首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bacteria in the genus Providencia are pathogens of many organisms, including humans and insects. We and colleagues have isolated five different strains belonging to four distinct Providencia species as natural infections of Drosophila melanogaster captured in the wild. We found that these isolates vary considerably in pathology to infected D. melanogaster, differing in the level of mortality they cause, their ability to replicate within the host and the level that the fly's immune response is elicited. One interesting bacterium was Providencia sneebia, which causes nearly complete mortality and reaches large numbers in the fly but does not elicit a comparably strong immune response. Through coinfection experiments, we determined that P. sneebia avoids recognition by the immune system. We tested for biofilm formation and replication within D. melanogaster cells as possible mechanisms for P. sneebia escape from host immunity, but did not find evidence for either. D. melanogaster and Providencia provide a powerful system for studying general host-pathogen interactions, and for understanding how the well-studied immune model host D. melanogaster interacts with its natural bacterial pathogens.  相似文献   

2.
《Fly》2013,7(1):80-87
Since the discovery of the small, gram-positive bacterium, Spiroplasma, as a sex-ratio distorting agent in Drosophila over 50 years ago, substantial progress has been made in understanding the relationship of this bacteria with its insect host. Thus far, spiroplasmas have been found as heritable endosymbionts in sixteen different species of Drosophila. In some species these bacteria cause a male-killing phenotype, where the males die during embryogenesis. In other species, however, Spiroplasma does not cause male-killing, and its fitness effects are unclear. Though recent research has identified multiple factors that affect the prevalence and transmission of spiroplasmas in Drosophila populations, much work remains to fully characterize this symbiosis. Spiroplasma is the only identified heritable bacterial endosymbiont of Drosophila, other than Wolbachia, and can serve as a useful as model for elucidating the nature of insect/bacterial interactions.  相似文献   

3.
We investigated the interactions between the endosymbionts Wolbachia pipientis strain wMel and Spiroplasma sp. strain NSRO coinfecting the host insect Drosophila melanogaster. By making use of antibiotic therapy, temperature stress, and hemolymph microinjection, we established the following strains in the same host genetic background: the SW strain, infected with both Spiroplasma and Wolbachia; the S strain, infected with Spiroplasma only; and the W strain, infected with Wolbachia only. The infection dynamics of the symbionts in these strains were monitored by quantitative PCR during host development. The infection densities of Spiroplasma exhibited no significant differences between the SW and S strains throughout the developmental course. In contrast, the infection densities of Wolbachia were significantly lower in the SW strain than in the W strain at the pupal and young adult stages. These results indicated that the interactions between the coinfecting symbionts were asymmetrical, i.e., Spiroplasma organisms negatively affected the population of Wolbachia organisms, while Wolbachia organisms did not influence the population of Spiroplasma organisms. In the host body, the symbionts exhibited their own tissue tropisms: among the tissues examined, Spiroplasma was the most abundant in the ovaries, while Wolbachia showed the highest density in Malpighian tubules. Strikingly, basically no Wolbachia organisms were detected in hemolymph, the principal location of Spiroplasma. These results suggest that different host tissues act as distinct microhabitats for the symbionts and that the lytic process in host metamorphosis might be involved in the asymmetrical interactions between the coinfecting symbionts.  相似文献   

4.
Maternally transmitted endosymbionts are widespread among insects, but how they are maintained within host populations is largely unknown. Recent discoveries show that some endosymbionts protect their hosts from pathogens or parasites. Spiroplasma, an endosymbiont of Drosophila neotestacea, protects female hosts from the sterilizing effects of parasitism by the nematode Howardula aoronymphium. Here, we show that Spiroplasma spreads rapidly within experimental populations of D. neotestacea subject to Howardula parasitism, but is neither strongly favored nor selected against in the absence of Howardula. In a reciprocal experiment, Howardula declined steadily to extinction in populations of Spiroplasma-infected flies, whereas in populations of uninfected flies, the prevalence of Howardula parasitism increased to c. 100%. Thus, Spiroplasma and Howardula exhibit effectively consumer-resource trophic dynamics. The recent spread of Spiroplasma in natural populations of D. neotestacea coincides with a decline in the prevalence of Howardula parasitism in the wild.  相似文献   

5.
Maternally inherited endosymbionts are found in numerous insect species and have various effects on host ecology. New symbioses are most commonly established following lateral transfer of an existing symbiont from one host species to another. Laboratory study has demonstrated that symbionts commonly perform poorly in novel hosts, with weak vertical transmission and maladaptive pathogenicity being observed in the generations following transfer. This poor performance probably limits symbiont occurrence. We here use microarray technology to test whether poor symbiont performance observed following 1 year of vertical transmission through a new host is associated with alteration in host gene expression or whether it occurs independently of this. We utilize the Drosophila melanogaster--Spiroplasma interaction and test the response of the host in the presence of both natural Spiroplasma infections and novel Spiroplasma infections transinfected previously from other host species. None of the Spiroplasma infections investigated produced upregulation in host haemolymph/fat body-based immune responses, and we therefore rejected the hypothesis that failure to thrive was associated with immune upregulation. One infection was associated with a downregulation of genes associated with egg production compared to uninfected controls, indicative of damage to the host. The Spiroplasma infection showed that the weakest vertical transmission showed no significant disturbance to host gene expression compared to uninfected controls. We conclude that the failure of Spiroplasma in novel host species is associated either with causing harm to their new hosts or through a failure to thrive in the new host that occurs independently of host responses to infection.  相似文献   

6.
Many insect species carry inherited Spiroplasma bacteria which act as important partners and antagonists. The nature of symbioses between Spiroplasma and insects has been most extensively studied in the interaction between male-killing Spiroplasma infection and Drosophila melanogaster. For historical reasons, these studies have largely focussed on the Spiroplasma strain known as NSRO, derived from Drosophila nebulosa and transinfected into D. melanogaster. More recently, D. melanogaster naturally infected with Spiroplasma were discovered. Whilst the well studied strain NSRO is closely related to that found natively in D. melanogaster, it is unclear whether strains from D. nebulosa reflect a natural interaction when placed in D. melanogaster. In this paper, we determine if NSRO has similar or different properties from strains of Spiroplasma naturally infecting D. melanogaster in terms of transmission efficiency and the strength and timing of male-killing. Native infections were observed to have higher transmission efficiency than introduced NSRO infections during the early phases of host reproduction, but not during late reproduction. The timing and intensity of male-killing did not differ between infection classes. As a precautionary measure, it is proposed that future work seeking to reveal the nature of coevolved Spiroplasma-Drosophila interactions use the native strain.  相似文献   

7.
Inactivation of host Rho GTPases is a widespread strategy employed by bacterial pathogens to manipulate mammalian cellular functions and avoid immune defenses. Some bacterial toxins mimic eukaryotic Rho GTPase-activating proteins (GAPs) to inactivate mammalian GTPases, probably as a result of evolutionary convergence. An intriguing question remains whether eukaryotic pathogens or parasites may use endogenous GAPs as immune-suppressive toxins to target the same key genes as bacterial pathogens. Interestingly, a RhoGAP domain-containing protein, LbGAP, was recently characterized from the parasitoid wasp Leptopilina boulardi, and shown to protect parasitoid eggs from the immune response of Drosophila host larvae. We demonstrate here that LbGAP has structural characteristics of eukaryotic RhoGAPs but that it acts similarly to bacterial RhoGAP toxins in mammals. First, we show by immunocytochemistry that LbGAP enters Drosophila immune cells, plasmatocytes and lamellocytes, and that morphological changes in lamellocytes are correlated with the quantity of LbGAP they contain. Demonstration that LbGAP displays a GAP activity and specifically interacts with the active, GTP-bound form of the two Drosophila Rho GTPases Rac1 and Rac2, both required for successful encapsulation of Leptopilina eggs, was then achieved using biochemical tests, yeast two-hybrid analysis, and GST pull-down assays. In addition, we show that the overall structure of LbGAP is similar to that of eukaryotic RhoGAP domains, and we identify distinct residues involved in its interaction with Rac GTPases. Altogether, these results show that eukaryotic parasites can use endogenous RhoGAPs as virulence factors and that despite their differences in sequence and structure, eukaryotic and bacterial RhoGAP toxins are similarly used to target the same immune pathways in insects and mammals.  相似文献   

8.
Organisms evolve two routes to surviving infections—they can resist pathogen growth (resistance) and they can endure the pathogenesis of infection (tolerance). The sum of these two properties together defines the defensive capabilities of the host. Typically, studies of animal defenses focus on either understanding resistance or, to a lesser extent, tolerance mechanisms, thus providing little understanding of the relationship between these two mechanisms. We suggest there are nine possible pairwise permutations of these traits, assuming they can increase, decrease, or remain unchanged in an independent manner. Here we show that by making a single mutation in the gene encoding a protease, CG3066, active in the melanization cascade in Drosophila melanogaster, we observe the full spectrum of changes; these mutant flies show increases and decreases in their resistance and tolerance properties when challenged with a variety of pathogens. This result implicates melanization in fighting microbial infections and shows that an immune response can affect both resistance and tolerance to infections in microbe-dependent ways. The fly is often described as having an unsophisticated and stereotypical immune response where single mutations cause simple binary changes in immunity. We report a level of complexity in the fly's immune response that has strong ecological implications. We suggest that immune responses are highly tuned by evolution, since selection for defenses that alter resistance against one pathogen may change both resistance and tolerance to other pathogens.  相似文献   

9.
The outcome of microbial infection of insects is dependent not only on interactions between the host and pathogen, but also on the interactions between microbes that co-infect the host. Recently the maternally inherited endosymbiotic bacteria Wolbachia has been shown to protect insects from a range of microbial and eukaryotic pathogens. Mosquitoes experimentally infected with Wolbachia have upregulated immune responses and are protected from a number of pathogens including viruses, bacteria, Plasmodium and filarial nematodes. It has been hypothesised that immune upregulation underpins Wolbachia-mediated protection. Drosophila is a strong model for understanding host-Wolbachia-pathogen interactions. Wolbachia-mediated antiviral protection in Drosophila has been demonstrated for a number of different Wolbachia strains. In this study we investigate whether Wolbachia-infected flies are also protected against pathogenic bacteria. Drosophila simulans lines infected with five different Wolbachia strains were challenged with the pathogenic bacteria Pseudomonas aeruginosa PA01, Serratia marcescens and Erwinia carotovora and mortality compared to paired lines without Wolbachia. No difference in mortality was observed in the flies with or without Wolbachia. Similarly no antibacterial protection was observed for D. melanogaster infected with Wolbachia. Interestingly, D. melanogaster Oregon RC flies which are naturally infected with Wolbachia showed no upregulation of the antibacterial immune genes TepIV, Defensin, Diptericin B, PGRP-SD, Cecropin A1 and Attacin D compared to paired flies without Wolbachia. Taken together these results indicate that Wolbachia-mediated antibacterial protection is not ubiquitous in insects and furthermore that the mechanisms of antibacterial and antiviral protection are independent. We suggest that the immune priming and antibacterial protection observed in Wolbachia-infected mosquitoes may be a consequence of the recent artificial introduction of the symbiont into insects that normally do not carry Wolbachia and that antibacterial protection is unlikely to be found in insects carrying long-term Wolbachia infections.  相似文献   

10.
Multiple studies have shown that infection with the endosymbiotic bacterium Wolbachia pipientis confers Drosophila melanogaster and other insects with resistance to infection by RNA viruses. Studies investigating whether Wolbachia infection induces the immune system or confers protection against secondary bacterial infection have not shown any effect. These studies, however, have emphasized resistance against extracellular pathogens. Since Wolbachia lives inside the host cell, we hypothesized that Wolbachia might confer resistance to pathogens that establish infection by invading host cells. We therefore tested whether Wolbachia-infected D. melanogaster are protected against infection by the intracellular pathogenic bacteria Listeria monocytogenes and Salmonella typhimurium, as well as the extracellular pathogenic bacterium Providencia rettgeri. We evaluated the ability of flies infected with Wolbachia to suppress secondary infection by pathogenic bacteria relative to genetically matched controls that had been cured of Wolbachia by treatment with tetracycline. We found no evidence that Wolbachia alters host ability to suppress proliferation of any of the three pathogenic bacteria. Our results indicate that Wolbachia-induced antiviral protection does not result from a generalized response to intracellular pathogens.  相似文献   

11.
Bacterial endosymbionts are common in insects and can have dramatic effects on their host's evolution. So far, the only heritable symbionts found in Drosophila have been Wolbachia and Spiroplasma . While the incidence and effects of Wolbachia have been studied extensively, the prevalence and significance of Spiroplasma infections in Drosophila are less clear. These small, gram-positive, helical bacteria infect a diverse array of plant and arthropod hosts, conferring a variety of fitness effects. Male-killing Spiroplasma are known from certain Drosophila species; however, in others, Spiroplasma appear not to affect sex ratio. Previous studies have identified different Spiroplasma haplotypes in Drosophila populations, although no extensive surveys have yet been reported. We used a multilocus sequence analysis to reconstruct a robust Spiroplasma endosymbiont phylogeny, assess genetic diversity, and look for evidence of recombination. Six loci were sequenced from over 65 Spiroplasma -infected individuals from nine different Drosophila species. Analysis of these sequences reveals at least five separate introductions of four phylogenetically distinct Spiroplasma haplotypes, indicating that more extensive sampling will likely reveal an even greater Spiroplasma endosymbiont diversity. Patterns of variation in Drosophila mitochondrial haplotypes in Spiroplasma -infected and uninfected flies imply imperfect vertical transmission in host populations and possible horizontal transmission.  相似文献   

12.
Ayres JS  Freitag N  Schneider DS 《Genetics》2008,178(3):1807-1815
We extended the use of Drosophila beyond being a model for signaling pathways required for pattern recognition immune signaling and show that the fly can be used to identify genes required for pathogenesis and host-pathogen interactions. We performed a forward genetic screen to identify Drosophila mutations altering sensitivity to the intracellular pathogen Listeria monocytogenes. We recovered 18 mutants with increased susceptibility to infection, none of which were previously shown to function in a Drosophila immune response. Using secondary screens, we divided these mutants into two groups: In the first group, mutants have reduced endurance to infections but show no change in bacterial growth. This is a new fly immunity phenotype that is not commonly studied. In the second group, mutants have a typical defense defect in which bacterial growth is increased and survival is decreased. By further challenging mutant flies with L. monocytogenes mutants, we identified subgroups of fly mutants that affect specific stages of the L. monocytogenes life cycle, exit from the vacuole, or actin-based movement. There is no overlap between our genes and the hundreds of genes identified in Drosophila S2 cells fighting L. monocytogenes infection, using genomewide RNAi screens in vitro. By using a whole-animal model and screening for host survival, we revealed genes involved in physiologies different from those that were found in previous screens, which all had defects in defensive immune signaling.  相似文献   

13.
14.
Although heritable microorganisms are increasingly recognized as widespread in insects, no systematic screens for such symbionts have been conducted in Drosophila species (the primary insect genetic models for studies of evolution, development, and innate immunity). Previous efforts screened relatively few Drosophila lineages, mainly for Wolbachia. We conducted an extensive survey of potentially heritable endosymbionts from any bacterial lineage via PCR screens of mature ovaries in 181 recently collected fly strains representing 35 species from 11 species groups. Due to our fly sampling methods, however, we are likely to have missed fly strains infected with sex ratio-distorting endosymbionts. Only Wolbachia and Spiroplasma, both widespread in insects, were confirmed as symbionts. These findings indicate that in contrast to some other insect groups, other heritable symbionts are uncommon in Drosophila species, possibly reflecting a robust innate immune response that eliminates many bacteria. A more extensive survey targeted these two symbiont types through diagnostic PCR in 1225 strains representing 225 species from 32 species groups. Of these, 19 species were infected by Wolbachia while only 3 species had Spiroplasma. Several new strains of Wolbachia and Spiroplasma were discovered, including ones divergent from any reported to date. The phylogenetic distribution of Wolbachia and Spiroplasma in Drosophila is discussed.  相似文献   

15.
Yano T  Kurata S 《Autophagy》2008,4(7):958-960
Macroautophagy (referred to hereafter as autophagy) functions not only in self-digestion, but also in the killing and degradation of infectious pathogens in in vitro-cultured cells. Based on genetic manipulations of both the host, Drosophila and pathogen, Listeria monocytogenes, we recently reported that L. monocytogenes-induced autophagy is dependent on the recognition of the pathogen by the Drosophila pattern recognition protein, PGRP-LE. Autophagy and PGRP-LE are crucial for inhibition of the intracellular growth of bacteria in hemocytes, the target cells of L. monocytogenes infection in vivo. The importance of autophagy in the resistance of Drosophila against L. monocytogenes is further indicated in in vivo survival experiments. The signaling pathway(s) that induces autophagy by PGRP-LE is independent of the known immune signaling pathways, suggesting that another unidentified pathway(s) is involved. The results of the present study demonstrate that the induction of autophagy, as an innate immune response targeting intracellular pathogens, is activated by intracellular sensors through unidentified pathways.  相似文献   

16.
The interaction between the immune system and pathogens is often characterised as a predator–prey interaction. This characterisation ignores the fact that both require host resources to reproduce. Here, we propose novel theory that considers how these resource requirements can modify the interaction between the immune system and pathogens. We derive a series of models to describe the energetic interaction between the immune system and pathogens, from fully independent resources to direct competition for the same resource. We show that increasing within‐host resource supply has qualitatively distinct effects under these different scenarios. In particular, we show the conditions for which pathogen load is expected to increase, decrease or even peak at intermediate resource supply. We survey the empirical literature and find evidence for all three patterns. These patterns are not explained by previous theory, suggesting that competition for host resources can have a strong influence on the outcome of disease.  相似文献   

17.
Pathogens have developed multiple strategies that allow them to exploit host resources and resist the immune response. To study how Drosophila flies deal with infectious diseases in a natural context, we investigated the interactions between Drosophila and a newly identified entomopathogen, Pseudomonas entomophila. Flies orally infected with P. entomophila rapidly succumb despite the induction of both local and systemic immune responses, indicating that this bacterium has developed specific strategies to escape the fly immune response. Using a combined genetic approach on both host and pathogen, we showed that P. entomophila virulence is multi-factorial with a clear differentiation between factors that trigger the immune response and those that promote pathogenicity. We demonstrate that AprA, an abundant secreted metalloprotease produced by P. entomophila, is an important virulence factor. Inactivation of aprA attenuated both the capacity to persist in the host and pathogenicity. Interestingly, aprA mutants were able to survive to wild-type levels in immune-deficient Relish flies, indicating that the protease plays an important role in protection against the Drosophila immune response. Our study also reveals that the major contribution to the fly defense against P. entomophila is provided by the local, rather than the systemic immune response. More precisely, our data points to an important role for the antimicrobial peptide Diptericin against orally infectious Gram-negative bacteria, emphasizing the critical role of local antimicrobial peptide expression against food-borne pathogens.  相似文献   

18.
Multiple laboratory studies have evolved hosts against a nonevolving pathogen to address questions about evolution of immune responses. However, an ecologically more relevant scenario is one where hosts and pathogens can coevolve. Such coevolution between the antagonists, depending on the mutual selection pressure and additive variance in the respective populations, can potentially lead to a different pattern of evolution in the hosts compared to a situation where the host evolves against a nonevolving pathogen. In the present study, we used Drosophila melanogaster as the host and Pseudomonas entomophila as the pathogen. We let the host populations either evolve against a nonevolving pathogen or coevolve with the same pathogen. We found that the coevolving hosts on average evolved higher survivorship against the coevolving pathogen and ancestral (nonevolving) pathogen relative to the hosts evolving against a nonevolving pathogen. The coevolving pathogens evolved greater ability to induce host mortality even in nonlocal (novel) hosts compared to infection by an ancestral (nonevolving) pathogen. Thus, our results clearly show that the evolved traits in the host and the pathogen under coevolution can be different from one‐sided adaptation. In addition, our results also show that the coevolving host–pathogen interactions can involve certain general mechanisms in the pathogen, leading to increased mortality induction in nonlocal or novel hosts.  相似文献   

19.
Salmonellae are bacterial pathogens that have evolved sophisticated strategies to evade host immune defenses. These strategies include the secretion of effector proteins into mammalian cells so as to subvert innate immune and apoptotic signaling pathways, thereby allowing Salmonella to avoid elimination. Here, we show that the secreted Salmonella typhimurium effector protein AvrA possesses acetyltransferase activity toward specific mitogen-activated protein kinase kinases (MAPKKs) and potently inhibits c-Jun N-terminal kinase (JNK) and NF-kappaB signaling pathways in both transgenic Drosophila and murine models. Furthermore, we show that AvrA dampens the proapoptotic innate immune response to Salmonella at the mouse intestinal mucosa. This activity is consistent with the natural history of Salmonella in mammalian hosts, where the bacteria elicit transient inflammation but do not destroy epithelial cells. Our findings suggest that targeting JNK signaling to dampen apoptosis may be a conserved strategy for intracellular pathogens.  相似文献   

20.
Wolbachia, a common bacterial endosymbiont of insects, has been shown to protect its hosts against a wide range of pathogens. However, not all strains exert a protective effect on their host. Here we assess the effects of two divergent Wolbachia strains, wAlbB from Aedes albopictus and wMelPop from Drosophila melanogaster, on the vector competence of Anopheles gambiae challenged with Plasmodium berghei. We show that the wAlbB strain significantly increases P. berghei oocyst levels in the mosquito midgut while wMelPop modestly suppresses oocyst levels. The wAlbB strain is avirulent to mosquitoes while wMelPop is moderately virulent to mosquitoes pre-blood meal and highly virulent after mosquitoes have fed on mice. These various effects on P. berghei levels suggest that Wolbachia strains differ in their interactions with the host and/or pathogen, and these differences could be used to dissect the molecular mechanisms that cause interference of pathogen development in mosquitoes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号