited the VEGF-C156S-induced phosphorylation of VEGFR-3, no similar effect was obtained by blocking integrin alphavbeta3. FN also protected the endothelial cells from serum deprivation-induced apoptosis. Moreover, while the specific PI3 kinase inhibitor, LY294002, abolished this FN-mediated cell survival, the MAPK kinase inhibitor, PD98059, had no significant effect. Furthermore, a dominant-negative mutant of VEGFR-3 (G857R) reduced VEGF-C156S or FN-mediated cell survival, as well as the activities of PI3 kinase/Akt. Our results indicate that integrin alpha5beta1 participates in the activation of both VEGFR-3 and its downstream PI3 kinase/Akt signaling pathway, which is essential for FN-mediated lymphatic endothelial cell survival and proliferation.  相似文献   

18.
Vascular integrins are essential regulators and mediators of physiological and pathological angiogenesis, including tumor angiogenesis. Integrins provide the physical interaction with the extracellular matrix (ECM) necessary for cell adhesion, migration and positioning, and induce signaling events essential for cell survival, proliferation and differentiation. Integrins preferentially expressed on neovascular endothelial cells, such as alphaVbeta3 and alpha5beta1, are considered as relevant targets for anti-angiogenic therapies. Anti-integrin antibodies and small molecular integrin inhibitors suppress angiogenesis and tumor progression in many animal models, and are currently tested in clinical trials as anti-angiogenic agents. Cyclooxygense-2 (COX-2), a key enzyme in the synthesis of prostaglandins and thromboxans, is highly up-regulated in tumor cells, stromal cells and angiogenic endothelial cells during tumor progression. Recent experiments have demonstrated that COX-2 promotes tumor angiogenesis. Chronic intake of nonsteroidal anti-inflammatory drugs and COX-2 inhibitors significantly reduces the risk of cancer development, and this effect may be due, at least in part, to the inhibition of tumor angiogenesis. Endothelial cell COX-2 promotes integrin alphaVbeta3-mediated endothelial cell adhesion, spreading, migration and angiogenesis through the prostaglandin-cAMP-PKA-dependent activation of the small GTPase Rac. In this article, we review the role of integrins and COX-2 in angiogenesis, their cross talk, and discuss implications relevant to their targeting to suppress tumor angiogenesis.  相似文献   

19.
Exogenous soluble human alpha3 noncollagenous (NC1) domain of collagen IV inhibits angiogenesis and tumor growth. These biological functions are attributed to the binding of alpha3NC1 to integrin alphavbeta3. However, in some tumor cells that express integrin alphavbeta3, the alpha3NC1 domain does not inhibit proliferation, suggesting that integrin alphavbeta3 expression is not sufficient to mediate the anti-tumorigenic activity of this domain. Therefore, in the present study, we searched for novel binding receptors for the soluble alpha3NC1 domain in cells lacking alphavbeta3 integrin. In these cells, soluble alpha3NC1 bound integrin alpha3beta1; however, unlike alphavbeta3, alpha3beta1 integrin did not mediate cell adhesion to immobilized alpha3NC1 domain. Interestingly, in cells lacking integrin alpha3beta1, adhesion to the alpha3NC1 domain was enhanced due to activation of integrin alphavbeta3. These findings indicate that integrin alpha3beta1 is a receptor for the alpha3NC1 domain and transdominantly inhibits integrin alphavbeta3 activation. Thus integrin alpha3beta1, in conjunction with integrin alphavbeta3, modulates cellular responses to the alpha3NC1 domain, which may be pivotal in the mechanism underpinning its anti-angiogenic and anti-tumorigenic activities.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号