首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Effect of intracerebroventricular infusion of beta-amyloid peptide fragment Abeta(25-35) on light-dark discrimination in a Y-maze with positive food reinforcement, assessed as a decrease in the number of errors, was investigated in Wistar rats and non-linear rats. We proposed to use exponential mathematical model for the learning curve that represents the transfer function for the first order system together with regression analysis. Dynamics of learning in Wistar and non-linear rats coincided with the model. Injection ofbeta-amyloid into the right lateral ventricle of the brain led to a disruption in performance between the first and the second session without total cessation of the learning process. This disappearance of the curve may be the first sign of the initial effect of beta-amyloid because Student's t-test did not reveal any significant difference between control and amyloid-treated Wistar rats. Beta-amyloid in non-linear rats only decreased the velocity of learning though kept being similar to the mathematical model. These results suggest that the non-linear rats possess some genetically specified defense mechanism against damaging action of beta-amyloid.  相似文献   

2.
In the present study we investigated the toxicity induced by exposing organotypic slice culture to beta-amyloid peptide 25-35 (25microM) for 1, 3, 6, 12, 24 and 48h. To elucidate a mechanism involved in its toxicity, we studied the PI3-K cell signaling pathway, particularly Akt/PKB, GSK-3beta, and PTEN proteins. Cell death was quantified by propidium iodide uptake and proteins were analyzed by immunoblotting. Our results showed a significant cell death after 48h of beta-amyloid 25-35 peptide exposition. The exposition of cultures to beta-amyloid peptide resulted in an increase in the phosphorylation state of Akt and GSK-3beta proteins after 6h, followed by a decrease of the phosphorylation state of these proteins after 12h of exposition. However, after 24h of peptide treatment, the phosphorylation of GSK-3beta presented a new increase while the phosphorylation of Akt remained down. The immunocontent of the PTEN protein, an indirect Akt phosphatase, increased after 24 and 48h of beta-amyloid exposition. These results suggest an involvement of Akt dephosphorylation/inactivation in the toxicity induced by the beta-amyloid 25-35 peptide in organotypic slice hippocampal culture, probably induced by increasing PTEN immunocontent. Taken together, our results provide more information about the molecular mechanisms involved on beta-amyloid peptide toxicity.  相似文献   

3.
Amyloid beta-peptide, the central constituent of senile plaques in Alzheimer's disease brain, has been shown to be a source of free radical oxidative stress that may lead to neurodegeneration. In particular, it is well known that oxidation of methionine 35, is strongly related to the pathogenesis of Alzheimer's disease, since it represents the residue in the beta-amyloid peptide most susceptible to oxidation "in vivo". In this study, the fragment 31-35 of the beta-amyloid peptide, which has a single methionine at residue 35, was used to investigate the influence of the oxidation state of methionine-35 on the beta-amyloid peptide (31-35) mediated cytotoxic effects. Because no extensive studies have yet addressed whether amyloid beta peptides-mediated toxic effects can occur in the absence of mitochondria, human red blood cells were used as cell model. Exposure of intact red blood cells to beta-amyloid peptide (31-35) induced a marked stimulation (approximately 45%) of the pentose phosphate pathway and a significant inhibition of the red cell enzyme catalase, compared with the results observed in control red blood cells. In contrast, exposure of red blood cells to the beta-amyloid peptide (31-35)-Met35OX i.e. in which the sulfur of methionine is oxidised to sulfoxide, induced a slight activation of PPP (approximately 19%), and an inhibition of catalase activity lower with respect to the results observed in beta-amyloid peptide (31-35)-treated red blood cells. Since the activities of red cell phosphofructokinase, glucose-6-phosphate dehydrogenase, glutathione peroxidase, glutathione reductase and the functionality of hemoglobin were not modified within the red cell following to beta-amyloid peptides exposure, it is likely that beta-amyloid (31-35)-catalase interaction may represent a selective toxic event. Together, these results support the hypothesis that Abeta peptide and the oxidative state of Met-35 may be involved in the mechanisms responsible of neurodegeneration in Alzheimer's disease.  相似文献   

4.
In the present study, the effects of beta-amyloid (25-35) (Abeta (25-35)) upon calcium signalling by the human platelet has been investigated. When assays were conducted using HEPES buffers, Abeta (25-35), but not the inactive peptide Abeta (35-25), produced a robust increase in intracellular calcium that remained after removal of extracellular calcium but was abolished by the phospholipase C inhibitor U-73122. There was no significant difference between the calcium response to Abeta (25-35) in platelets from patients with Alzheimer's disease and from age-matched controls. In contrast to the robust effects on calcium mobilisation in HEPES buffers, very little calcium response to Abeta (25-35) was seen when Krebs (pH 7.8) buffer was used.  相似文献   

5.
The acute effects of beta-amyloid (25-35) and (1-40) on high voltage activated calcium channels were compared in CA1 pyramidal cells of adult mouse hippocampal slices using the whole-cell patch-clamp recording. Bath application of oligomeric beta-amyloid (25-35) reversibly increased the barium current (I(Ba)) to 1.61 (normalized amplitude), while oligomeric beta-amyloid (1-40) reversibly enhanced the I(Ba) to 1.74. Reverse-sequence beta-amyloid [(35-25) and (40-1)] had no effect. The effect of beta-amyloid (25-35) was blocked by nifedipine, a selective antagonist of L-type calcium channels. In contrast, the effect of beta-amyloid (1-40) was not blocked by nifedipine and I(Ba) was enhanced to 4.96. It is concluded that these oligomeric peptides may act through different types of calcium channels and/or receptors. The toxicity of Abeta(25-35) implicates a potentiation of L-type calcium channels while the one of Abeta(1-40) is related to an increase of non-L-type calcium channels, which may involve an increase in transmitter release.  相似文献   

6.
Accumulation of beta-amyloid peptide (Abeta), which is a landmark of Alzheimer's disease, may alter astrocyte functions before any visible symptoms of the disease occur. Here, we examined the effects of Abeta on biosynthesis and release of diazepam-binding inhibitor (DBI), a polypeptide primarily expressed by astroglial cells in the CNS. Quantitative RT-PCR and specific radioimmunoassay demonstrated that aggregated Abeta(25-35), at concentrations up to 10(-4) m, induced a dose-dependent increase in DBI mRNA expression and DBI-related peptide release from cultured rat astrocytes. These effects were totally suppressed when aggregation of Abeta(25-35) was prevented by Congo red. Measurement of the number of living cells revealed that Abeta(25-35) induced a trophic rather than a toxic effect on astrocytes. Administration of cycloheximide blocked Abeta(25-35)-induced increase of DBI gene expression and endozepine accumulation in astrocytes, indicating that protein synthesis is required for DBI gene expression. Altogether, the present data suggest that Abeta-induced activation of endozepine biosynthesis and release may contribute to astrocyte proliferation associated with Alzheimer's disease.  相似文献   

7.
The neuroprotective effect of Thr-Gly-Glu-Asn-His-Arg hexapeptide (HLDF-6), a biologically active fragment of the differentiation factor of human leukemia cells (HLDF), was demonstrated on models of Alzheimer's disease in vivo and in vitro. The syndromes of this pathology were induced in male rats by administration of the peptide corresponding to the 25-35 sequence of beta-amyloid peptide (25-35) and ibotenic acid into the hippocampus. HLDF-6 prevented loss of long-term memory and decrease in the orientation-investigation activity of these animals and significantly decreased the number of pyknotic neurons in the CA1 area of the hippocampus. This peptide also exerts a protective effect in vitro on the primary cultures of neurons of the hippocampus and cerebellum of rats under conditions of the beta-amyloid toxicity. An increase in the dihydrotestosterone (DHT) content was demonstrated in the blood plasma of rats with the syndrome of Alzheimer's disease and in the medium of the culture of hippocampus neurons in the presence of the Abeta(25-35) peptide. HLDF-6 inhibited this increase in both cases. A probable mechanism of the neuroprotective effect of HLDF-6 was suggested as being connected to its possible effect on both the biosynthesis and the metabolism of sex steroid hormones.  相似文献   

8.
beta-(25-35) is a synthetic derivative of beta-amyloid, the peptide that is believed to cause Alzheimer's disease. As it is highly toxic and forms fibrillar aggregates typical of beta-amyloid, it is suitable as a model for testing inhibitors of aggregation and toxicity. We demonstrate that N-methylated derivatives of beta-(25-35), which in isolation are soluble and non-toxic, can prevent the aggregation and inhibit the resulting toxicity of the wild type peptide. N-Methylation can block hydrogen bonding on the outer edge of the assembling amyloid. The peptides are assayed by Congo red and thioflavin T binding, electron microscopy, and a 3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) toxicity assay on PC12 cells. One peptide (Gly(25) N-methylated) has properties similar to the wild type, whereas five have varying effects on prefolded fibrils and fibril assembly. In particular, beta-(25-35) with Gly(33) N-methylated is able to completely prevent fibril assembly and to reduce the toxicity of prefolded amyloid. With Leu(34) N-methylated, the fibril morphology is altered and the toxicity reduced. We suggest that the use of N-methylated derivatives of amyloidogenic peptides and proteins could provide a general solution to the problem of amyloid deposition and toxicity.  相似文献   

9.
Cognitive impairment is a major feature of Alzheimer's disease and is accompanied by beta-amyloid (Abeta) deposition. Transgenic animal models that overexpress Abeta exhibit learning and memory impairments, but neuronal degeneration is not a consistent characteristic. We report that levels of Abeta-(1-42), which do not compromise the survival of cortical neurons, may indeed interfere with functions critical for neuronal plasticity. Pretreatment with Abeta-(1-42), at sublethal concentrations, resulted in a suppression of cAMP-response element-binding protein (CREB) phosphorylation, induced by exposure to either 30 mm KCl or 10 microm N-methyl-d-aspartate. The effects of Abeta-(1-42) seem to involve mechanisms unrelated to degenerative changes, since Abeta-(25-35), a toxic fragment of Abeta, at sublethal concentrations did not interfere with activity-dependent CREB phosphorylation. Furthermore, caspase inhibitors failed to counteract the Abeta-(1-42)-evoked suppression of CREB activation. Abeta-(1-42) also interfered with events downstream of activated CREB. The Abeta-(1-42) treatment suppressed the activation of the cAMP response element-containing brain-derived neurotrophic factor (BDNF) exon III promoter and the expression of BDNF exon IIII mRNA induced by neuronal depolarization. In view of the critical role of CREB and BDNF in neuronal plasticity, including learning and memory, the observations indicate a novel pathway through which Abeta may interfere with neuronal functions and contribute to cognitive deficit in Alzheimer's disease before the stage of massive neuronal degeneration.  相似文献   

10.
The beta-amyloid (Abeta) peptide Abeta25-35 provokes apoptosis of cerebellar granule cells through activation of caspase-3 while the neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) promotes granule cell survival by inhibiting caspase-3 activation through the intrinsic apoptotic pathway. The aim of the present study was to determine whether PACAP could prevent Abeta25-35 neurotoxicity by inhibiting caspase-3 activity. A 24-h exposure of cultured cerebellar granule cells to Abeta25-35 induced shrinkage of cell bodies, neurite retraction and alteration of mitochondrial activity. Administration of graded concentrations (10-80 microM) of Abeta25-35 induced a dose-related decrease of the number of living cells, and the neurotoxic effect was highly significant after a 24-h exposure to 80 microM Abeta25-35. Exposure of cerebellar granule cells to Abeta25-35 markedly enhanced caspase-3 but not caspase-9 activity. Co-incubation with 1 microM PACAP significantly reduced Abeta25-35-evoked caspase-3 activation. In contrast, PACAP did not prevent the deleterious effects of Abeta25-35 on mitochondrial potential and granule cell survival. Taken together, these data suggest that caspase-3 activation is not the main pathway activated by Abeta25-35 that leads to granule cell death. The results also demonstrate that PACAP cannot be considered as a potent neuroprotective factor against Abeta25-35-induced apoptosis in cerebellar granule neurons.  相似文献   

11.
We have used the gill- and siphon-withdrawal reflex of Aplysia californica to determine the morphological basis of the prolonged changes in synaptic effectiveness that underlie long-term habituation and sensitization. We have found that clear structural changes accompany behavioral modification and have demonstrated that these can be detected at the level of identified sensory neuron synapses, a critical site of plasticity for the short-term forms of both types of learning. These alterations occur at two different levels of synaptic organization and include (1) changes in focal regions of synaptic membrane specialization--the number, size and vesicle complement of sensory neuron active zones are larger in sensitized animals and smaller in habituated animals compared with controls--and (2) a parallel but more dramatic and global trend involving modulation of the total number of presynaptic varicosities per sensory neuron. Quantitative analysis of the time course over which these structural alterations occur during sensitization has further demonstrated that changes in the number of varicosities and active zones persist in parallel with the behavioral retention of the memory. This increase in the number of sensory neuron synapses during long-term sensitization in Aplysia is similar to changes in the number of synapses in the mammalian brain following various forms of environmental manipulations and learning (Greenough, 1984). Therefore learning may involve a form of neuronal growth across a broad segment of the animal kingdom, thereby suggesting a role for structural synaptic plasticity during long-term behavioral modifications.  相似文献   

12.
Several lines of evidence support that beta-amyloid (Abeta)-induced neurotoxicity is mediated through the generation of reactive oxygen species (ROS) and elevation of intracellular calcium. Salvianolic acid B (Sal B), the major and most active anti-oxidant from Salvia miltiorrhiza, protects diverse kinds of cells from damage caused by a variety of toxic stimuli. In the present study, we investigated the effects of Sal B against beta-amyloid peptide 25-35 (Abeta(25-35))-induced neurotoxicity, focused mainly on the neurotoxic effects of Abeta(25-35) and the neuroprotective effects of Sal B on the expression of brain-pancreas relative protein (BPRP), which is a new protein and mainly expressed in brain and pancreas. Following exposure of PC12 cells to 20 microM Abeta(25-35), a marked reduction in the expression of BPRP was observed, accompanied with decreased cell viability and increased cell apoptosis, as well as increased ROS production and calcium influx. Treatment of the PC12 cells with Sal B significantly reversed the expression of BPRP and cell viability while it decreased ROS production and intracellular calcium. These data indicate that Abeta(25-35) decreases the expression of BPRP via enhanced formation of intracellular ROS and increased intracellular calcium, and that Sal B, as an anti-oxidant, protects against Abeta(25-35)-induced reduction in expression of BPRP through its effects on suppressing the production of ROS, calcium flux, and apoptosis. However, the role(s) of BPRP in AD and the definite mechanisms by which Sal B protects against Abeta(25-35)-induced reduction in the expression of BPRP require further study.  相似文献   

13.
DNA could readily associate with the aggregated forms of the beta-amyloid peptides beta(1-40) and beta(25-35), giving rise to a shift in the electrophoretic mobility of DNA. As a result, DNA was retained at the top of a 1% agarose gel. In contrast, the electrophoretic mobility of DNA was little influenced by the monomeric forms of beta(1-40) and beta(25-30). DNA from different sources such as lambda phage, Escherichia coli plasmid, and human gene showed similar results. However, the electrophoretic mobility of RNA was shifted by the monomeric beta(1-40) and beta(25-35) as well as by the aggregated beta(1-40) and beta(25-35). The association of DNA with the aggregated beta-amyloid peptides could occur at pH 4-9. The inhibitory action of hemin on beta-amyloid aggregation could be confirmed using the DNA mobility shift assay. These results indicate that the DNA mobility shift assay is useful for kinetic study of beta-amyloid aggregation as well as for testing of agents that might modulate beta-amyloid aggregation.  相似文献   

14.
The neuroprotective potential of ethanolic extract of roots of Pseudarthria viscida (L) Wight and Arn (EEPV) was investigated against beta-amyloid(25-35)-induced amnesia in mice which is a suitable animal model for Alzheimer's disease (AD). The senile plaques of beta-amyloid (Abeta) are major constituents accumulated during the progression of AD as a potent neurotoxicant. In our investigation, intracerebroventricular injection of Abeta(25-35) in mice induced the neurodegeneration, exhibited the increased time of escape latency in behavioral pattern using water maze and decreased the levels of antioxidants namley superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT) and vitamin C with elevated level of acetylcholinesterase enzyme (AChE). The neuroprotective potential of EEPV was determined by behavioral pattern using water maze and biochemical parameters such as SOD, CAT and GPx and vitamin C content as well as AChE. Mice were treated with EEPV at 200 and 400 mg/kg doses for 21 days. Except control, all animals received a single injection of neurotoxicant Abeta(25-35) on 14th day. In behavioural assessment, treatment with ethanolic extract improved the cognitive function in the water maze and attenuated the elevated levels of AChE with increase in antioxidant enzymes, indicating the neuroprotection with increased levels of vitamin C. These findings suggest that ethanolic extract of P. viscida exerts anti-amnesiac effects and enhances cognitive function.  相似文献   

15.
16.
Alzheimer's disease neuropathology is characterised by beta-amyloid plaques and neurofibrillary tangles. Inhibition of beta-amyloid accumulation may be essential for effective therapy in Alzheimer's disease. In this study we have treated transgenic mice carrying the Swedish mutation of human amyloid precursor protein [Tg(Hu.APP695.K670N-M671L)2576], which develop brain beta-amyloid deposits, with nicotine in drinking fluid (200 microg/mL) from 9-14.5 months of age (5.5 months). A significant reduction in amyloid beta peptide 1-42 positive plaques by more than 80% (p < 0.03) was observed in the brains of nicotine treated compared to sucrose treated transgenic mice. In addition, there was a selective reduction in extractable amyloid beta peptides in nicotine treated mice; cortical insoluble 1-40 and 1-42 peptide levels were lower by 48 and 60%, respectively (p < 0.005), whilst there was no significant change in soluble 1-40 or 1-42 levels. The expression of glial fibrillary acidic protein was not affected by nicotine treatment. These results indicate that nicotine may effectively reduce amyloid beta peptide aggregation in brain and that nicotinic drug treatment may be a novel protective therapy in Alzheimer's disease.  相似文献   

17.
Mao LM  Fibuch EE  Wang JQ 《Neuron》2010,67(5):679-681
BDNF is a neurotrophic peptide that regulates synaptic plasticity. New work by Lu and coworkers in this issue of Neuron now identifies BDNF as a gatekeeper of synaptic and behavioral plasticity in cocaine sensitization. In the medial prefrontal cortex, upregulated BDNF facilitates LTP and contributes to neurobehavioral adaptations to psychostimulants.  相似文献   

18.
The accumulation of beta-amyloid peptides into senile plaques is one of the hallmarks of Alzheimer's disease (AD). There is mounting evidence that the lipid matrix of neuronal cell membranes plays an important role in the beta-sheet oligomerization process of beta-amyloid. Abeta(25-35), the sequence of which is GSNKGAIIGLM, is a highly toxic segment of amyloid beta (Abeta)-peptides, which forms fibrillary aggregates. In the present work, two spin-labelled Abeta(25-35) analogues containing the nitroxide group of the amino acid TOAC (2,2,6,6-tetramethylpiperidine-1-oxyl-4-amino-4-carboxylic acid) as a paramagnetic probe at the N- or the C-terminus of the peptide sequence, respectively, were synthesized in order to investigate the peptide-membrane interaction. The orientation and associated changes of the peptide conformation in the presence of different artificial membrane models (micelles, liposomes) were evaluated by electron paramagnetic resonance and circular dichroism techniques. The results of this study allowed us to propose a model in which the C-terminal portion of the peptide is highly associated to the membrane, while the N-terminal part extends into the aqueous phase with occasional contacts with the lipid head-group region. Interestingly, the interaction of the C-terminal portion of the peptide is particularly enhanced in the presence of sodium dodecyl sulfate (SDS) molecules.  相似文献   

19.
The physiological and molecular mechanisms of age-related memory loss are complicated by the complexity of vertebrate nervous systems. This study takes advantage of a simple neural model to investigate nervous system aging, focusing on changes in learning and memory in the form of behavioral sensitization in vivo and synaptic facilitation in vitro. The effect of aging on the tail withdrawal reflex (TWR) was studied in Aplysia californica at maturity and late in the annual lifecycle. We found that short-term sensitization in TWR was absent in aged Aplysia. This implied that the neuronal machinery governing nonassociative learning was compromised during aging. Synaptic plasticity in the form of short-term facilitation between tail sensory and motor neurons decreased during aging whether the sensitizing stimulus was tail shock or the heterosynaptic modulator serotonin (5-HT). Together, these results suggest that the cellular mechanisms governing behavioral sensitization are compromised during aging, thereby nearly eliminating sensitization in aged Aplysia.  相似文献   

20.
Liao MQ  Tzeng YJ  Chang LY  Huang HB  Lin TH  Chyan CL  Chen YC 《FEBS letters》2007,581(6):1161-1165
Aggregated beta-amyloid (Abeta) peptides are neurotoxic and cause neuronal death both in vitro and in vivo. Although the formation of a beta-sheet structure is usual required to form aggregates, the relationship between neurotoxicity and the Abeta sequence remains unclear. To explore the correlation between Abeta sequence, secondary structure, aggregative ability, and neurotoxicity, we utilized both full-length and fragment-truncated Abeta peptides. Using a combination of spectroscopic and cellular techniques, we demonstrated that neurotoxicity and aggregative ability are correlated while the relationship between these characteristics and secondary structure is not significant. The hydrophobic C-terminus, particularly the amino acids of 17-21, 25-35, and 41-42, is the main region responsible for neurotoxicity and aggregation. Deleting residues 17-21, 25-35 or 41-42 significantly reduced the toxicity. On the other hand, truncation of the peptides at either residues 22-24 or residues 36-40 had little effect on toxicity and aggregative ability. While the N-terminal residues 1-16 may not play a major role in neurotoxicity and aggregation, a lack of N-terminal fragment Abeta peptide, (e.g. Abeta17-35), does not display the neurotoxicity of either full-length or 17-21, 25-35 truncated Abeta peptides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号