首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mycobacterium tuberculosis (Mtb) has evolved to evade host innate immunity by interfering with macrophage functions. Interleukin-1β (IL-1β) is secreted by macrophages after the activation of the inflammasome complex and is crucial for host defense against Mtb infections. We have previously shown that Mtb is able to inhibit activation of the AIM2 inflammasome and subsequent pyroptosis. Here we show that Mtb is also able to inhibit host cell NLRP3 inflammasome activation and pyroptosis. We identified the serine/threonine kinase PknF as one protein of Mtb involved in the NLRP3 inflammasome inhibition, since the pknF deletion mutant of Mtb induces increased production of IL-1β in bone marrow-derived macrophages (BMDMs). The increased production of IL-1β was dependent on NLRP3, the adaptor protein ASC and the protease caspase-1, as revealed by studies performed in gene-deficient BMDMs. Additionally, infection of BMDMs with the pknF deletion mutant resulted in increased pyroptosis, while the IL-6 production remained unchanged compared to Mtb-infected cells, suggesting that the mutant did not affect the priming step of inflammasome activation. In contrast, the activation step was affected since potassium efflux, chloride efflux and the generation of reactive oxygen species played a significant role in inflammasome activation and subsequent pyroptosis mediated by the Mtb pknF mutant strain. In conclusion, we reveal here that the serine/threonine kinase PknF of Mtb plays an important role in innate immune evasion through inhibition of the NLRP3 inflammasome.  相似文献   

2.
Cryopyrin (CIAS1, NLRP3) and ASC are components of the inflammasome, a multiprotein complex required for caspase-1 activation and cytokine IL-1beta production. CIAS1 mutations underlie autoinflammation characterized by excessive IL-1beta secretion. Disease-associated cryopyrin also causes a program of necrosis-like cell death in macrophages, the mechanistic details of which are unknown. We find that patient monocytes carrying disease-associated CIAS1 mutations exhibit excessive necrosis-like death by a process dependent on ASC and cathepsin B, resulting in spillage of the proinflammatory mediator HMGB1. Shigella flexneri infection also causes cryopyrin-dependent macrophage necrosis with features similar to the death caused by mutant CIAS1. This necrotic death is independent of caspase-1 and IL-1beta, and thus independent of the inflammasome. Furthermore, necrosis of primary macrophages requires the presence of Shigella virulence genes. While similar proteins mediate pathogen-induced cell death in plants, this report identifies cryopyrin as an important host regulator of programmed pathogen-induced necrosis in animals, a process we term pyronecrosis.  相似文献   

3.
Tuberculosis (TB), caused by the infection of Mycobacterium tuberculosis (MTB), is one of the leading causes of death worldwide, especially in children. However, the mechanisms by which MTB infects its cellular host, activates an immune response, and triggers inflammation remain unknown. Mitochondria play important roles in the initiation and activation of the nucleotide-binding oligomerization domain-like receptor with a pyrin domain 3 (NLRP3) inflammasome, where mitochondria-associated endoplasmic reticulum membranes (MAMs) may serve as the platform for inflammasome assembly and activation. Additionally, mitofusin 2 (MFN2) is implicated in the formation of MAMs, but, the roles of mitochondria and MFN2 in MTB infection have not been elucidated. Using mircroarry profiling of TB patients and in vitro MTB stimulation of macrophages, we observed an up-regulation of MFN2 in the peripheral blood mononuclear cells of active TB patients. Furthermore, we found that MTB stimulation by MTB-specific antigen ESAT-6 or lysate of MTB promoted MFN2 interaction with NLRP3 inflammasomes, resulting in the assembly and activation of the inflammasome and, subsequently, IL-1β secretion. These findings suggest that MFN2 and mitochondria play important role in the pathogen-host interaction during MTB infection.  相似文献   

4.
杨瑞丽  孙佳楠  陆伟 《生命科学》2013,(11):1084-1088
结核分枝杆菌(Mycobacterium tuberculosis,Mtb)感染后能抑制宿主巨噬细胞(M西)的免疫反应,并在其中生存、复制。研究表明Mtb减毒株感染主要诱导宿主Mφ凋亡,凋亡能抑制胞内Mtb的活力;而Mtb毒力株感染能抑制凋亡的完成,诱导Mφ坏死,最终导致Mtb扩散、感染临近细胞。通过对Mtb感染诱导宿主Mφ不同死亡方式的讨论,进一步认识Mtb的致病机制。  相似文献   

5.
6.
Human macrophages (Mphi) respond to Mycobacterium tuberculosis (Mtb) infection by undergoing apoptosis, a cornerstone of effective antimycobacterial host defense. Virulent mycobacteria override this reaction by inducing necrosis leading to uncontrolled Mtb replication. Accordingly, Mphi death induced by inoculation with Mtb had the characteristics of apoptosis and necrosis and correlated with moderate increase of mitochondrial permeability transition (MPT), mitochondrial cytochrome c release, and caspase-9 and -3 activation. We hypothesized that changes in intramitochondrial Ca(2+) concentration ([Ca(2+)](m)) determine whether Mphi undergo either apoptosis or necrosis. Therefore, we induced mechanism(s) leading to predominant apoptosis or necrosis by modulating [Ca(2+)](m) and examined their physiological consequences. Adding calcium ionophore A23187 to Mphi inoculated with Mtb further increased calcium flux into the cells which is thought to lead to increased [Ca(2+)](m), blocked necrosis, stabilized MPT, decreased mitochondrial cytochrome c release, lowered caspase activation, and accompanied effective antimycobacterial activity. In contrast, Mphi infected with Mtb in presence of the mitochondrial calcium uniporter inhibitor ruthenium red showed increased mitochondrial swelling and cytochrome c release and decreased MPT and antimycobacterial activity. Thus, in Mtb-infected Mphi, high levels of mitochondrial membrane integrity, low levels of caspase activation, and diminished mitochondrial cytochrome c release are hallmarks of apoptosis and effective antimycobacterial activity. In contrast, breakdown of mitochondrial membrane integrity and increased caspase activation are characteristic of necrosis and uncontrolled Mtb replication.  相似文献   

7.
8.
9.
10.
Multi-protein complexes called inflammasomes have recently been identified and shown to contribute to cell death in tissue injury. Intravenous immunoglobulin (IVIg) is an FDA-approved therapeutic modality used for various inflammatory diseases. The objective of this study is to investigate dynamic responses of the NLRP1 and NLRP3 inflammasomes in stroke and to determine whether the NLRP1 and NLRP3 inflammasomes can be targeted with IVIg for therapeutic intervention. Primary cortical neurons were subjected to glucose deprivation (GD), oxygen–glucose deprivation (OGD) or simulated ischemia-reperfusion (I/R). Ischemic stroke was induced in C57BL/6J mice by middle cerebral artery occlusion, followed by reperfusion. Neurological assessment was performed, brain tissue damage was quantified, and NLRP1 and NLRP3 inflammasome protein levels were evaluated. NLRP1 and NLRP3 inflammasome components were also analyzed in postmortem brain tissue samples from stroke patients. Ischemia-like conditions increased the levels of NLRP1 and NLRP3 inflammasome proteins, and IL-1β and IL-18, in primary cortical neurons. Similarly, levels of NLRP1 and NLRP3 inflammasome proteins, IL-1β and IL-18 were elevated in ipsilateral brain tissues of cerebral I/R mice and stroke patients. Caspase-1 inhibitor treatment protected cultured cortical neurons and brain cells in vivo in experimental stroke models. IVIg treatment protected neurons in experimental stroke models by a mechanism involving suppression of NLRP1 and NLRP3 inflammasome activity. Our findings provide evidence that the NLRP1 and NLRP3 inflammasomes have a major role in neuronal cell death and behavioral deficits in stroke. We also identified NLRP1 and NLRP3 inflammasome inhibition as a novel mechanism by which IVIg can protect brain cells against ischemic damage, suggesting a potential clinical benefit of therapeutic interventions that target inflammasome assembly and activity.  相似文献   

11.

Background

Upon repeated or chronic antigen stimulation, activated T cells undergo a T cell receptor (TCR)-triggered propriocidal cell death important for governing the intensity of immune responses. This is thought to be chiefly mediated by an extrinsic signal through the Fas-FasL pathway. However, we observed that TCR restimulation still potently induced apoptosis when this interaction was blocked, or genetically impaired in T cells derived from autoimmune lymphoproliferative syndrome (ALPS) patients, prompting us to examine Fas-independent, intrinsic signals.

Results

Upon TCR restimulation, we specifically noted a marked increase in the expression of BIM, a pro-apoptotic Bcl-2 family protein known to mediate lymphocyte apoptosis induced by cytokine withdrawal. In fact, T cells from an ALPS type IV patient in which BIM expression is suppressed were more resistant to restimulation-induced death. Strikingly, knockdown of BIM expression rescued normal T cells from TCR-induced death to as great an extent as Fas disruption.

Conclusion

Our data implicates BIM as a critical mediator of apoptosis induced by restimulation as well as growth cytokine withdrawal. These findings suggest an important role for BIM in eliminating activated T cells even when IL-2 is abundant, working in conjunction with Fas to eliminate chronically stimulated T cells and maintain immune homeostasis.

Reviewers

This article was reviewed by Dr. Wendy Davidson (nominated by Dr. David Scott), Dr. Mark Williams (nominated by Dr. Neil Greenspan), and Dr. Laurence C. Eisenlohr.  相似文献   

12.
Optic nerve transection results in the death of retinal ganglion cells (RGCs) by apoptosis. Apoptosis is regulated by the Bcl-2 family of proteins, of which the Bcl-2 homology (BH3) -only proteins forms a subset. As BH3-only proteins have been shown to play a significant role in regulating cell death in the central nervous system, we wished to investigate the role of Bcl-2 interacting mediator of cell death (Bim), a prominent member of this protein family in the regulation of cell death in the RGC layer using in vitro retinal explants. In this study, we use an innovative retinal shaving procedure to isolate the cells of the ganglion cell layer to use for western blotting. Members of the BH3-only protein family are down-regulated during retinal development and are not normally expressed in the adult retina. Using this procedure, we demonstrate that Bim is re-expressed and its expression is increased over time following axotomy. Expression of Bad and Bik decreases over the same time course, whereas there is no indication that Bid and Puma are re-expressed. We show that explants from Bim knockout mice are resistant to axotomy-induced death when compared with their wild-type counterparts. Genetic deletion of Bim also prevents caspase 3 cleavage. The activity of Bim can be negatively regulated by phosphorylation. We show that the decrease of Bim phosphorylation correlates with a decrease in expression of survival kinases such as pAkt and pERK over the same time course. These results implicate Bim re-expression as being essential for axotomy-induced death of RGCs and that phosphorylation of Bim negatively regulates its activity in RGCs.  相似文献   

13.
《Autophagy》2013,9(4):457-466
The aim of this study is to examine the role of autophagy in cell death by using a well-established system in which zVAD, a pan-caspase inhibitor, induces necrotic cell death in L929 murine fibrosarcoma cells. First, we observed the presence of autophagic hallmarks, including an increased number of autophagosomes and the accumulation of LC3-II in zVAD-treated L929 cells. Since the presence of such autophagic hallmarks could be the result of either increased flux of autophagy or blockage of autophagosome maturation (lysosomal fusion and degradation), we next tested the effect of rapamycin, a specific inhibitor for mTOR, and chloroquine, a lysosomal enzyme inhibitor, on zVAD-induced cell death. To our surprise, rapamycin, known to be an autophagy inducer, blocked zVAD-induced cell death, whereas chloroquine greatly sensitized zVAD-induced cell death in L929 cells. Moreover, similar results with rapamycin and chloroquine were also observed in U937 cells when challenged with zVAD. Consistently, induction of autophagy by serum starvation offered significant protection against zVAD-induced cell death, whereas knockdown of Atg5, Atg7 or Beclin 1 markedly sensitized zVAD-induced cell death in L929 cells. More importantly, Atg genes knockdown completely abolished the protective effect of serum starvation on zVAD-induced cell death. Finally, we demonstrated that zVAD was able to inhibit lysosomal enzyme cathepsin B activity, and subsequently blocked autophagosome maturation. Taken together, in contrast to the previous conception that zVAD induces autophagic cell death, here we provide compelling evidence suggesting that autophagy serves as a cell survival mechanism and suppression of autophagy via inhibition of lysosomal function contributes to zVAD-induced necrotic cell death.  相似文献   

14.
《Cytokine》2015,72(2):139-144
As a potent immune regulator, heat shock protein 70 derived from Mycobacterium tuberculosis (Mtb Hsp70) has adjuvant effect and activates immune cells such as macrophages and dendritic cells (DCs). Although Toll-like receptors (TLRs) are known to involve in DCs activation by Mtb Hsp70, there is still a controversy and the underlying mechanism is not well understood. In this study, we examined whether TRIF and MyD88, the core adaptor molecules for TLRs signaling, regulate Mtb Hsp70-induced DCs activation. Although Mtb Hsp70 produced substantial level of cytokines (IL-6, IL-12p40, and TNF-α) in TRIF-deficient DCs in a dose-dependent manner, each level was significantly lower than that in WT cells. The cytokines production was almost abolished in MyD88-deficient DCs. Consistent with cytokine results, Mtb Hsp70-induced activation of NF-κB and MAPKs was also impaired in both TRIF- and MyD88-deficient DCs, as compared with WT cells. Inhibitor assay revealed that NF-κB, ERK, and JNK, but not p38, regulate Mtb Hsp70-induced production of cytokines. In addition, the up-regulation of co-stimulatory molecules and MHC class II was mostly TRIF-dependent in DCs in response Mtb Hsp70, whereas MyD88 was only partially involved. Finally, mixed leukocytes reaction (MLR) assay revealed that both TRIF and MyD88 are critical for DCs ability promoted by Mtb Hsp70 to differentiate naïve T cells into effector T cells of producing IFN-γ. Our findings suggest that both TRIF and MyD88 are essential for the activation and maturation of DCs in response to Mtb Hsp70.  相似文献   

15.
Wu YT  Tan HL  Huang Q  Kim YS  Pan N  Ong WY  Liu ZG  Ong CN  Shen HM 《Autophagy》2008,4(4):457-466
The aim of this study is to examine the role of autophagy in cell death by using a well-established system in which zVAD, a pan-caspase inhibitor, induces necrotic cell death in L929 murine fibrosarcoma cells. First, we observed the presence of autophagic hallmarks, including an increased number of autophagosomes and the accumulation of LC3-II in zVAD-treated L929 cells. Since the presence of such autophagic hallmarks could be the result of either increased flux of autophagy or blockage of autophagosome maturation (lysosomal fusion and degradation), we next tested the effect of rapamycin, a specific inhibitor for mTOR, and chloroquine, a lysosomal enzyme inhibitor, on zVAD-induced cell death. To our surprise, rapamycin, known to be an autophagy inducer, blocked zVAD-induced cell death, whereas chloroquine greatly sensitized zVAD-induced cell death in L929 cells. Moreover, similar results with rapamycin and chloroquine were also observed in U937 cells when challenged with zVAD. Consistently, induction of autophagy by serum starvation offered significant protection against zVAD-induced cell death, whereas knockdown of Atg5, Atg7 or Beclin 1 markedly sensitized zVAD-induced cell death in L929 cells. More importantly, Atg genes knockdown completely abolished the protective effect of serum starvation on zVAD-induced cell death. Finally, we demonstrated that zVAD was able to inhibit lysosomal enzyme cathepsin B activity, and subsequently blocked autophagosome maturation. Taken together, in contrast to the previous conception that zVAD induces autophagic cell death, here we provide compelling evidence suggesting that autophagy serves as a cell survival mechanism and suppression of autophagy via inhibition of lysosomal function contributes to zVAD-induced necrotic cell death.  相似文献   

16.
The critical role of embC in Mycobacterium tuberculosis   总被引:1,自引:0,他引:1  
  相似文献   

17.
Interleukin‐1β (IL‐1β) represents one of the most important mediators of inflammation and host responses to infection. Mycobacterium tuberculosis (Mtb), the causative agent of human tuberculosis, induces IL‐1β secretion at the site of infection, but the underlying mechanism(s) are poorly understood. In this work we show that Mtb infection of macrophages stimulates caspase‐1 activity and promotes the secretion of IL‐1β. This stimulation requires live intracellular bacteria expressing a functional ESX‐1 secretion system. ESAT‐6, an ESX‐1 substrate implicated in membrane damage, is both necessary and sufficient for caspase‐1 activation and IL‐1β secretion. ESAT‐6 promotes the access of other immunostimulatory agents such as AG85 into the macrophage cytosol, indicating that this protein may contribute to caspase‐1 activation largely by perturbing host cell membranes. Using a high‐throughput shRNA‐based screen we found that numerous NOD‐like receptors (NLRs) and CARD domain‐containing proteins (CARDs) were important for IL‐1β secretion upon Mtb infection. Most importantly, NLRP3, ASC and caspase‐1 form an infection‐inducible inflammasome complex that is essential for IL‐1β secretion. In summary, we show that recognition of Mtb infection by the NLRP3 inflammasome requires the activity of the bacterial virulence factor ESAT‐6, and the subsequent IL‐1β response is regulated by a number of NLR/CARD proteins.  相似文献   

18.
19.
Mycobacterium kansasii has emerged as an important nontuberculous mycobacterium pathogen, whose incidence and prevalence have been increasing in the last decade. M. kansasii can cause pulmonary tuberculosis clinically and radiographically indistinguishable from that caused by Mycobacterium tuberculosis infection. Unlike the widely-studied M. tuberculosis, little is known about the innate immune response against M. kansasii infection. Although inflammasome activation plays an important role in host defense against bacterial infection, its role against atypical mycobacteria remains poorly understood. In this report, the role of inflammasome activity in THP-1 macrophages against M. kansasii infection was studied. Results indicated that viable, but not heat-killed, M. kansasii induced caspase-1-dependent IL-1β secretion in macrophages. The underlying mechanism was found to be through activation of an inflammasome containing the NLR (Nod-like receptor) family member NLRP3 and the adaptor protein ASC (apoptosis-associated speck-like protein containing a CARD). Further, potassium efflux, lysosomal acidification, ROS production and cathepsin B release played a role in M. kansasii-induced inflammasome activation. Finally, the secreted IL-1β derived from caspase-1 activation was shown to restrict intracellular M. kansasii. These findings demonstrate a biological role for the NLRP3 inflammasome in host defense against M. kansasii.  相似文献   

20.
The role of macrophage cell death in tuberculosis   总被引:5,自引:0,他引:5  
Studies of host responses to infection have traditionally focused on the direct antimicrobial activity of effector molecules (antibodies, complement, defensins, reactive oxygen and nitrogen intermediates) and immunocytes (macrophages, lymphocytes, and neutrophils among others). The discovery of the systems for programmed cell death of eukaryotic cells has revealed a unique role for this process in the complex interplay between microorganisms and their cellular targets or responding immunocytes. In particular, cells of the monocyte/macrophage lineage have been demonstrated to undergo apoptosis following intracellular infection with certain pathogens that are otherwise capable of surviving within the hostile environment of the phagosome or which can escape the phagosome. Mycobacterium tuberculosis is a prototypical 'intracellular parasite' of macrophages, and the direct induction of macrophage apoptosis by this organism has recently been reported from several laboratories. This paper reviews the current understanding of the mechanism and regulation of macrophage apoptosis in response to M. tuberculosis and examines the role this process plays in protective immunity and microbial virulence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号