首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ethanol at 50% (v/v) and sodium bicarbonate at 1% (wt/v), either alone or in combination, were applied to organically grown strawberries 1 h before harvest to control the natural incidence of postharvest diseases. Botrytis cinerea was the major cause of decay in all of the experiments. In three experiments, ethanol significantly reduced the decay incidence after storage for 3 days at 1°C followed by 2 days at 24°C, while the efficacy of sodium bicarbonate was inconsistent. The combination of ethanol and sodium bicarbonate did not increase their efficacy. Postharvest hot water dips at 55 and 60°C for 30 s significantly reduced the decay incidence to 3.4 and 2.7%, respectively, while decay incidence in the control was 28.5% (the first experiment). The efficacy of the hot water treatments at 55 and 60°C for 30 s was consistent in three experiments. In the third experiment, the efficacy of hot water treatment at 60°C was significantly higher than that of hot water treatment at 55°C. All pre‐ and postharvest treatments significantly reduced natural fungal populations on the surfaces of fruits. None of the pre‐ and postharvest treatments caused surface injuries to the fruit or adversely affected weight loss and taste parameters.  相似文献   

2.
Postharvest diseases cause considerable losses of harvested fruits during transportation and storage. Many yeast species have been reported as good antagonists against postharvest pear pathogens. In this work, we used a novel selection strategy that involves the isolation of yeasts from washing fluids, showing biocontrol activity against a regional Penicillium expansum strain (primary screening), originally obtained from fruit wounds after long time storage at ?1/0°C. About 26 isolates representative of the 11 yeast species identified in the 27 selected washing waters were chosen to be evaluated in a secondary screening against a regional Botrytis cinerea strain on pear wounds. Among yeasts tested, 38% showed complete control of P. expansum, but only 15% reduced the decay incidence of B. cinerea to 60–80% at ?1/0°C. These results reveal that some of the yeasts found can be biological alternatives to fungicides in the control of P. expansum and B. cinerea infections. Based on the data obtained, our strategy seems to be much more effective than the previously reported methods in obtaining successful biocontrol agents.  相似文献   

3.
4.
Lingfei Xu  Yanmin Du 《BioControl》2012,57(3):451-461
The yeast antagonist Candida guilliermondii and ultraviolet-C (UV-C) treatment were investigated for controlling infection following artificial inoculation with Penicillium expansum or Botrytis cinerea, or natural infection in pear fruit stored at 20°C. Applied separately, both C. guilliermondii and UV-C (5 kJ m−2) effectively inhibited decay caused by P. expansum or B. cinerea, and natural infection. The combination of C. guilliermondii and UV-C showed better control efficacy. Application of UV-C did not affect the growth of C. guilliermondii in pear fruit wounds, while UV-C induced a significant increase in the activities of chitinase, β-1,3-glucanase, catalase and peroxidase in pear fruit. The mechanism by which UV-C enhanced the biocontrol efficacy of C. guilliermondii may be related to the elicitation of defense responses in pear fruit. The combination of C. guilliermondii and UV-C radiation could be a promising method for the control of P. expansum and B. cinerea in pear fruit.  相似文献   

5.
The objective was to reveal the effects of ozone treatment on quality maintenance and resistance to Botrytis cinerea and Penicillium expansum in kiwifruit during postharvest storage. Kiwifruits were treated with 79.44 ppm gaseous ozone for 1 hr once a day for 7 day at 0°C to determine the effects of ozone treatment on the quality and disease incidence caused by B. cinerea and P. expansum in vivo and the growth of B. cinerea and P. expansum in vitro. Ozone treatment significantly reduced the disease incidence of kiwifruit and inhibited the mycelial development and spore germination of B. cinerea and P. expansum. High levels of fruit firmness and titratable acidity were maintained in the ozone‐treated kiwifruit, and the activities of the defence‐related enzymes were remarkably enhanced. Therefore, ozone treatment may be an effective method to maintain the quality of kiwifruit and control its decay during postharvest storage.  相似文献   

6.
The biocontrol activity of Rhodotorula glutinis on gray mold decay and blue mold decay of apple caused by Botrytis cinerea and Penicillium expansum, respectively, was investigated, as well as its effects on postharvest quality of apple fruits. The results show there was a significant negative correlation between concentrations of the yeast cells and the disease incidence of the pathogens. The higher concentration of the R. glutinis, the better effect of the biocontrol capacity. At concentrations of R. glutinis 1 × 108 CFU ml?1, the amount of gray mold decay was completely inhibited after 5 days incubation at 20 °C, after challenge with B. cinerea spores suspension of 1 × 105 spores ml?1; While the blue mold decay was completely inhibited at concentrations of 5 × 108 CFU ml?1, at challenged with P. expansum spores suspension of 5 × 104 spores ml?1. These results demonstrated that the efficacy of R. glutinis in controlling of gray mold decay of apples was better than the efficacy of controlling blue mold. R. glutinis within inoculated wounds on apples increased in numbers at 20 °C from an initial level of 9.5 × 105 CFU per wound to 2.24 × 107 CFU at 20 °C after 1 day. The highest population of the yeast was recovered 4 days after inoculation, the yeast population in wounds increased by 56.9 times. After that, the population of the yeast began to decline very slowly. R. glutinis significantly reduced the incidence of natural infections on intact fruit from 75% in the control fruit to 28.3% after 5 days at 20 °C, and from 58.3 to 6.7% after 30 days at 4 °C followed by 4 days at 20 °C. R. glutinis treatment had no deleterious effect on quality parameters after 5 days at 20 °C or after 30 days at 4 °C followed by 4 days at 20 °C.  相似文献   

7.
The potential use of allyl isothiocyanate (AITC) and ethyl isothiocyanate (EITC), singly and in combination, was tested in in vitro and in vivo trials for their effect on Penicillium expansum Link and Botrytis cinerea Persl. infection on apple when used as a fumigant. A 3 : 1 ratio of AITC : EITC was more efficient at reducing in vitro spore germination of P. expansum and B. cinerea than were other combinations or either AITC or EITC alone. The optimized combination showed the lowest EC50 values, at 0.08 and 0.14 μg/ml air, for P. expansum conidial germination and mycelial growth, respectively, and 0.07 and 0.12 μg/ml air for B. cinerea conidial germination and mycelial growth, respectively. In in vivo trials, artificially infected apples were exposed for 4 days to an ITC‐enriched atmosphere. Among the ITCs tested, AITC, EITC and their combinations reduced incidence by more than 85% after 3–4 days of apple incubation at 20°C. Although further studies are necessary to evaluate any detrimental effects on apple quality, the evidence from this study supports the use of fumigation based on ITCs, and in particular a 3 : 1 combination of AITC and EITC, for control of postharvest mildew in apple fruit.  相似文献   

8.
Biocontrol potential of Bacillus subtilis strain CPA-8 was tested against the main postharvest diseases of orange, apple and stone fruit. Previously, CPA-8 growth was characterized and its antifungal activity in vitro determined against Botrytis cinerea, Monilinia laxa, M. fructicola, Penicillium digitatum, P. expansum, and P. italicum. In vivo activity against these pathogens was tested by treating fruits with cells, endospores or cell free supernatants. CPA-8 treatments cannot control decay caused by P. digitatum and P. italicum on oranges. The higher concentrations of CPA-8 studied were effective in controlling B. cinerea on apple, showing grey mold incidence from 70 to 12.5% in comparison with 100% in the control. However, in general, CPA-8 treatments were not effective in controlling P. expansum. The best results of CPA-8 treatments were obtained in stone fruit against M. laxa and M. fructicola where most treatments resulted in brown rot incidence of 0% compared with 70 and 90% in the control. Based on these results, cultures, cells and cell free supernatants at different concentrations were tested against M. laxa and M. fructicola on stone fruit. Most bacterial concentrations were effective in controlling M. laxa and M. fructicola as well as or better than Serenade® Max, in some treatments showing brown rot incidences of 0% in comparison with 100% of control. Bacterial populations of CPA-8 were maintained stable or increased up to 2-log inside wounds, showing the ability of the bacteria to colonize injured tissues. Experimental evidence suggests that B. subtilis CPA-8 has biocontrol potential for control of postharvest disease on several fruit types.  相似文献   

9.
This study aims to evaluate the efficacy of hot water and chitosan treatments to control green mould caused by Penicillium digitatum in 'Murcott' tangor. P. digitatum conidial germination and mycelial growth were evaluated in assays in vitro to verify whether chitosan (0.5, 1 and 2%) or hot water (45, 50, and 55°C, for 30 s, 1, 2, and 5 min) acts directly on fungus development. In vivo assays consisted of inoculating the fruit with P. digitatum (105 conidia ml−1) 4 hr before the chitosan and hot water treatments. Subsequently, green mould incidence and severity were evaluated in fruits stored at 25°C/80% RH for 4 days. Also, treatments combining chitosan and hot water were investigated for controlling green mould and the effect on postharvest quality of fruit stored at 5°C/90% RH. The results showed that P. digitatum conidia germination and mycelial growth were significantly reduced by the hot water treatments especially at 50°C/5 min and 55°C/2 or 5 min in the first case and 50 and 55°C/5 min in the second. These two treatments, when applied alone, 1 min dipping in 2% chitosan or hot water at 50°C/5 min, significantly reduced green mould development in fruit kept at 25°C/80% RH or refrigerated. However, the hot water dip combined with chitosan did not improve green mould control on ‘Murcott’ tangor at room temperature or under refrigeration. Besides, chitosan and hot water did not impair fruit quality. Thus, chitosan and hot water could be an alternative to synthetic fungicides to control green mould in citrus while also contributing to a decrease in the postharvest losses of ‘Murcott’ tangor.  相似文献   

10.
A biological control of crown rot disease of banana fruit was analysed using an integrated approach combining hot water treatment and Trichoderma harzianum strain DGA01. Treated fruits were stored at 22–25 °C and 90–95% relative humidity for 2 weeks. The bioefficacy of fungal antagonist in vitro towards crown rot-causing pathogens, namely Lasiodiplodia theobromae, Thielaviopsis paradoxa, Colletotrichum musae and Fusarium verticillioides, was enhanced by 11.41% following hot water treatment (50 °C, 20 min). DGA01 germinated on the fruit 48 h after inoculation and parasitised the pathogen. Postharvest application showed that hot water treatment and conidial suspension of DGA01 (106 ml?1) applied singly performed significantly better than the untreated control in reducing the incidence of crown rot, but were not as effective as the fungicide. The combination of hot water treatment and DGA01 gave 93% control of fruit decay which was comparable with fungicide treatment of 95%. The quality of fruit was markedly improved in hot water treatment + DGA01 as compared to those dipped in fungicide solution. The inconsistencies of single treatments, by DGA01 or hot water dips, in controlling crown rot such as variation in severity of disease among treatments and within a treatment, were lessened by dipping the fruit in DGA01 conidial suspension following hot water treatment.  相似文献   

11.
Decreasing periods of atmospheric humidity in excess of 90 and 75 % r.h. by automatic control decreased the incidence of C. fulvum and B. cinerea and sometimes increased tomato yields. The desired value of humidity was not always achieved but nevertheless environments which were both physically and biologically different were obtained with humidistats set at 90 and 75 % r.h. in glasshouses maintaining two temperature régimes–20 °C day and night, or 20 °C by day and 13 °C at night. Less B. cinerea and C. fulvum occurred on tomatoes grown constantly at 20 °C than on those grown in conditions with lower night temperatures. In the latter regime the end-of-season incidence of C.fulvumvas decreased from 25.0% where humidity was not controlled to 2.8% and 0.0% where humidistats were set at 90 and 75 % r.h. In the same conditions the proportion of blemished fruit damaged by B. cinerea decreased from 2.6% to 1.6% and 0.2%.  相似文献   

12.
The survival of the fungus Monilinia fructicola on fruit and inert surfaces at different temperatures (range: 0–30°C) and relative humidity (RH) (range: 60–100%) was investigated. M. fructicola conidia survived better on fruit than on inert surfaces. The viability reduction rate at 20°C and 60% RH was 1.2 and 5.8 days?1 on fruit and inert surfaces, respectively. Overall, on fruit surfaces, conidia viability was reduced at high temperatures and was longer at higher RH than at lower RH; in contrast, on inert surfaces, conidia viability was longer at only low temperatures. On fruit surfaces, at 0°C and 100% RH, conidia survived up to 35 days, and at 30°C and 60% RH, conidia survived up to 7 days. However, on inert surfaces at 20°C and 30°C, conidia lost their viability after 48 and 24 h, respectively. These results suggest that M. fructicola can remain viable in cold rooms for over 30 days on fruit surfaces or over 25 days on inert surfaces. Furthermore, under the orchard conditions during the growing season, conidia may remain viable for only 2–3 days on immature fruit surfaces before conidia will be unable to penetrate the host.  相似文献   

13.
Strains of Botrytis cinerea and Mucor mucedo germinated and grew over the range 0.25°C. There were differences in germination rates and growth rates between strains of B. cinerea at any given temperature. Five of the benomyl-resistant strains germinated and grew more slowly than any of the other benomyl-resistant or benomyl-sensitive strains of B. cinerea tested. Strains of Rhizopus stolonifer and R. sexualis germinated and grew between 5 and 25°C, and although some spores germinated at 2°C, subsequent growth of the germ tubes and growth from a mycelial inoculum did not occur. Neither species germinated or grew at o°C. The effect of temperature on mycelial growth in vitro was consistent with the ability of the strains of the four species to infect strawberry fruits.  相似文献   

14.
The fungal pathogen Botrytis cinerea causes severe rots on tomato fruit during storage and shelf life. Biological control of postharvest diseases of fruit may be an effective alternative to chemical control. Yeasts are particularly suitable for postharvest use, proving to be highly effective in reducing the incidence of fungal pathogens. Yeast fungi isolated from the surface of solanaceous plants were evaluated for their activity in reducing the postharvest decay of tomato caused by B. cinerea. Of 300 isolates, 14 strains of Rhodotorula rubra and Candida pelliculosa were found to be strongly antagonistic to the pathogen in vitro and were selected for further storage experiment. The antagonists were evaluated for their effect on the biological control of postharvest grey mould. Artificially wounded fruits were treated by means of a novel technique: small sterile discs of filter paper imbibed separately in suspensions of each yeast and the pathogen were superposed onto each wound. After 1‐week, 11 isolates were significantly effective in reducing the diameter of lesions by more than 60% compared to the control treated with B. cinerea alone. Total protection was obtained with the strain 231 of R. rubra on fruits challenged with pathogen spores. To our knowledge, R. rubra and C. pelliculosa have not been described as biocontrol agents against grey mould caused by B. cinerea. Our data demonstrate that the application of antagonistic yeasts represents a promising and environmentally friendly alternative to fungicide treatments to control postharvest grey mould of tomato.  相似文献   

15.
Aims: The aim was to produce and characterize an aerated compost tea (ACT) that suppressed growth of the plant pathogen Botrytis cinerea. Methods and Results: Three different open‐windrow composts were sampled weekly from the early secondary mesophilic stage until maturity. Each 10 kg of compost sample was extracted in 30 l of aerated water for 24, 48 or 72 h. Relative to water, all batches of ACT applied to detached bean leaflets reduced lesion development following single‐point inoculations of B. cinerea. There was a significant linear, inverse relationship between the internal windrow temperature of compost (≤51°C) used to prepare ACT and the extent of lesion development. Bacterial diversity in ACTs from one windrow was highest using compost sampled at 48°C. The compost weight‐to‐water volume ratios of 1 : 3, 1 : 10 or 1 : 30, using compost sampled from a fourth windrow at 50°C, also produced ACTs that reduced the growth of B. cinerea on bean leaflets. The ‘1 : 3’ ACT, and to a lesser degree the same ACT filtered to remove micro‐organisms, inhibited the germination of B. cinerea conidia. Conclusions: ACT produced using the methods reported here suppressed the growth of B. cinerea on bean leaflets, with an abundant and diverse microbial community likely to contribute to pathogen suppression. Significance and Impact of the Study: This is the first report of the use of immature compost to produce a pathogen‐suppressive ACT, suggesting that compost stage is an important production variable.  相似文献   

16.
In this study, we investigated the pathogenicity and patulin production by ten strains of Penicillium expansum on various fruits (apples, apricots, kiwis, plums and peaches) at two (4°C and 25°C) different temperature regimes. All strains caused the infectious rots on all fruits at 4 and 25°C except one strain (PEX 09) at 4°C. Two strains (PEX 20 and PEX 12) out of ten produced the highest amounts of patulin on all fruits tested. The patulin production by P. expansum is high at 25°C compared to 4°C. All strains of P. expansum accumulated patulin ranging from 100–13,200 μg/kg and nine strains ranging from 100–12,100 μg/kg in all fruits at 25°C and 4°C, respectively. Among ten strains of P. expansum, strain PEX 20 produced the greatest amount of patulin on apricots (13,200 μg/kg of rotten fruit) and on apples (12,500 μg/kg) at 25°C after 9 days of incubation. At 4°C, this strain produced 12,100, 12,000, 2,100 and 1,200 μg/kg of patulin on apricots, apples, plums and peaches, respectively, after 45 days of incubation. Strain PEX 12 produced the highest amount of patulin on kiwis (10,700 μg/kg) at 25°C and 10,300 μg/kg at 4°C. Patulin production by P. expansum on peaches and plums at both temperatures were lower than other fruits. The results of this study showed that careful removal of rotten fruits is essential to produce patulin-free fruit juice, since high patulin levels in apricots, apples and kiwis could result in a level greater than 50 μg/kg of this mycotoxin in finished fruit juices, when one contaminated fruit occurs in 264, 250 and 214 fruits, respectively. So, the fruit processors should take care in not using rotten fruits for juice production to avoid the patulin problem worldwide, since this study proved that most important fruits being used for juice production and direct human consumption are susceptible to P. expansum and subsequent patulin production even at low temperatures. This is the first comprehensive report regarding patulin production by different strains of P. expansum on various fruits from Italy at different temperature regimes.  相似文献   

17.
The effectiveness of pre-storage treatments of nitrogen (low oxygen), heat and ethanol and acetaldehyde vapours were examined for their potential for improving mango storage. Mature green mango fruit (Mangifera indica L. cv. Keitt) were treated with low oxygen (< 3% oxygen, 97% nitrogen) for 72 h, acetaldehyde (0.12%) and ethanol (1%) vapours for 24 h or heat (38 ± 2°C) for 48 h prior to storage at 14°C. The nitrogen and ethanol treatments induced substantial levels of acetaldehyde and ethanol in the fruit. Initially the firmness of the nitrogen treated fruit remained higher than the control although later in storage this effect was lost. Differences in ripening were reflected in the total soluble solids and acidity levels, nitrogen maintaining a higher acidity and lower total soluble solids (less mature) whereas the heat treated fruit had lower acidity and higher total soluble solids (more mature). Ethanol and acetaldehyde treatments showed no effect. The use of a pre-storage treatment of nitrogen therefore had a beneficial effect on retarding ripening, although as storage progressed this effect was lost.  相似文献   

18.
In vitro, tests were conducted at 10°C and 5°C against sclerotia of Botrytis cinerea with 58 isolates of Trichoderma spp., highly antagonistic at 24°C but differing in their cold tolerance. Some isolates macerated and colonized sclerotia even at 5 °C. With 19 isolates of Trichoderma spp. less than 10 % of the sclerotia remained viable after 42 d at 5 °C. Conidia ol some Trichoderma spp. germinated at 5 °C within a few days and reached germination rates higher than 80 %. It seems to be feasible to use selected isolates of Trichoderma spp. for biological control of sclerotia of ß. cinerea also during the colder season.  相似文献   

19.
One-month-old fruits of Acer ginnala with winged pericarp attached gave 44% germination and this was not increased by cold treatment at 4°C for 0, 10, 20, or 30 days, gibberellic acid treatment at 0, 1, 10, 100 or 1000 mg litre-1, or ethephon treatment at 0, 2, 20, 200 or 2000 mg litre-1. After 6 months of storage at 20–25 °C, germination of untreated fruits fell to 5% but could be restored to that of 1-month-old fruits by incubation at 4 °C for 30 days. After 9 months storage, no germination occurred in untreated fruits. Cold treatment (30 days at 4 °C partially restored germination (26%). Treatment with either gibberellic acid (1000 mg litre-1) and 30 days at 4 °C (40%) or ethephon (100 mg litre-] and 30 days at 4 °C improved germination (69%). The combination of all three treatments, i.e. 100 mg litre-1 gibberellic acid, 100 mg litre-1 ethephon and 30 days at 4 °C, optimised germination (86%). Thus, dormancy of A. ginnala developed during storage but could be reversed by a combination of treatment with low temperature and growth regulators. The highest germination (86%) was achieved after low temperature and growth regulator treatment of stored fruit.  相似文献   

20.
The disease control efficacy of quarantine heat treatments developed for fruit fly disinfestation in mangoes cv. Kensington Pride was evaluated in this study. Heat was applied using high humidity (>95% r.h.) hot air (HHHA) at temperatures ranging from 47–49°C. Anthracnose, caused by Colletotrichum gloeosporioides, was well controlled in mangoes heated to a core temperature of 46°C, 47°C or 48°C for 24, 10 or 8 min respectively, prior to ripening at 23°C for 16 days. Stem end rot, caused by Dothiorella dominicana and Lasiodiplodia theobromae, was not satisfactorily controlled by these treatments. In a subsequent experiment, fruit were immersed in a hot benomyl (0.5 g a.i. litre“1 at 52°C for 5 min) or unheated prochloraz (0.25 ml a.i. litre1 at 28°C for 30 s) dip before or after the application of HHHA (core temperature of 47°C for 10 min). During storage at 23°C for 15 days, the incidence of stem end rot was reduced by HHHA alone, although immersion in hot benomyl either before or after HHHA treatment greatly improved stem end rot control. HHHA treatment (core temperature of 46.5°C for 10 min) alone reduced the incidence of anthracnose in mangoes stored at 13°C for 14 days prior to ripening at 22°C, although a combination treatment consisting of HHHA and either hot benomyl or unheated prochloraz gave complete control of anthracnose under these storage conditions. HHHA treatment alone gave no control of stem end rot in mangoes stored at 13°C prior to ripening at 22°C. A supplementary hot benomyl treatment was required for acceptable control of this disease in cool-stored mangoes. The development of yellow skin colour in fruit was accelerated by HHHA treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号