首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The human pathogens enteropathogenic and enterohemorrhagic Escherichia coli (EPEC and EHEC) share a unique mechanism of colonization that results from the concerted action of effector proteins translocated into the host cell by a type III secretion system (T3SS). EPEC and EHEC not only induce characteristic attaching and effacing (A/E) lesions, but also subvert multiple host cell signalling pathways during infection. Our understanding of the mechanisms by which A/E pathogens hijack host cell signalling has advanced dramatically in recent months with the identification of novel activities for many effectors. In addition to further characterization of established effectors (Tir, EspH and Map), new effectors have emerged as important mediators of virulence through activities such as mimicry of Rho guanine nucleotide exchange factors (Map and EspM), inhibition of apoptosis (NleH and NleD), interference with inflammatory signalling pathways (NleB, NleC, NleE and NleH) and phagocytosis (EspF, EspH and EspJ). The findings have highlighted the multifunctional nature of the effectors and their ability to participate in redundant, synergistic or antagonistic relationships, acting in a co-ordinated spatial and temporal manner on different host organelles and cellular pathways during infection.  相似文献   

2.
HGF/MET signalling protects Plasmodium-infected host cells from apoptosis   总被引:5,自引:0,他引:5  
Plasmodium, the causative agent of malaria, migrates through several hepatocytes before initiating a malaria infection. We have previously shown that this process induces the secretion of hepatocyte growth factor (HGF) by traversed cells, which renders neighbour hepatocytes susceptible to infection. The signalling initiated by HGF through its receptor MET has multifunctional effects on various cell types. Our results reveal a major role for apoptosis protection of host cells by HGF/MET signalling on the host susceptibility to infection. Inhibition of HGF/MET signalling induces a specific increase in apoptosis of infected cells leading to a great reduction on infection. Since HGF/MET signalling is capable of protecting cells from apoptosis by using both PI3-kinase/Akt and, to a lesser extent, MAPK pathways, we determined the impact of these pathways on Plasmodium sporozoite infection. Although inhibition of either of these pathways leads to a reduction in infection, inhibition of PI3-kinase/Akt pathway caused a stronger effect, which correlated with a higher level of apoptosis in infected host cells. Altogether, the results show that the HGF/MET signalling requirement for infection is mediated by its anti-apoptotic signal effects. These results demonstrate for the first time that active inhibition of apoptosis in host cell during infection by Plasmodium is required for a successful infection.  相似文献   

3.
Modulation of NF-κB signalling by microbial pathogens   总被引:1,自引:0,他引:1  
  相似文献   

4.
Ubiquitination is generally considered as a eukaryotic protein modification, which is catalysed by a three‐enzyme cascade and is reversed by deubiquitinating enzymes. Ubiquitination directs protein degradation and regulates cell signalling, thereby plays key roles in many cellular processes including immune response, vesicle trafficking and cell cycle. Bacterial pathogens inject a series of virulent proteins, named effectors, into the host cells. Increasing evidence suggests that many effectors hijack the host ubiquitin pathways to benefit bacterial infection. This review summarizes the known functions and mechanisms of effectors from human bacterial pathogens including enteropathogenic Escherichia coli, Salmonella, Shigella, Chlamydia and Legionella, highlighting the diversity in their mechanisms for manipulating the host ubiquitin pathways. Many effectors adopt the molecular mimicry strategy to harbour similar structures or functional motifs with those of the host E3 ligases and deubiquitinases. On the other hand, a few of effectors evolve novel structures or new enzymatic activities to modulate various steps of the host ubiquitin pathways. The diversity in the mechanisms enhances the efficient exploitation of the host ubiquitination signalling by bacteria.  相似文献   

5.
6.
Cooperia oncophora is an important parasitic nematode of cattle with a wide distribution in temperate areas. Twenty Holstein nematode-naïve bull calves were experimentally infected with approximately 100,000 infective L3s and infection was allowed to progress for 7, 14, 28, 42 days, respectively. This experiment was conducted to identify putative recognition and inflammatory pathways in the host-parasite relationship. Gene expression profiles of the small intestine were compared using a high-density bovine 60 mer oligo microarray. A total of 310 genes were differentially expressed during the course of infection. The pathways and regulatory networks significantly impacted by the infection were analysed. A total of 22 canonical pathways and nine regulatory networks were significantly affected during infection. During the early phase of the infection (7 days p.i.), parasites suppressed the acute phase response and the complement system of the host. At 14 days p.i., three out of the six pathways impacted were related with retinoid X receptor (RXR) functions. At 28 days p.i., the effects on RXR were less evident. The host response shifted to lipid metabolism and signalling, especially eicosanoid production and signalling, suggesting that eicosanoid-mediated inflammation might be a major host defence mechanism. By 42 days p.i., the pathways impacted involved glycosphingolipid biosynthesis and transforming growth factor β (TGFβ signalling. The expression of cadherin-like 26 (CDH26) was strongly up-regulated starting at 14 days p.i. and peaked at 28 days p.i. The extent of its expression is positively correlated with the infiltration of eosinophils (R = 0.82) and coincides with the number of adult parasites in the tissue. CDH26 demonstrated an expression profile similar to two other cell adhesion molecules involved in recognition of carbohydrates on foreign organisms, collectin and galectin, suggesting that it may serve as a pattern recognition molecule for C. oncophora. These results provide a potential molecular roadmap for future studies aimed at defining host immune responses and understanding protective immunity against gastrointestinal nematodes.  相似文献   

7.
Toxoplasma gondii is a eukaryotic parasite that forms latent cysts in the brain of immunocompetent individuals. The latent parasite infection of the immune-privileged central nervous system is linked to most complications. With no drug currently available to eliminate the latent cysts in the brain of infected hosts, the consequences of neurons'' long-term infection are unknown. It has long been known that T. gondii specifically differentiates into a latent form (bradyzoite) in neurons, but how the infected neuron responds to the infection remains to be elucidated. We have established a new in vitro model resulting in the production of mature bradyzoite cysts in brain cells. Using dual, host and parasite RNA-seq, we characterized the dynamics of differentiation of the parasite, revealing the involvement of key pathways in this process. Moreover, we identified how the infected brain cells responded to the parasite infection revealing the drastic changes that take place. We showed that neuronal-specific pathways are strongly affected, with synapse signalling being particularly affected, especially glutamatergic synapse signalling. The establishment of this new in vitro model allows investigating both the dynamics of parasite differentiation and the specific response of neurons to long-term infection by this parasite.  相似文献   

8.
Enteropathogenic Escherichia coli (EPEC) subverts host signalling pathways and the cytoskeleton during infection, resulting in disease characterized by diarrhoea. Recent studies have revolutionized our understanding of the infection process by showing that this bacterium inserts its own receptor into the plasma membrane overlying the host actin cytoskeleton. The reorganized actin forms a pedestal-like structure with the bacterium at the tip. This review discusses the mechanism of infection and pedestal formation and how this system might be a powerful tool for studying actin dynamics at the plasma membrane.  相似文献   

9.
10.
Interferon signalling network in innate defence   总被引:6,自引:0,他引:6  
Interferons (IFNs) elicit multifaceted effects in host innate defence. Accumulating evidence revealed that not only the first identified Jak-Stat pathway but also other newly found signalling pathways are required for the induction of versatile responses by IFNs. In particular, type I IFNs are inducible by viral infection through the recognition of pathogen-associated molecules by pattern recognition receptors, and the induction of multiple IFN-stimulated genes through the activation of type I IFN signalling confers antiviral and immunomodulatory activities. Any step in this process is often targeted by viruses for their immuno-evasion. The regulatory function of constitutive IFN-alpha/beta signalling has been recognized in terms of its boosting effect on cellular responsiveness in host defence systems. Further comprehensive understanding of IFN signalling may offer a better direction to unravelling the complex signalling networks in the host defence system, and may contribute to their more effective therapeutic applications.  相似文献   

11.
Toll-like receptors (TLRs) recognize Mycobacterium tuberculosis (Mtb) or Mtb components and initiate mononuclear phagocyte responses that influence both innate and adaptive immunity. Recent studies have revealed the intracellular signalling cascades involved in the TLR-initiated immune response to mycobacterial infection. Although both TLR2 and TLR4 have been implicated in host interactions with Mtb, the relationship between specific mycobacterial molecules and various signal transduction pathways is not well understood. This review will discuss recent studies indicating critical roles for mycobacteria and mycobacterial components in regulation of mitogen-activated protein kinases and related signal transduction pathways that govern the outcome of infection and antibacterial defence. To better understand the roles of infection-induced signalling cascades in molecular pathogenesis, future studies are needed to clarify mechanisms that integrate the multiple signalling pathways that are activated by engagement of TLRs by both individual mycobacterial molecules and whole mycobacteria. These efforts will allow for the development of novel diagnostic and therapeutic modalities for tuberculosis that targets the intracellular signalling pathways permitting the replication of this nefarious pathogen.  相似文献   

12.
Herpesviruses have evolved numerous strategies to subvert host immune responses so they can coexist with their host species. These viruses 'co-opt' host genes for entry into host cells and then express immunomodulatory genes, including mimics of members of the tumour-necrosis factor (TNF) superfamily, that initiate and alter host-cell signalling pathways. TNF superfamily members have crucial roles in controlling herpesvirus infection by mediating the direct killing of infected cells and by enhancing immune responses. Despite these strong immune responses, herpesviruses persist in a latent form, which suggests a dynamic relationship between the host immune system and the virus that results in a balance between host survival and viral control.  相似文献   

13.
Borna disease virus (BDV) is a neurotropic RNA virus that establishes non-cytolytic persistent infection in the central nervous system of warm-blooded animals. Depending on the host species and the route of infection, BDV persistence can modulate neuronal plasticity and animal behaviour and/or may provoke a T cell-mediated immunopathological reaction with high mortality. Therefore, BDV functions as a model pathogen to study persistent virus infection in the central nervous system. Here, we review recent evidence showing that BDV interferes with a spectrum of intracellular signalling pathways, which may be involved in viral spread, maintenance of persistence and modulation of neurotransmitter pathways.  相似文献   

14.
Infectious microbes face an unwelcoming environment in their mammalian hosts, which have evolved elaborate multicelluar systems for recognition and elimination of invading pathogens. A common strategy used by pathogenic bacteria to establish infection is to secrete protein factors that block intracellular signalling pathways essential for host defence. Some of these proteins also act as toxins, directly causing pathology associated with disease. Bacillus anthracis, the bacterium that causes anthrax, secretes two plasmid-encoded enzymes, LF (lethal factor) and EF (oedema factor), that are delivered into host cells by a third bacterial protein, PA (protective antigen). The two toxins act on a variety of cell types, disabling the immune system and inevitably killing the host. LF is an extraordinarily selective metalloproteinase that site-specifically cleaves MKKs (mitogen-activated protein kinase kinases). Cleavage of MKKs by LF prevents them from activating their downstream MAPK (mitogen-activated protein kinase) substrates by disrupting a critical docking interaction. Blockade of MAPK signalling functionally impairs cells of both the innate and adaptive immune systems and induces cell death in macrophages. EF is an adenylate cyclase that is activated by calmodulin through a non-canonical mechanism. EF causes sustained and potent activation of host cAMP-dependent signalling pathways, which disables phagocytes. Here I review recent progress in elucidating the mechanisms by which LF and EF influence host signalling and thereby contribute to disease.  相似文献   

15.
Cell signalling and Trypanosoma cruzi invasion   总被引:1,自引:2,他引:1  
Mammalian cell invasion by the protozoan pathogen Trypanosoma cruzi is critical to its survival in the host. To promote its entry into a wide variety of non-professional phagocytic cells, infective trypomastigotes exploit an arsenal of heterogenous surface glycoproteins, secreted proteases and signalling agonists to actively manipulate multiple host cell signalling pathways. Signals initiated in the parasite upon contact with mammalian cells also function as critical regulators of the invasion process. Whereas the full spectrum of cellular responses modulated by T. cruzi is not yet known, mounting evidence suggests that these pathways impinge on a number of cellular processes, in particular the ubiquitous wound-repair mechanism exploited for lysosome-mediated parasite entry. Furthermore, differential engagement of host cell signalling pathways in a cell type-specific manner and modulation of host cell gene expression by T. cruzi are becoming recognized as essential determinants of infectivity and intracellular survival by this pathogen.  相似文献   

16.
Invasive aspergillosis has emerged as one of the most common life-threatening fungal disease of humans. The emergence of antifungal resistant pathogens represents a current and increasing threat to society. In turn, new strategies to combat fungal infection are urgently required. Fungal adaptations to stresses experienced within the human host are a prerequisite for the survival and virulence strategies of the pathogen. Here, we review the latest information on the signalling pathways in Aspergillus fumigatus that contribute to stress adaptations and virulence, while highlighting their potential as targets for the development of novel combinational antifungal therapies.  相似文献   

17.
Previous reports have shown that cells infected with promastigotes of some Leishmania species are resistant to the induction of apoptosis. This would suggest that either parasites elaborate factors that block signalling from apoptosis inducers or that parasites engage endogenous host signalling pathways that block apoptosis. To investigate the latter scenario, we determined whether Leishmania infection results in the activation of signalling pathways that have been shown to mediate resistance to apoptosis in other infection models. First, we showed that infection with the promastigote form of Leishmania major, Leishmania pifanoi and Leishmania amazonensis activates signalling through p38 mitogen-activated protein kinase (MAPK), NFkappaB and PI3K/Akt. Then we found that inhibition of signalling through the PI3K/Akt pathway with LY294002 and Akt IV inhibitor reversed resistance of infected bone marrow-derived macrophages and RAW 264.7 macrophages to potent inducers of apoptosis. Moreover, reduction of Akt levels with small interfering RNAs to Akt resulted in the inability of infected macrophages to resist apoptosis. Further evidence of the role of PI3K/Akt signalling in the promotion of cell survival by infected cells was obtained with the finding that Bad, which is a substrate of Akt, becomes phosphorylated during the course of infection. In contrast to the observations with PI3K/Akt signalling, inhibition of p38 MAPK signalling with SB202190 or NFkappaB signalling with wedelolactone had limited effect on parasite-induced resistance to apoptosis. We conclude that Leishmania promastigotes engage PI3K/Akt signalling, which confers to the infected cell, the capacity to resist death from activators of apoptosis.  相似文献   

18.
Infection of tomato by potato purple top (PPT) phytoplasma causes disruption of gibberellin (GA) homeostasis in the plant host. Such pathologically‐induced GA deficiency can be partially reversed by exogenous application of GA. This study was designed to explore the role of GA in tomato defence response against phytoplasmal disease, and to determine whether pretreatment with GA would protect healthy tomato seedlings from subsequent phytoplasmal infection and disease development. Our results revealed that, following exogenous GA application and subsequent PPT phytoplasma graft inoculation, there was an apparently coordinated down‐regulation of the gene encoding a key GA signalling component and growth repressor known as DELLA protein (GAI) and up‐regulation of genes involved in salicylic acid (SA) synthesis (ICS1), signalling (NIM1) and downstream defence responses (PRP‐1). Our results also indicated that differential regulation of the above genes was correlated with an increase in activities of defence‐related enzymes β‐1,3‐glucanase and chitinase. The data presented in this communication provide evidence to suggest that GA may act via DELLA and SA signalling pathways to modulate host defence in response to PPT phytoplasma infection. Although the GA pretreatment‐induced defence was not sufficient to prevent a systemic infection, it reduced phytoplasma titre and significantly attenuated disease symptoms. While the actual molecular mechanism underlying the GA‐induced plant defence remains elusive, findings from the current study open new opportunities for in‐depth studies of the functional role of the GA signalling network during defence response against phytoplasmal infection.  相似文献   

19.
Helicobacter pylori infection is a primary cause of peptic ulcers and is associated with gastric carcinogenesis. The H. pylori -induced pathophysiology may be linked to the deregulation of EGFR signalling. Elevated mucosal levels of EGF and the EGFR have been found in antral gastric biopsies of H. pylori -infected patients. A critical mechanism for regulating EGFR signalling is ligand-induced endocytosis. The internalized receptor recycles back to the plasma membrane for continued signalling or is targeted for degradation terminating receptor signalling. Here, we show that H. pylori blocks EGFR endocytosis and receptor degradation upon prolonged infection of gastric epithelial cells. Moreover, this inhibition occurs via a CagA-dependent, but CagA phosphorylation-independent activation of the non-receptor kinase c-Abl, which in turn phosphorylates the EGFR target site pY1173. This suggests a novel CagA-induced host cell response that is independent of CagA tyrosine phosphorylation. Our data indicate an intriguing strategy of H. pylori in host cell manipulations by altering selective receptor populations via a CagA-dependent endocytic mechanism. Furthermore, we identified a new role for c-Abl in phosphorylation of the EGFR target site pY1173 during H. pylori infection.  相似文献   

20.
Pseudomonas aeruginosa type III secretion apparatus exports and translocates four exotoxins into the cytoplasm of the host cell. The translocation requires two hydrophobic bacterial proteins, PopB and PopD, that are found associated with host cell membranes following infection. In this work we examined the influence of host cell elements on exotoxin translocation efficiency. We developed a quantitative flow cytometry based assay of translocation that used protein fusions between either ExoS or ExoY and the ?-lactamase reporter enzyme. In parallel, association of translocon proteins with host plasma membranes was evaluated by immunodetection of PopB/D following sucrose gradient fractionation of membranes. A pro-myelocytic cell line (HL-60) and a pro-monocytic cell line (U937) were found resistant to toxin injection even though PopB/D associated with host cell plasma membranes. Differentiation of these cells to either macrophage- or neutrophil-like cell lines resulted in injection-sensitive phenotype without significantly changing the level of membrane-inserted translocon proteins. As previous in vitro studies have indicated that the lysis of liposomes by PopB and PopD requires both cholesterol and phosphatidyl-serine, we first examined the role of cholesterol in translocation efficiency. Treatment of sensitive HL-60 cells with methyl-?-cyclodextrine, a cholesterol-depleting agent, resulted in a diminished injection of ExoS-Bla. Moreover, the PopB translocator was found in the membrane fraction, obtained from sucrose-gradient purifications, containing the lipid-raft marker flotillin. Examination of components of signalling pathways influencing the toxin injection was further assayed through a pharmacological approach. A systematic detection of translocon proteins within host membranes showed that, in addition to membrane composition, some general signalling pathways involved in actin polymerization may be critical for the formation of a functional pore. In conclusion, we provide new insights in regulation of translocation process and suggest possible cross-talks between eukaryotic cell and the pathogen at the level of exotoxin translocation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号